Covalent Integration of Polymers and Porous Organic Frameworks

Md Amjad Hossain¹, Kira Coe-Sessions¹, Joe Ault¹, Felix Gboyero¹, Michael J. Wenzel¹, Bhausaheb Dhokale¹, Alathea E. Davies¹, Qian Yang², Laura de Sousa Oliveira^{1*}, Xuesong Li^{1*}, and John O. Hoberg^{1*}

¹ Department of Chemistry, University of Wyoming, Laramie, 82072 WY, USA

²Center for Advanced Scientific Instrumentation, University of Wyoming, Laramie, 82072 WY, USA

Supplementary Material

Figure S1 | (A). TEM image of PMMA-MW (3 wt %) showing well-dispersed MW nanocrystals in the PMMA matrix. (B) Polymer-COF interactions. Depending on the polymer, its matrix may either interface only with the surface of the woven COF particles or form so-called polymer-COF junctions. In these junctions, individual polymer chains penetrate the porous, 3D woven COF crystals and decorate the surface to interact with the polymer matrix. Reprinted Permission(Neumann et al., 2024b)

Figure S3 | (A) N₂ sorption isotherms for polyMOFs; (B) CO₂ adsorption isotherms at 298 K.(Furukawa et al., 2013; Zhang et al., 2015g; Bentz et al., 2020b). Reprinted permission(Bentz et al., 2020b).

chain, resulting in the final compound.(Schmidt, 2020; Lee et al., 2023b)

preventing their anticoagulant effects while leaving blood cells unaffected.(Li et al., 2022)