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S1. Non-bonded parameters  

The Gaussian process regression (GPR) models used in the FFLUX simulations in this work are 

monomeric, meaning that they have been trained on monomeric calculations. The monomeric nature of the 

training data therefore means that the models cannot predict intermolecular dispersive and repulsive 

interactions. Although this is possible within the FFLUX workflow (McDonagh et al., 2018, Brown et al., 

2024) through the use of oligomeric models, this approach has not been applied here. To account for these 

interactions here, a 12-6 Lennard-Jones (LJ) potential was used:  

𝑈ሺ𝑟ሻ ൌ
𝐴

𝑟ଵଶ െ
𝐵

𝑟 ሺS1ሻ 

where 𝐴 ൌ  4𝜀𝜎ଵଶ   and 𝐵  ൌ  4𝜀𝜎 , 𝜀  is the potential well depth and 𝜎  is the separation at which the 

potential energy is zero. As suggested by previous work (Brown et al., 2023), in order to accurately model 

different polymorphs each phase would require a different set of nonbonded parameters. Given the large 

variance in the molecular environments of the different phases, it is expected that intermolecular interactions 

also significantly differ and therefore the same parameters will not be suitable for all phases. 

Initially, the Lennard-Jones parameters from previous work on liquid water (Symons & Popelier, 2022) 

were used for all phases, however, these were found to be suitable only for phase XV. Therefore, to find the 

parameters for phases Ih and II, the TIP4P/Ice Lennard-Jones parameters (Abascal et al., 2005) were used as 

a starting point. The 𝐴  and 𝐵  values were scaled separately by different factors 𝑛  and 𝑚  to obtain new 

parameters 𝐴∗ and 𝐵∗:  

𝐴
∗ ൌ 𝑛𝐴 ሺS2ሻ 

𝐵
∗ ൌ 𝑚𝐵 ሺS3ሻ 

where 𝑛 and 𝑚 were varied between 0.5 to 2.0 in steps of 0.025.  

A series of optimisations (described in Section 3.2 of the main text) were performed with the varied LJ 

parameters. Subsequently, a score was calculated for the parameter sets so that we could determine the 

appropriate values to be used for each phase. The score took into account the cell lengths, angles and the 

densities of the optimised structures compared to the experimental values in a weighted sum of square 

differences, as performed by Meuwly et al. (Hédin et al., 2016) and in previous work (Brown et al., 2023):  

𝑆 ൌ  𝑤൫𝑐𝑎𝑙𝑐 െ 𝑒𝑥𝑝൯
ଶ



ሺS4ሻ 

where 𝑒𝑥𝑝 is the experimental property and 𝑐𝑎𝑙𝑐 the calculated one. Weighting factors, 𝑤, were given to 

each property based on the size of the error from experimental values. The parameter set that obtained the 
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structure with the lowest score 𝑆 was taken as the best parameter set. The selected parameters for each phase 

are shown in Table S1. 

Table S1 Lennard-Jones parameters of the FFLUX-optimised ice structures for oxygen.  

 

Phase A (kJ Å12 mol-1) B (kJ Å6 mol-1) 

Ih   2,742,342.550 4,675.858 

II 2,333,144.840     1,779.246 

XV 3,142,647.540 3,096.992 

 

 

 

Weights used for the cell lengths, cell angles and densities for phases Ih and II were 10, 10 and 100 

respectively. Larger weights were given to the densities as these generally differed less from the experimental 

values compared to the cell parameters. Densities of the experimental structures used to calculate the scores 

were 0.92 and 1.18 g cm-3 respectively. 
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S2. Efficiency of calculations 

S2.1. Evaluation of the computational cost crystal structure optimisations 

    Supercell optimisations using FFLUX used 4 cores and PBE+D3 used 80 cores of two compute nodes, each 

consisting of two Intel “Cascade Lake” Xeon Gold 6230 chips. The number of atoms contained in the 

supercells of the ices used by FFLUX and PBE+D3 are shown in Table S2.  

