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Supplementary Text 

Polymorphism in ZrO2

ZrO2 is a binary oxide with an atomic structure related to that of fluorite. At standard conditions, 
bulk ZrO2 crystals form the monoclinic (m) phase with space group P21/c (Fig. S1). At 
approximately 1400 K, the m-phase transitions to the tetragonal (t) P42/nmc phase. Then, at 
approximately 2600 K the t-phase transitions to the cubic (c) Fm-3m phase (18, 67). Furthermore, 
near ambient temperatures, the m-phase of ZrO2 transitions to the high-pressure orthorhombic (hp-
o; orthorhombic I) Pbca phase at approximately 4 to 10 GPa (68, 69). All these phases have a 
center of symmetry and are not polar, thus they do not possess the remnant polarization. The 
ferroelectricity in ZrO2 originates from the polar orthorhombic (ferro-o) Pca21 phase (20). This 
crystal phase was already reported in 1989 (70), though the electric characterization was not 
performed then, so that the ferroelectric properties were not unveiled until 2011. There are also 
other crystal phases, including polar phases, which were theoretically predicted (71). However, 
these phases have higher energy in comparison to the low energy m, hp-o, ferro-o, and t-phases. 

Neutron scattering data and refinements 

Spallation neutron diffraction (Fig. S2) supplemented synchrotron X-ray diffraction experiments, 
and Rietveld analysis of the neutron diffraction patterns (Fig. S3) similarly indicated tetragonal 
long-range order in both metastable ZrO2 samples. Pair distribution function (PDF) analysis of 
neutron total scattering data (Fig. S4) revealed that the short-range order is distinct from any known 
equilibrium structure and is best described by the Pbcn model. 

Figure S5 displays results of a set of preliminary refinements that use a model consisting of an 
uncorrelated mixture of two phases of tetragonal and orthorhombic symmetry, respectively. In 
these refinements, the contributions of the two phases are additive, corresponding to a spatially 
non-uniform uncorrelated binary mixture. The boxcar refinement was performed analyzing a 
moving r-interval of fixed length. It shows that the PDF signal in the interval is exclusively 
orthorhombic at short r-values, and it becomes exclusively tetragonal above r = 20 Å. Obviously, 
this result is incompatible with any true physical picture of an uncorrelated binary phase mixture. 
On the other hand, it clearly supports the image of a collection of nanocrystals made of an assembly 
of orthorhombic ferroelastic domains. The model also provides a good estimate of the 
characteristic correlation length of the individual orthorhombic domains (r = 20 Å). This value 
was used to choose a reasonable size of the domains of orthorhombic symmetry and to assemble 
them in a supercell consisting of all possible ferroelastic orthorhombic variants. This system, built 
using the broken symmetry elements of the tetragonal long-range symmetry, provides the correct 
long-range ensemble average that restores the broken tetragonal symmetry at large r-values.  

Displacive transformation driven by temperature 

The high-temperature polymorph of zirconia is cubic. Lowering temperature below 1300 – 1400 
K at ambient pressure produces a tetragonal polymorph. This phase change is usually described 
by a displacive mechanism involving the zone boundary phonon belonging to the irreducible 
representation X¯2 (72). This structure is non-polar, described by the space group symmetry 



P42/nmc, and it is characterized by antiparallel shifts of the O atoms along the tetragonal axis 
direction. The tetragonal lattice is not collinear with the cubic lattice, and the tetragonal orientation 
is defined by the following lattice transformation of the cubic lattice: 

[𝑎𝑎𝑇𝑇 𝑏𝑏𝑇𝑇 𝑐𝑐𝑇𝑇] = [𝑎𝑎𝐶𝐶 𝑏𝑏𝐶𝐶 𝑐𝑐𝐶𝐶] �
1/2 −1/2 0
1/2 1/2 0

0 0 1
�. 

