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Model of go/no-go task603
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Supplemental Fig. 1: Go/no-go task. A. Example in which dSPN plasticity produces correct learning behavior
in a go/no-go task. Left: cortical inputs to the dSPN and iSPN are equal prior to learning. Shading of corticostriatal
connections indicates synaptic weight, and shading of blue and red circles denotes dSPN/iSPN activity. Middle: the
“go” response is selected, corresponding to elevated dSPN activity. In this example, the “go” response is rewarded,
leading to elevated DA activity and thus potentiation of the dSPN input synapse. Right: in a subsequent trial,
cortical input to the dSPN is stronger, increasing the likelihood of selecting the “go” response. B. Example in which
iSPN plasticity produces incorrect learning behavior in a go/no-go task. Left: same as panel B. Middle: the “no
go” response is selected, corresponding to elevated iSPN activity. In this example, the “no-go” response is punished,
leading to decreased DA activity and thus potentiation of the iSPN input synapse. Right: in a subsequent trial,
cortical input to the iSPN is stronger, decreasing the likelihood of selecting the “go” response. C. Illustration of the
efference model in a go/no-go task. Left: feedforward SPN activity driven by cortical inputs. Right: once the “go”
response is selected, the dSPN and iSPN are both excited by efferent input, which is combined with their original
input. As a result, both the dSPN and iSPN are more active than prior to action selection, but the dSPN is still
more active than the iSPN.

Relationship between sum mode activity and future difference mode activity604

In the main text we provided an argument for why sum mode activity drives changes to future605

difference mode activity, assuming a linear fd/iSPN(δ) and linear neural activation functions. Here606

we generalize this argument to more general learning rules and activation functions ϕ, assuming607

only that fdSPN(δ) is monotonically increasing, f iSPN(δ) is monotonically increasing, and ϕ(·) is608

monotonically increasing. We have that yd/iSPN = ϕ(wd/iSPN · x), and δwd/iSPN = (fd/iSPN(δ) ·609

yd/iSPN)x. Thus, in the limit of small small weight updates, we can write:610
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∆(ydSPN − yiSPN) = ∆ϕ(wdSPN · x)−∆ϕ(wiSPN · x)
≈ ϕ′(wdSPN · x)(∆wdSPN · x)− ϕ′(wiSPN · x)(∆wiSPN · x)
∝ ϕ′(wdSPN · x)(fdSPN(δ) · ydSPNx · x)− ϕ′(wiSPN · x)(f iSPN(δ) · yiSPNx · x)

= ∥x∥2
(
ϕ′(wdSPN · x)(fdSPN(δ) · ydSPN)− ϕ′(wiSPN · x)(f iSPN(δ) · yiSPN)

)
∝ cdSPNfdSPN(δ)ydSPN + (−ciSPNf iSPN(δ)yiSPN). (24)

where cdSPN and ciSPN are nonnegative because ϕ′ is always nonnegative by assumption. Snce by611

assumption fd/iSPN are increasing/decreasing, respectively, the first term of the above sum has612

nonnegative correlation with δydSPN and the second term has nonnegative correlation with δyiSPN.613

Thus, changes ∆(ydSPN − yiSPN) to difference mode activity are always nonnegatively correlated614

with sum mode activity. If we assume that efferent excitation is always sufficiently strong that615

cdSPN = ϕ′(wdSPN · x) and ciSPN = ϕ′(wiSPN · x) are positive, and that there are no values of δ616

for which fd/iSPN(δ) both have zero derivative, we can further guarantee that changes to difference617

mode activity will always be positively correlated with sum mode activity.618

Generalizing the model to a distributed code for actions619

In our model simulations in the main text we assumed for convenience that there is a single dSPN620

and iSPN that promote and suppress each available action, respectively. It is more realistic to model621

the code for action as distributed among many SPNs. Our model generalizes easily to this case; all622

that is necessary is for the efferent activity following action selection to excite the vectors (for both623

dSPNs and iSPNs) in population activity space corresponding to that action. To demonstrate this,624

we conducted a simulation with N = 1000 dSPNs and iSPNs each, S = 10 input cues (one-hot625

input vectors), and A = 10 actions, with one correct action for each input state. Feedforward SPN626

activity is given by627

ydSPNi = ϕ

 M∑
j=1

wdSPN
ij xj

 (25)

yiSPNi = ϕ

 M∑
j=1

wiSPN
ij xj

 (26)