 

Table S2 Time taken for FFLUX and PBE+D3 optimisations for the ice phases studied using the 

VASP code. Number of cores 𝑁 and number of atoms are also given.  

 

Phase 𝑁  𝑁௧௦ Average Time / s CPU Time / core hr 

Ih PBE+D3 80 36 471.54 10.48 

Ih FFLUX 4 2304 9690.64 35.08 

II PBE+D3 80 36 230.19 6.12 

II FFLUX 4 4500 21868.41 68.46 

XV PBE+D3 80 30 344.57 7.66 

XV FFLUX 1 2400 13284.76 40.50 

 

 

We can estimate the time taken for a FFLUX-sized supercell of each phase and compare the costs of 

optimisations assuming VASP scales between 𝑁ଶ and 𝑁ଷ: 

 

Phase Ih:  

Scaling of system size: 

 
2 304 atoms

36 atoms
ൌ 64 

Converting to core hours:  

VASP time ሺcore hrሻ: 

 
471.54 s

3 600 s hrିଵ ൈ 80 cores ൌ 10.48 core hr  
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FFLUX time ሺcore hrሻ:  

 
9 690.64 s

3 600 s hrିଵ ൈ 4 cores ൌ  35.08 core hr  

Assuming 𝑁ଶ scaling:   

10.48 core hr ൈ  64ଶ ൌ   42 926 core hr 

 42 926 core hr
   35.08 core hr

 ൌ   1 224 times slower than FFLUX 

 

Assuming 𝑁ଷ scaling: 

10.48 core hr ൈ  64ଷ ൌ    2 747 269.12 core hr 

  2 747 269 core hr
   35.08 core hr

 ൌ  78 309 times slower than FFLUX 

 

 

Phase II: 

Scaling of system size: 

4 500 atoms
36 atoms

ൌ 125 

Converting to core hours:  

VASP time ሺcore hrሻ: 

230.19 s
3 600 s hrିଵ ൈ 80 cores ൌ  6.12 core hr 

FFLUX time ሺcore hrሻ:  

 
21 868.41 s
3 600 s hrିଵ ൈ 4 cores ൌ 68.46 core hr 

Assuming 𝑁ଶ scaling:   

 6.12 core hr ൈ  125ଶ ൌ 95 625  core hr 

95 625 core hr
 68.46 core hr

 ൌ   1 397 times slower than FFLUX 

Assuming 𝑁ଷ scaling: 

  6.12 core hr ൈ  125ଷ ൌ 11 953 125  core hr 

11 953 125 core hr
 68.46 core hr

 ൌ 174 604 times slower than FFLUX 
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Phase XV: 

Scaling of system size: 

 
2 400 atoms

30 atoms
ൌ 80 

Converting to core hours:  

VASP time ሺcore hrሻ: 

 
344.57 s

3 600 s hrିଵ ൈ 80 cores ൌ  7.66 core hr 

FFLUX time ሺcore hrሻ:  

13 284.76 s
3 600 s hrିଵ ൈ 4 cores ൌ 40.50 core hr  

Assuming 𝑁ଶ scaling:   

7.66 core hr ൈ  80ଶ ൌ 49 024  core hr 

49 024 core hr
 40.50 core hr

 ൌ  1 210 times slower than FFLUX 

Assuming 𝑁ଷ scaling: 

 7.66 core hr ൈ  80ଷ ൌ 3 921 920  core hr 

3 921 920 core hr
 40.50 core hr

 ൌ 96 838 times slower than FFLUX 

 

Using FFLUX enables us to simulate larger supercells, while performing 103 – 105 faster than VASP. 
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S2.2. Cost and Accuracy of central unit cell extraction 

     In order to obtain the force constants using the finite-displacement method implemented in Phonopy (Togo 

& Tanaka, 2015), up to six displacements are generated per atom in the structure provided to Phonopy, 

depending on the calculated symmetry. The FFLUX-optimised supercell of ice Ih contained 2,304 atoms, 

compared to its unit cell that contained 36 atoms and at the default symmetry tolerance Phonopy assumes these 

structures to have P1 symmetry. This low symmetry group means that the maximum number of displaced 

structures are generated, with 13,824 and 216 structures for the supercell and the central unit cell, respectively. 

