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Supplementary Figures

Supplementary Fig. 1: a. Visualization of the CTC Token Processing Reduction Rule. b. A case study of how the
reduction rule can be applied to a sequence to obtain the final sequence. c. Two Cases in CTC Loss Calculation:
On the left, the scenario where the upcoming token is a repeat of the previous one. On the right, the scenario where
the next token differs from the preceding one d. Overview of the PMC Decoding Process: Sequential decoding
from the first to last time step with mass constraint adherence in Each Cell, culminating in the application of the
CTC Reduction Rule for the final output.
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Supplementary Fig. 2: The left-hand side shows results when no post-decoding algorithms (PMC and beam search)
are used for either model, while the right-hand side shows results with PMC and beam search applied.
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Supplementary Fig. 3: a. Comparison of AA precision across 9 different test species between PrimeNovo and
Casanovo V2. b. Comparison of AA recall across the same 9 test species between PrimeNovo and Casanovo V2.
c. The difference in distribution between AA recall and AA precision for Casanovo V2 across the nine-species
dataset (n=9, ns indicates not significant (p-value set to 0.05) ) according to the Mann-Whitney U test). d.
The difference in distribution between AA recall and AA precision for PrimeNovo across the nine-species dataset
(n=9, ns indicates not significant according to the Mann-Whitney U test).
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Supplementary Fig. 4: Peptide recall on the revised nine-species dataset.
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Supplementary Fig. 5: Peptide recall-coverage curves on the revised nine-species dataset.
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Supplementary Fig. 6: The prediction precision at AA level on the nine-species benchmark dataset. The AA
precision of PrimeNovo is significantly higher than that of other de novo methods.
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Supplementary Fig. 7: The prediction precision at AA level with the increase of confidence score on nine-species
benchmark dataset. PrimeNovo exhibits an overall higher AA precision compared to Casanova V2. Data are
presented as median values of each confidence level with interquartile range (50% percentile interval, n=89,928).
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Supplementary Fig. 8: The prediction precision at Amino Acid level on the test datasets HCC (a), PT (b), and
Three-species (c), respectively.
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Supplementary Fig. 9: The prediction precision at AA level with the increase of confidence score on the PT
dataset. PrimeNovo exhibits an overall higher AA precision compared to Casanova V2. Data are presented as
median values of each confidence level with interquartile range (50% percentile interval, n=58,528).
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Supplementary Fig. 10: The peptide recalls are shown by heatmap for different combinations of the number of
missing peaks and peptide lengths of PrimeNovo (left) and Casanovo V2 (middle). The right heatmap shows the
differences in peptide recalls between PrimeNovo and Casanovo V2 for different combinations of the number of
missing peaks and peptide lengths.
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Supplementary Fig. 11: The performance of fine-tuning on the PT test dataset as more PT training data is added
during fine-tuning. The left panel shows fine-tuning using only the PT dataset, which leads to a catastrophic
forgetting of the original data distribution (on part of the nine-species benchmark dataset B.subtilis). The right
side illustrates fine-tuning with a mixture of PT and MassIVE-KB training data. The data points in the right figure
shows the performance of three different data ratio during the fine-tuning stage. We plot a central curve that
connects the mean values of the data points, with light background representing the s.d.
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Supplementary Fig. 12: The performance of PrimeNovo for varying peptide lengths and missing peaks (n=117,056
for PT dataset and n=26,000 for HCC dataset; the curve represent mean values of the data points, with light
background representing the s.d.).
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Supplementary Fig. 13: Performance comparison with PepNet. a. Comparing PrimeNovo with DeepNovo, Point-
Novo and PepNet on the PepNet(Human) dataset at 2+ and 3+ charges, respectively. b. Comparison of PrimeN-
ovo on the nine-species benchmark (n=9) dataset with PepNet.
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Supplementary Fig. 14: Performance of PrimeNovo and Casanovo V2 on a TimsTOF based dataset.
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Supplementary Fig. 15: Venn diagram of peptide numbers in different datasets (no modification).
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Supplementary Fig. 16: Visualization of the attention score matrix of PrimeNovo’s encoder. A striped distribution
in the highlighted sections is revealed. The columns that are highlighted represent the ions selectively preferred
by the attention mechanism.
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Supplementary Fig. 17: The visualization of the attention score matrix of Casanovo’s encoder. There is no obvious
striped distribution in the highlighted sections is revealed. The attention mechanism’s bias for selecting specific
ions is not pronounced.
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Supplementary Fig. 18: Orthogonality analysis of value matrix projections by the Gram matrix. The y-axis denotes
the Frobenius norm of the Gram matrix of the normalized value matrix after subtracting an identity matrix. A
smaller value of this norm indicates a better orthogonality of the value matrix projections.
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Supplementary Fig. 19: Boxplots to visualize the distribution of the match ratio in the attention score matrices of
PrimeNovo’s encoder (n=90,594). The yellow line denotes the median, and the upper and lower edges of the box
indicate the first and third quartiles, respectively. The short lines at the top and bottom represent the maximum
and minimum values. The red dashed line is the proportion of by ions among all peaks.
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Supplementary Fig. 20: The performance of PrimeNovo for each specific PTM on the 21PTMs dataset.
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Supplementary Fig. 21: Comparison of the actual input spectrum and spectrum of 10 synthesized peptides pre-
dicted by PrimeNovo. The upper section of each diagram displays the original input spectrum from non-enriched
2020-Cell-LUAD dataset, while the lower section showcases the spectrum from the synthetic data. All overlap-
ping peaks are marked in red and blue for b-y ions.
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Supplementary Fig. 22: (Cont.) Comparison of the actual input spectrum and spectrum of 10 synthesized peptides
predicted by PrimeNovo. The upper section of each diagram displays the original input spectrum from non-
enriched 2020-Cell-LUAD dataset, while the lower section showcases the spectrum from the synthetic data. All
overlapping peaks are marked in red and blue for b-y ions.
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Supplementary Fig. 23: This figure presents the taxonomic and functional annotation results at the protein level.
Function abbreviation can be found in Supplementary Table 11. PrimeNovo notably enhances both taxonomic and
functional resolution at the genus and species levels compared to Casanovo V2. Readers are advised to zoom into
this figure to observe the detailed differences, as the resolution is too high to display clearly in the standard page
view.
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Supplementary Tables