The log-likelihood of an action a being performed is proportional to628

ℓa =
N∑
i=1

ζdSPNai ydSPNi − ζ iSPNai yiSPNi (27)
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where ζdSPNai and ζ iSPNai are randomly sampled uniformly in the interval [0, 1] and then normalized629

so that each vector ζdSPNa and ζ iSPNa has norm 1. Thus, the contribution of each dSPN/iSPN to630

the promotion/suppression of each action is randomly distributed.631

In the efference model, following selection of an action a∗, activity of the SPNs associated with action632

a∗ is updated as follows, so that efference activity excites the modes ζdSPNa∗ and ζ iSPNa∗ associated633

with the selected action:634

ydSPNi ← ϕ

cefference · ζdSPNa∗i +
M∑
j=1

wdSPN
ij xj

 (28)

yiSPNi ← ϕ

cefference · ζ iSPNa∗i +
M∑
j=1

wiSPN
ij xj

 (29)

(30)

We also experiment with a generalization of the canonical action selection model to this distributed635

action tuning architecture, in which following action selection, SPN activity is set to636

ydSPNi ← ζdSPNa∗i (31)

yiSPNi ←
(
max
i′

ζ iSPNa∗i′

)
− ζ iSPNa∗i (32)

(33)

In this model, dSPNs are excited in proportion to their contribution to the currently selected action637

and iSPNs are suppressed in proportion to their degree of inhibition of the currently selected action.638

The plasticity rules used are the same as in the main text.639

We find that the results of the main text – that the canonical action selection model fails to learn640

from negative rewards, while the efference model successully learns from both reward protocols –641

is replicated (Supp. Fig. 2).642
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Supplemental Fig. 2: Performance of striatal RL models with a distributed code for actions on a task with 10
cortical input states, 10 available actions, and one correct action for each input state.

Photometry analysis with reversed indicators643
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Supplemental Fig. 3: Same as Fig. 5C, but performing the analysis on subjects with reversed assignment of
indicators to SPN types.
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Comparison of selectivity of dSPNs and iSPNs644
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Supplemental Fig. 4: Comparison of dSPN and iSPN tuning selectivity. Violin plots indicate the distribution of
selectivity values across all neurons computed using Eq. 34, using either unsigned (left) or rectified (right) z-scored
activity as the raw measure of a neuron’s tuning to a behavioral syllable. Horizontal lines indicate the 0, 25, 50, 75, 100
percentile values of the distribution.

To test whether dSPNs or iSPNs exhibit greater or less specificity in their tuning to behaviors,645

we computed the selectivity of each neuron in the imaging data of Fig. 6. For each neuron, we646

computed its average z-scored activity ai in response to each of the behavioral syllables i ∈ {1, ..., A}647

in the dataset. Common measures of selectivity require a nonnegative measurement of a neuron’s648

tuning to a given condition. Thus, we conducted the analysis in two ways, using either the unsigned649

activity |ai| or the rectified activity max(ai, 0) as the measure of the neuron’s tuning ti to syllable i.650

The selectivity was then computed using the following expression introduced in prior work (Treves651

and Rolls, 1991; Willmore and Tolhurst, 2001):652

(
1
A

∑
i ti

)2
1
A

∑
i t

2
i

(34)

This value ranges from 0 to 1, and higher value indicates that fluctuations in a neuron’s activity are653

driven primaril by one or a few behavioral syllables. The results are shown in Supp. Fig. 4. The654

selectivity values are fairly modest (consistent with a distributed code for actions) and comparable655

between dSPNs andn iSPNs.656
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Alternative model with shared plasticity rule among all SPNs657
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Supplemental Fig. 5: Comparison to counterfactual model in which iSPNs use the same plasticity rule as dSPNs.
A. Left: performance of simulated striatal RL system using efference model with the opponent dSPN/iSPN plasticity
rules used elsewhere in the paper (black, same as Fig. 3E), and a system using the canonical action selection model
and identical dSPN and iSPN plasticity rules (green). Right: same as left panel, but in an off-policy setting in which
another pathway controls behavior during and always chooses the correct action, and the performance of the striatal
RL system is evaluated over time. Here the Q-learning model of dopamine activity is used. B. In the counterfactual
model in which iSPNs use the same plasticity rule as dSPNs, activity in the difference mode (dSPN - iSPN) influences
(via plasticity) changes in future difference mode activity that affect decision-making.