The total computing time required for the 13,824 single-point force calculations of the supercell was 43,662 s, 

while the 216 displaced structures of the unit cell required only 858 s. The extraction of the central unit cell is 

therefore approximately 50 times faster. After generating the displaced structures of the extracted unit cell, we 

can then expand it to its original size in Phonopy.  

The accuracy of using the extracted central unit cell was tested by plotting the phonon density of states of 

both the supercell and central unit cell and calculating an RMSE between them. Figure S1 shows these DoS 

curves overlaid for ice Ih calculated using FFLUX.  

 

 

Figure S1 Phonon density of states of the ice Ih supercell (blue line) and central unit cell (orange 

dash). 

 

The two plots can be seen to overlap almost perfectly, and the RMSE of the two was calculated to be 

3.06×10-4, meaning the difference is negligible and the extraction method can be reliably used in phonon 

calculations. The success of this method has demonstrated decreased computing time without any loss of 

accuracy, allowing for more efficient crystal structure prediction (CSP) in the future. 
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S2.3. Evaluation of the computational cost of lattice dynamics calculations 

      To avoid an increase in the cost of already expensive methods, many crystal structure prediction studies 

neglect free energy calculations. In the finite-displacement method, a series of structures are created where 

each atom is displaced from its equilibrium position in the optimised structure. The resulting atomic forces are 

then calculated using single-point calculations. The number of required displacements depends on symmetry; 

a higher symmetry structure will require fewer displacements.  

For the FFLUX optimised supercells, 216 force calculations were required for ices Ih and II, and 180 for 

ice XV. Table S3 shows the average time of these calculations, given in seconds and core hours. Calculations 

using VASP used significantly smaller supercells than FFLUX. The number of atoms in each supercell is also 

shown. We can then estimate the time taken for a FFLUX-sized supercell and compare the costs for HA 

assuming VASP scales between 𝑁ଶ and 𝑁ଷ. 

 

Table S3 Average time taken for FFLUX and PBE+D3 single-point force calculations for the ice 

phases studied using the VASP code. Number of cores 𝑁 and number of atoms are also given.  

 

Phase 𝑁  SC Atoms Average Time / s CPU Time/ core hr 

Ih PBE+D3 40 288 7077.36 78.64 

Ih FFLUX 1 2304 3.74 1.04 × 10-3 

II PBE+D3 40 288 615.54 6.84 

II FFLUX 1 4500 7.99 2.22 × 10-3 

XV PBE+D3 40 240 1327.67 14.75 

XV FFLUX 1 2400 3.36 9.32 × 10-4 

 

Computing times of VASP and FFLUX optimisations are compared only for phases II and XV, as VASP 

calculations for phase Ih were likely not ran with the most optimal settings, leading to increased computing 

times.  
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Phase II:  

Scaling of system size: 

4 500 atoms
 288 atoms

 ൌ  15.63  

Converting to core hours:  

VASP time ሺcore hrሻ ൌ
615.54 s

3 600 s hrିଵ ൈ  40 cores   ൌ  6.84 core hr 

 

FFLUX time ሺcore hrሻ ൌ  
7.99 s

3 600 s hrିଵ  ൈ 1 core ൌ  2.22 ൈ  10ିଷ core hr 

Assuming 𝑁ଶ scaling:   

6.84 core hr ൈ  15.63ଶ ൌ  1 669.92 core hr 

 

1 669.92 core hr
2.22 ൈ  10ିଷ core hr

 ൌ  759 055 times slower than FFLUX 

 

Assuming 𝑁ଷ scaling: 

 6.84 core hr ൈ  15.63ଷ ൌ  26 092.53 core hr  

 