Further lowering the temperature leads to another phase transformation to a monoclinic 
polymorph. The mechanism of this phase transition was described by Negita (32), and it involves 
the softening of a zone boundary phonon belonging to the M1 irreducible representation of the 
tetragonal structure, followed immediately by another phonon belonging to the M3 irreducible 
representation (alternatively, this can be described by a zone center irreducible representation Γ+3 
in the lattice produced by the condensation of M1). The unstable nature of this phase has been 
described in terms of an energy landscape with a saddle point shape (coordinates are the amplitudes 
of the M1 and M3 phonons). A pre-transitional signature of these displacive instabilities was 
obtained by Rietveld refinement of neutron powder diffraction data of the high-temperature 
tetragonal polymorph (19). The intermediate unstable phase obtained after the M1 phonon 
instability has symmetry Pbcn, and the relation of this orthorhombic lattice relative to the 
tetragonal lattice is described by the following transformation matrix followed by a bO/2 origin 
shift: 

[𝑎𝑎𝑂𝑂 𝑏𝑏𝑂𝑂 𝑐𝑐𝑂𝑂] = [𝑎𝑎𝑇𝑇 𝑏𝑏𝑇𝑇 𝑐𝑐𝑇𝑇] �
−1 0 1
1 0 1
0 1 0

�. 

Therefore, the former four-fold axis cT now aligns along bO. The M1 phonon branch, which 
couples with strain tensor components of symmetry Γ+4, leads to the differentiation of the 
orthorhombic a and c axes, affecting the final Zr–O bond lengths. Using a frozen-phonon picture 
for the phonon branch belonging to this M1 irreducible representation, the structural parameters 
describing the low-temperature orthorhombic variants can be organized as a superposition of 
polarization vectors containing the cartesian components of the displacements of each one of the 
independent atoms. This orthorhombic daughter phase is then a complex medium-range order 
(MRO) assembly consisting of four Pbcn ferroelastic variants (Fig. 4), providing the mathematical 
background for the model construction. Each variant is described by a unique combination of 
symmetry operations, a different superlattice basis, and a specific origin choice.  

In bulk samples, the intermediate orthorhombic symmetry is immediately broken by the sudden 
condensation of the M3 phonon branch that also couples with a shear strain component of 
symmetry Γ5+, ultimately producing the monoclinic ground state. This instability of symmetry M3 
in the tetragonal lattice description, or equivalently Γ+3 in the orthorhombic lattice description, 
brings the system to the monoclinic phase of symmetry P21/c (either M3, or equivalently Γ+3). This 
changes the lattice again, aligning the cM direction along the former four-fold axis of the tetragonal 
phase: 

[𝑎𝑎𝑀𝑀 𝑏𝑏𝑀𝑀 𝑐𝑐𝑀𝑀] = [𝑎𝑎𝑂𝑂 𝑏𝑏𝑂𝑂 𝑐𝑐𝑂𝑂] �
0 1 0
0 0 1
1 0 0

�. 



Detailed structural parameters of orthorhombic ZrO2

Neutron PDF fitting parameters of both metastable samples of ZrO2 (nanocrystalline and ion-
irradiated) are provided in Table S1. 

EXAFS fitting parameters of metastable, nanocrystalline ZrO2 are provided in Table S2. Reported 
uncertainties were output from the structural refinements. Coordination numbers (CNs) were fixed 
during the fitting. The minimum Debye-Waller factor was limited to 1.0 × 103 Å2. The S02 was 
set to 1.0 for both fittings. 

Metastable Pyrochlore 

Yb2Sn2O7 pyrochlore was ball-milled for 33 hours, and the transformation to the metastable, defect 
fluorite phase was observed by X-ray and neutron diffraction using the same procedure as for 
ZrO2. A neutron total scattering experiment was performed to probe the SRO of the metastable 
phase, and the PDF is shown in Figure S6. Neither the pyrochlore (ground-state) nor the defect 
fluorite (metastable) phase could reproduce the experimental PDF. Rather, the atomic-scale 
structure of the metastable phase was best described using an orthorhombic, weberite-type (Ccmm) 
structural model. 



Fig. S1. Phase diagram of ZrO2 (69). The equilibrium structures accessible at different 
temperatures are shown with Zr cations in green and oxygen anions in red. 



Fig. S2. Neutron diffraction patterns (NOMAD bank 4) shown for bulk, irradiated (1.47 GeV 
Au, 1013 ions cm-2), and nanocrystalline ZrO2. Miller indices denote prominent diffraction 
peaks. All peaks are indexed by the monoclinic and tetragonal phases. The diffraction patterns are 
offset vertically for ease of visualization. 