The issues identified in Fig. 2 with the canonical action selection model are a consequence of the658

iSPN plasticity rule. From a normative perspective is interesting to consider why the empirically659

observed iSPN plasticity rule might be advantageous, compared to an alternative model in which660

iSPNs share the same plasticity rule as dSPNs. For instance, this alternative model can solve661

the two-alternative forced choice task of Fig. 2 with both positive and negative reward protocols662

(Supp. Fig. 5A, left). However, the limitations of this alternative model are revealed in the off-663

policy learning setting, where the Q-learning algorithm is required. In this case, SPN activity must664

encode Q-values associated with each action, but in the canonical action selection model, these665

values are disrupted by the updates to SPN activity following action selection. This is because666

the activity updates in the canonical action selection model modify difference mode activity, which667

(when dSPN and iSPN plasticity rules are the same) is needed for learning (Supp. Fig. 5B). As a668

result, the predicted Q-values are inaccurate, and the model has difficulty learning the true value669

of each action. We demonstrate this in the two-alternative forced task in an off-policy learning670

protocol where an oracle chooses the correct action on each trial, and the striatal pathway’s ability671

to solve the task independently is evaluated. The efference activity model has no issue due to the672

orthogonality of the efferent activity and difference modes as described above, but the canonical673

action selection model fails to solve the task (Supp. Fig. 5A, right).674

We note that non-orthogonality of the activity mode used for learning and behavior could cause675

other problems besides impairing the system’s ability to implement off-policy learning algorithms;676

for instance, even in an on-policy setting it could interfere with sequential action selection at rapid677

timescales.678

Models used for dopamine analysis679

We experimented with models that predict transition probabilities P (st−1, st) based on average680

dopamine activity D(st−1, st) associated with each transition.681

682
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Q-learning model : In the Q-learning model, the mouse maintains an internal estimate of the value683

Q(st−1, st) of each transition between syllables. In the absence of explicit rewards, the dopamine684

activity associated with a syllable transition is predicted to be: D(st−1, st) = maxs′ Q(st, s
′) −685

Q(st−1, st). We inferred a set of Q-values by initializing a Q-table with all zero values and running686

gradient descent on the Q-table to minimize the mean squared error between the predicted and687

empirical values of D(st−1, st). These inferred Q-values were used to predict behavioral transition688

probabilities according to: P̂ (st−1, st) =
eβ(st−1)Q(st−1,st)∑
s′ e

β(st−1)Q(st−1,s
′) . We did not fit the value of β(st−1) but689

rather chose it to be the reciprocal of the standard deviation of Q(st−1, s
′) across all s′, to ensure690

a reasonable dynamic range in predicted transition probabilities.691

V (s) TD learning model : In this model, the mouse maintains an internal estimate of the value V (s)692

of each syllable, and the predicted dopamine activity at each transition is D(st−1, st) = V (st) −693

V (st−1). We fit the vector of values V (s) to minimize the mean squared error of predicted and694

empirical D(st−1, st). The predicted transition probabilities in this modl (which are independent695

of the previous syllable st−1) are: P̂ (st−1, st) =
eβV (st)∑
s′ e

βV (s′) with β chosen to normalize the V (s′) to696

have standard deviation 1, as in the previous models.697

Action value model : In this model, we assume that dopamine activity simply reflects the proba-698

bility of each transition rather than encoding a prediction error; that is, we assume P (st−1, st) =699

D(st−1,st)∑
s D(st−1,s)

.700

State value model : In this model, we assume that dopamine activity simply reflects the proba-701

bility of each behavioral syllable being chosen and is independent of the previous syllable. That702

is, we compute the average dopamine activity D(s) associated with each syllable s, and predict703

P (st−1, st) =
D(st)∑
s D(s) .704
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