26 092.53 core hr
2.22 ൈ  10ିଷ  core hr

 ൌ  11 860 241 times slower than FFLUX 

 

Phase XV: 

Scaling of system size: 

2 400 atoms
240 atoms

 ൌ  10 

Converting to core hours:  

VASP time ሺcore hrሻ  ൌ  
1 327.67 s

3 600 s hrିଵ  ൈ  40 cores  ൌ  14.75 core hr 

FFLUX time ሺcore hrሻ  ൌ  
3.36 s

3 600 s hrିଵ  ൈ 1 core ൌ  9.34 ൈ  10ିସ 

 

Assuming 𝑁ଶ scaling:   

14.75 core hr ൈ  10ଶ ൌ  1 475.20 core hr 
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1 475.20 core hr
9.32 ൈ  10ିସ core hr

 ൌ  1 582 934 times slower than FFLUX 

 

Assuming 𝑁ଷ scaling: 

 14.75 core hr ൈ  10ଷ ൌ  14 750 core hr  

14 750 core hr
9.32 ൈ  10ିସ core hr

 ൌ  15 829 345 times slower than FFLUX 

 

 

S3. GPR model performance  

      The predictive ability can be assessed by plotting cumulative distributions of the absolute prediction error 

over the external validation set, called S-curves. The predicted properties of all points in the set are compared 

to the true values, organised in ascending order then plotted against percentile. S-curves for the IQA energy 

and charge are provided in Figure 3 of the main text while here we provide S-curves for the remaining 

components multipole moments in Figures S2-S25.   

 

 

Figure S2 S-curves showing the absolute prediction error in the Q10 component of the atomic dipole 

moment of the water monomer model. 
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Figure S3 S-curves showing the absolute prediction error in the Q11c component of the atomic 

dipole moment of the water monomer model. 

 

Figure S4 S-curves showing the absolute prediction error in the Q11s component of the atomic 

dipole moment of the water monomer model. 
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Figure S5 S-curves showing the absolute prediction error in the Q20 component of the atomic 

quadrupole moment of the water monomer model. 

 

Figure S6 S-curves showing the absolute prediction error in the Q21c component of the atomic 

quadrupole moment of the water monomer model. 
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Figure S7 S-curves showing the absolute prediction error in the Q21s component of the atomic 

quadrupole moment of the water monomer model. 

 

Figure S8 S-curves showing the absolute prediction error in the Q22c component of the atomic 

quadrupole moment of the water monomer model. 
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Figure S9 S-curves showing the absolute prediction error in the Q22s component of the atomic 

quadrupole moment of the water monomer model. 

 

Figure S10  S-curves showing the absolute prediction error in the Q30 component of the atomic 

octupole moment of the water monomer model. 
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Figure S11 S-curves showing the absolute prediction error in the Q31c component of the atomic 

octupole moment of the water monomer model. 

 

Figure S12  S-curves showing the absolute prediction error in the Q31s component of the atomic 

octupole moment of the water monomer model. 
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Figure S13  S-curves showing the absolute prediction error in the Q32c component of the atomic 

octupole moment of the water monomer model. 

 

Figure S14  S-curves showing the absolute prediction error in the Q32s component of the atomic 

octupole moment of the water monomer model. 
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Figure S15  S-curves showing the absolute prediction error in the Q33c component of the atomic 

octupole moment of the water monomer model. 

 

Figure S16  S-curves showing the absolute prediction error in the Q33s component of the atomic 

octupole moment of the water monomer model. 
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Figure S17  S-curves showing the absolute prediction error in the Q40 component of the atomic 

hexadecapole moment of the water monomer model. 

 

Figure S18  S-curves showing the absolute prediction error in the Q41c component of the atomic 

hexadecapole moment of the water monomer model. 
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Figure S19  S-curves showing the absolute prediction error in the Q41s component of the atomic 

hexadecapole moment of the water monomer model. 