Fig. S3. Representative Rietveld refinement of neutron diffraction pattern for 
nanocrystalline ZrO2. The refinement was performed using the high temperature tetragonal phase 
polymorph and data collected using bank 4 of the NOMAD instrument. Blue circles represent 
experimental data, the red curve was calculated from the refined structure, and the difference curve 
is given in black. 



Fig. S4. Fits of known structures to experimental PDF. Calculated fits (colored lines) from 
small-box refinements of known ZrO2 structures refined over 1.6 ≤ r ≤ 6.0 Å are compared to the 
experimental PDF (open black circles) of nanocrystalline ZrO2. The absolutely scaled PDFs are 
each offset by a constant amount along the y-axis. Respective difference curves are shown in 
magenta, and weighted residuals are reported as Rw. 



Fig. S5. Phase fractions determined from two-phase boxcar refinements of the 
nanocrystalline ZrO2 neutron PDF. Tetragonal and orthorhombic phase fractions exhibit a 
dependence on the real space range sampled. No tetragonal pair correlations are observed at r-
values below ~6–7 Å, and little to no intensity from orthorhombic pair correlations is observed 
above ~20 Å. Each boxcar spans 4.2 Å (e.g., 1.8 ≤ r ≤ 6.0 Å). Phase fractions shown are the mass 
fractions calculated by PDFgui. 



Fig. S6. Neutron pair distribution function of mechanically milled Yb2Sn2O7. Fits to the cubic, 
defect fluorite (Fm-3m) and orthorhombic, weberite-type (Ccmm) models are shown in orange and 
blue, respectively. Magenta curves show the difference between the data (black circles) and the 
models (colored lines), and weighted residuals are reported as R. 



Table S1. Neutron PDF fitting parameters of metastable ZrO2 samples with Pbcn structure. 
Uncertainties shown represent one standard deviation. 

x y 𝑧𝑧 Uiso (Å2) a (Å) b (Å) c (Å) 
Nanocrystalline 

Zr1 0 0.744(4) 0.25 0.005(1) 
5.04(2) 5.18(2) 5.13(2) 

O1 0.733(4) 0.045(2) 0.988(3) 0.012(5) 

Irradiated 

Zr1 0 0.742(3) 0.25 0.005(1) 
5.05(2) 5.18(2) 5.13(2) 

O1 0.734(4) 0.045(2) 0.988(2) 0.013(5) 



Pbcn 
Path CN R (Å) Sigma (×104 Å2) ΔE (eV) Theor. R (Å) 

Zr-O1a 2.0 2.09(1) 10(1) 

-4.0(5)

2.06 
Zr-O1b 2.0 2.09(1) 10(1) 2.13 
Zr-O1c 2.0 2.20(1) 10(7) 2.27 
Zr-O1d 2.0 2.29(1) 10(8) 2.45 

Zr-O1-O1a 4.0 3.35(37) 10(1) 3.39 
Zr-O1-O1b* 4.0 3.48 10. 3.46 
Zr-O1-O1c* 4.0 3.51 10. 3.50 
Z-O1-O1d* 4.0 3.53 10. 3.56 

Zr-Zr1a 2.0 3.58(1) 29(6) 3.58 
Zr-Zr1b 4.0 3.69(1) 21(2) 3.60 
Zr-Zr1c 4.0 3.50(1) 64(6) 3.63 
Zr-Zr1d 2.0 3.61(1) 32(6) 3.71 
Zr-O2a 2.0 4.32(8) 10(30) 4.07 
Zr-O2b 2.0 4.24(5) 11(60) 4.08 

P42/nmc 
Zr-O1a 4.0 2.10(1) 10(6) 

2.9(7) 

2.09 
Zr-O1b 4.0 2.28(1) 46(12) 2.36 
Zr-Zr1a 4.0 3.52(1) 13(29) 3.60 
Zr-Zr1b 4.0 3.71(1) 14(3) 3.63 
Zr-Zr1c 4.0 3.62(1) 10(3) 3.64 

*Fixed parameters

Table S2. EXAFS fitting parameters of nanocrystalline ZrO2 sample with Pbcn and P42/nmc 
structures. 
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