Name Species Instrument Accession No. of PSMs Description

nine-species
benchmark

V. mungo

Q-Exactive MSV000081382

37,775 A standard
benchmark
previously employed.
Analysis conducted
through
leave-one-species-out
cross-validation or a
zero-shot approach

M. musculus 37,021
M. mazei 164,421
B. subtilis 291,783
C. endoloripes 150,611
S. lycopersicum 290,050
S. cerevisiae 111,312
A. mellifera 314,571
H. sapiens 130,583

MassIVE-KB H. sapiens Q-Exactive - 30,633,841 Foundational dataset
for the development
of Casanovo V2 and
PrimeNovo algo-
rithms

Proteometools
(PT)

H. sapiens Orbitrap Fusion Lu-
mos

PXD004732 28,065,572 Employed as test
datasets for
PrimeNovo and
baseline approaches,
analyzed under
zero-shot or few-shot
fine-tuning scenarios

HCC H. sapiens Orbitrap Fusion Lu-
mos

IPX0000937000 20,217,331

IgG1-Human-
HC

H. sapiens LTQ Orbitrap MSV000079801 14,087

three-species
A. thaliana Orbitrap Q Exactive

HF-X zenodo.8000316
12,222

C. elegans QExactive HF 12,103
E. coli Q-Exactive 12,330

PXD019483 H. sapiens Q Exactive HFX Or-
bitrap

PXD019483 1,915,890

revised
nine-species
benchmark

nine-species Q-Exactive MSV000090982 2,812,194

PepNet train-
ing dataset

multiple multiple zenodo.13352403 3,041,555

Supplementary Table 1: Summary of training and testing datasets in our study.
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Name Species Instrument Accession No. of PSMs Description

Cell-
metaproteome

Microbes LTQ Orbitrap MSV000082287 26,457,107 metaproteomics
analysis purpose

21PTMs H. sapiens Orbitrap Fusion Lu-
mos

PXD009449 703,606 PTM analysis
purpose

2020-Cell-
LUAD

H. sapiens Orbitrap Fusion IPX0001804000 26,162,410

Supplementary Table 2: Summary of datasets used in downstream applications.
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Species Peaks. PepNet Deep. Point. Casa. Casa.V2 Prime.

A. mellifera 0.29 0.28 0.33 0.40 0.41 0.49 0.60
B. subtilis 0.39 0.42 0.45 0.52 0.54 0.62 0.72
C. endoloripes 0.20 0.24 0.25 0.30 0.33 0.45 0.53
H. sapiens 0.28 0.23 0.29 0.35 0.34 0.45 0.57
M.mazei 0.36 0.38 0.42 0.48 0.48 0.56 0.65
M. musculus 0.20 0.28 0.29 0.36 0.43 0.48 0.57
S. cerevisiae 0.43 0.37 0.46 0.53 0.49 0.60 0.70
S. lycopersicum 0.40 0.43 0.45 0.51 0.52 0.62 0.70
V. mungo 0.36 0.32 0.44 0.51 0.51 0.59 0.70

Average 0.32 0.33 0.38 0.44 0.45 0.54 0.64

Supplementary Table 3: Peptide recall on the nine-species benchmark dataset. Note: the bold text indicates the
highest performance in each row.
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Species Peaks. Deep. Point. Casa. Casa.V2 Prime.