 

Figure S20  S-curves showing the absolute prediction error in the Q42c component of the atomic 

hexadecapole moment of the water monomer model. 
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Figure S21  S-curves showing the absolute prediction error in the Q42s component of the atomic 

hexadecapole moment of the water monomer model.  

 

Figure S22  S-curves showing the absolute prediction error in the Q43c component of the atomic 

hexadecapole moment of the water monomer model. 
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Figure S23  S-curves showing the absolute prediction error in the Q43s component of the atomic 

hexadecapole moment of the water monomer model. 

 

Figure S24  S-curves showing the absolute prediction error in the Q44c component of the atomic 

hexadecapole moment of the water monomer model. 



S22 

 

 

Figure S25  S-curves showing the absolute prediction error in the Q44s component of the atomic 

hexadecapole moment of the water monomer model. 

 

It is more convenient to represent the errors in multipole moments as electrostatic energies. For this purpose, 

500 dimers were generated by combining random points from the 500 K monomer trajectory, placing two 

molecules between 2-6 Å apart and rotating them randomly along the 𝑥, 𝑦, and 𝑧 directions. Wavefunctions 

were obtained for each monomer using GAUSSIAN09 (Frisch et al., 2010) then parsed into AIMAll to obtain 

the exact multipole moments for each monomer. The monomeric multipole moments were then used in single-

point FFLUX calculations of the dimers to find the “true” electrostatic energies at L’ values between 0 and 4 

inclusive. The GPR model was then used to predict the electrostatic energies for the dimers and compared to 

the “true” electrostatic energies. Figure 4 shows errors compared to the L’=4 electrostatic energies as (a) S-

curves, and as (b-f) heatmaps showing the RMSE for each interaction across the validation set at each L’. 
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Figure S26  (a) S-curves showing the absolute total electrostatic energy prediction errors for L’ 
ranging between 0 and 4, compared to those calculated with AIMALL at L’ = 4. Heatmaps (b-f) show 
the root-mean-square errors (RMSEs) of the predicted electrostatic energy of each intermolecular 
atom-atom interaction compared to the electrostatic energy from the AIMAll multipole moments at 
the same L’. 
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The S-curves representing prediction errors of the total system electrostatic energy at each L’ are compared 

to the electrostatic energy calculated using the AIMAll moments calculated at L’=4. Significant improvement 

in prediction can be seen with each increasing L’ value, with the electrostatic energies predicted at L’=4 

showing maximum errors around 3.5 × 10-3 kJ mol-1, whilst lower rank multipole moments produce 

electrostatic energies that differ from the “truth” by nearly 15 kJ mol-1. At L’=2 (the value that was used in 

crystal calculations), the maximum error in the total electrostatic energy is approximately 1 kJ mol-1, still 

comfortably below the 4.18 kJ mol.1 threshold. The heatmaps show that the O-O interaction contributes the 

most to these errors at all L’, but the RMSE of this interaction is still very small, around 0.016 kJ mol-1. 

Moreover, most RMSEs of interactions including hydrogens are below 0.010 kJ mol-1. Overall, the electrostatic 

energies are predicted with high accuracy by the model. It should be noted though, that while the flexible 

moments allow for all intramolecular polarisation to be calculated using FFLUX, intermolecular polarisation 

is not accounted for. The lack of intermolecular polarisation possibly contributes to errors in the ice 

calculations presented in the main text. While not done in this work, inclusion of polarisation though 

oligomeric models in FFLUX is possible. 

In Section 4.1 of the main text, the GPR model was shown to reproduce the B3LYP/aug-cc-pVTZ optimised 

geometry with a root-mean-square error of 2.84 × 10-4 Å and its energy with an error of only 0.06 kJ mol-1. 

Additionally, a measure of how well the potential energy surface (PES) is reproduced by the GPR model can 

be obtained by calculation of vibrational frequencies. These calculations were performed using the finite-

difference method implemented in Phonopy (Togo & Tanaka, 2015) (as outlined in Section 3.4) using FFLUX, 

and compared to vibrational frequencies calculated using B3LYP/aug-cc-pVTZ by GAUSSIAN16 (M. J. 

Frisch & G. W. Trucks, 2016). The frequencies associated with the three vibrational normal modes of water 

as calculated by both methods are compared in Table S4. 

 

Table S4 Vibrational frequencies of the water monomer predicted by FFLUX compared to 

B3LYP/aug-cc-pVTZ, with their differences in frequency (cm-1) and the equivalent energy 

difference (kJ mol-1). 

Assignment FFLUX (cm-1) B3LYP (cm-1) Difference (cm-1) 
Energy difference (kJ 

mol-1) 

HOH bend 1629.41 1627.77 1.67 0.020 

O-H symmetric 

stretch 
3797.83 3797.04 0.79 0.009 

O-H asymmetric 

stretch 
3906.26 3899.28 6.98 0.083 
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FFLUX reproduces the vibrational frequencies with a maximum error of 6.98 cm-1 in the asymmetric OH 

stretch, corresponding to a maximum energy error that is orders of magnitude lower than the 4.18 kJ mol-1 

threshold of chemical accuracy. This indicates that the potential energy surface of the training level of theory 

is reproduced well. 

The stability of the GPR model during molecular dynamics simulations is another important metric to 

consider when assessing the performance of a model, sometimes referred to as a robustness test. To investigate 

the stability of the water monomer model, MD simulations were performed at temperatures between 50 and 

500 K, with five runs at each temperature (50 K, 100 K, then in steps of 100 K up to 500 K). Three different 

seed numbers were added to each CONTROL file randomly, which ensures that no runs will have identical 

initial velocities and therefore identical trajectories. Simulations were conducted in the NVT ensemble using 

the Nosé-Hoover thermostat (with a relaxation time of 0.01 ps) for 5 million steps with a 1 fs time step 

corresponding to 5 ns. Bond lengths were measured at every step in the trajectories and the difference from 

the B3LYP/aug-cc-pVTZ reference structure was calculated. The model was shown to be stable for 5 ns at 

every temperature by verifying that none of the differences are above a certain threshold based on a literature 

value of 0.5 Å (Fu et al., 2023). While this threshold has been used in other work, it is not necessarily 

appropriate for water, representing a change of 52% in bond length. Therefore, several smaller thresholds were 

tested, with the smallest threshold that maintained the 5 ns stability being 0.09 Å, meaning no bonds differed 

by a value larger than that compared to the reference. 
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S4. Harmonic approximation 

S4.1. Phonon dispersion curves 

      The dynamical stability of structures can be investigated through the phonon dispersion. The phonon 

dispersion curves of FFLUX-optimised structures Ih and XV are shown in Figure S27.  

 

 

Figure S27  Phonon dispersion curve of (a) Ih and (b) XV calculated by FFLUX. 

 

        In the dispersion of both Ih and XV, two types of imaginary modes can be observed: firstly, the negative 

frequencies present at point Γ, which correspond to acoustic modes. These modes are due to translational and 

rotational motion and do not indicate dynamical instability. In this case, they were on the order of 10-3 THz. 

Secondly, imaginary frequencies appear between points Γ and U2, but not directly at any high-symmetry 

points. These are artefacts of Fourier interpolation (Pallikara et al., 2022), which often disappear at increased 

supercell expansions and  can thus be ignored in the evaluation of dynamical stability. Therefore, it can be 

safely assumed that the FFLUX optimised structures of ice Ih and XV are dynamically stable. The stability of 

the phases was also assessed in the PBE+D3 calculations with the calculated phonon dispersions of all phases 

shown in Figure S28.  
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Figure S28  Phonon dispersions of ice (a) Ih, (b) II, (c) XV, and (d) II’ calculated using PBE+D3. 

 

S4.2. Ice II’ 

        The phonon dispersion of phase II using FFLUX contained imaginary phonon modes, indicating 

dynamical instability. This instability was investigated by applying the ‘mode-mapping’ technique using the 

ModeMap code (Skelton et al., 2016). The process involves generating distorted structures along the imaginary 

mode eigenvectors. Displacements were generated with a displacement amplitude (𝑄) range between -20 to 

20 amu1/2 Å in steps of 0.5 amu1/2 Å along all wavevectors with imaginary modes (X, Z, 𝑅ଶ) using a 6 × 6 × 6 

supercell expansion. When the original 5 × 5 × 5 supercell was used, the mapped energies gave a harmonic 

curve, which would indicate that it is an equilibrium structure, contradicting the imaginary modes. However, 

using a 6 × 6 × 6 expansion the expected curve was observed. Single-point force calculations were performed 

on each structure to plot the PES. The PESs mapped along wavevectors 𝑋 and 𝑍 are shown in Figure S29 and 

S30.  



S28 

 

 

Figure S29  Anharmonic double-well PES along wavevector 𝑋.  

 

Figure S30  Harmonic PES along wavevector 𝑍.  

 

The mapped PES (Figure S30) was harmonic despite the doubly degenerate negative frequencies 

seen at wavevector 𝑍. This discrepancy is likely due to numerical errors in the force calculations 

caused by incorrect non-bonded parameters. 

The point with the most negative frequency, point 𝑅ଶ, was considered for selecting the lowest energy 

structure on the PES. The minimum energy structure generated from the displacements was then optimised in 

a 7000 step NσT run using the same settings as described in Section 3.2. The converged structure was 

determined as detailed in the same section. This structure, labelled II’, differs from the known phase II as 

demonstrated below.  
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To see if II’ is stable outside of FFLUX parametrisation, the structure was optimised using PBE+D3 and 

the phonon frequencies were calculated using the same setting as for ice II in Section 3.3. The phonon 

dispersion curve obtained using PBE+D3 is shown in Figure S28 (d).  

Figures S31-S33 show 2 × 2 × 2 supercell expansions of phase II as obtained from experiment (Kamb et 

al., 2003), and II’ as optimised by FFLUX viewed along axes a, b and c using VESTA (Momma & Izumi, 

2008). Lattice parameters of phase II’ calculated by FFLUX and PBE+D3 are presented in Table S5.  

 

Figure S31  (a) Phase II and (b) II’ viewed along the a-axis. 

  

 

Figure S32  (a) Phase II and (b) II’ viewed along the b-axis. 

 

 

Figure S33  (a) Phase II and (b) II’ viewed along the c-axis. 
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Table S5 Lattice parameters of II’ calculated by FFLUX and PBE+D3 compared to the 

experimental parameters of ice II (Kamb et al., 2003). 

 

Properties Experimental Ice II PBE+D3 Ice II’ FFLUX Ice II’ 
%Δ PBE+D3 – 

FFLUX 

a (Å) 7.78 7.55 7.60 0.51 

b (Å) 7.78 7.55 7.59 0.16 

c (Å) 7.78 7.55 7.58 0.21 

α (°) 113.10 109.43 109.43 -0.16 

β (°) 113.10 109.46 109.45 -0.07 

γ (°) 113.10 109.45 109.53 0.01 
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To further assess the stability of ice II’, phonon calculations within the quasi-harmonic approximation were 

performed as described in the main text, giving access to Gibbs free energies. The stability of phases II, XV 

and II’ relative to ice Ih , and calculated using periodic plane wave PBE+D3, was assessed at pressures between 

0 and 10 GPa at a constant temperature of 100 K as shown in Figure S34 . 

 

 

 

Figure S34 Gibbs free energy of ices II (yellow), XV (green) and II’ (purple) relative to ice Ih (red) 

across a pressure range of 0 to 10 GPa at 100 K. Calculations were performed using periodic plane 

wave PBE+D3. 

 

At no point across this pressure range does Ice II’ become the most stable, suggesting that it is a metastable 

phase. 
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