A. mellifera 0.63 0.63 0.64 0.63 0.71 0.76
B. subtilis 0.72 0.74 0.77 0.75 0.79 0.84
C. endoloripes 0.59 0.60 0.59 0.60 0.68 0.72
H. sapiens 0.64 0.61 0.61 0.59 0.68 0.72
M.mazei 0.67 0.69 0.71 0.68 0.76 0.80
M. musculus 0.60 0.62 0.63 0.69 0.76 0.78
S. cerevisiae 0.75 0.75 0.78 0.68 0.75 0.80
S. lycopersicum 0.73 0.73 0.73 0.72 0.79 0.82
V. mungo 0.64 0.68 0.73 0.67 0.75 0.82

Average 0.66 0.67 0.69 0.67 0.74 0.79

Supplementary Table 4: Amino acid precision on the nine-species benchmark dataset. Note: the bold text indicates
the highest performance in each row.
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Species Casa. Casa.V2 Prime.

A. mellifera 0.3578 0.57 0.70
B. subtilis 0.4637 0.71 0.80
C. endoloripes 0.3055 0.51 0.59
H. sapiens 0.4468 0.65 0.75
M.mazei 0.4927 0.68 0.78
M. musculus 0.4063 0.52 0.60
S. cerevisiae 0.4657 0.73 0.83
S. lycopersicum 0.4354 0.69 0.78
V. mungo 0.3977 0.7 0.84

Average 0.4191 0.64 0.74

Supplementary Table 5: Peptide recall on the revised nine-species benchmark dataset. Note: the bold text indicates
the highest performance in each row.
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Amino acid precision Peptide recall
Test dataset Casanovo Casanovo V2 PrimeNovo Casanovo Casanovo V2 PrimeNovo

HCC 0.0908 0.4968 0.5793 0.0001 0.161 0.3817
IgG1-Human-HC 0.34465 0.605916667 0.693133333 0.1154 0.4065 0.5416
PT 0.4443 0.6284 0.7307 0.2873 0.4543 0.5857
Three-species 0.5633 0.8167 0.8767 0.5037 0.6873 0.7867

Supplementary Table 6: The average performance of PrimeNovo compared to Casanovo and Casanovo V2 across
four distinct large-scale MS/MS datasets.
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Enzyme Amino acid precision Peptide recall
Casanovo Casanovo V2 PrimeNovo Casanovo Casanovo V2 PrimeNovo

AspN 0.3089 0.5236 0.6059 0.0726 0.2611 0.3593
Chymotrysin 0.2114 0.4794 0.6227 0.0298 0.2493 0.446
GluC 0.2878 0.5214 0.6427 0.0686 0.3133 0.4625
LysC 0.4359 0.7002 0.749 0.2108 0.5224 0.6204
ProteinaseK 0.3844 0.6735 0.7567 0.089 0.4568 0.5972
Trypsin 0.4395 0.7374 0.7818 0.1703 0.5483 0.6649

Supplementary Table 7: The performance of PrimeNovo compared to Casanovo and Casanovo V2 on six different
proteolytic enzymes in the IgG1-Human-HC dataset.
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Training dataset Test dataset Peptide recall

MassIVE-KB MassIVE-KB 0.8975
MassIVE-KB HCC 0.3817
MassIVE-KB PT 0.5887
MassIVE-KB nine-species (bacillus) 0.7210

nine-species(exclude bacillus) MassIVE-KB 0.5596
nine-species (exclude bacillus) HCC 0.0002
nine-species (exclude bacillus) PT 0.3448
nine-species (exclude bacillus) nine-species (bacillus) 0.6168

PT MassIVE-KB 0.7524
PT HCC 0.5283
PT PT 0.6998
PT nine-species (bacillus) 0.2585

HCC MassIVE-KB 0.4918
HCC HCC 0.6929
HCC PT 0.4824
HCC nine-species (bacillus) 0.2480

Supplementary Table 8: The average peptide recalls when assessing the model’s generalization ability.
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Data type Classification accuracy AA recall Peptide recall

Tumor tissue 0.98 0.80 0.66
Non-cancerous adjacent tissue 0.98 0.85 0.66

Supplementary Table 9: The performance of PrimeNovo on the phosphorylation dataset 2020-Cell-LUAD.
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Charge DeepNovo PointNovo Pepnet. PrimeNovo.

2+ 0.513 0.661 0.776 0.914
3+ 0.242 0.398 0.543 0.789

Supplementary Table 10: Peptide recall on the Pepnet test dataset under zero-shot setting. The performance for
the different precursor charges is reported separately.
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Abbreviations Functions
- Function Unassigned
A Rna Processing And Modification
B Chromatin Structure And Dynamics
C Energy Production And Conversion
D Cell Cycle Control, Cell Division, Chromosome Partitioning
E Amino Acid Transport And Metabolism
F Nucleotide Transport And Metabolism
G Carbohydrate Transport And Metabolism
H Coenzyme Transport And Metabolism
I Lipid Transport And Metabolism
J Translation, Ribosomal Structure And Biogenesis
K Transcription
L Replication, Recombination And Repair
M Cell Wall/Membrane/Envelope Biogenesis
N Cell Motility
O Posttranslational Modification, Protein Turnover, Chaperones
P Inorganic Ion Transport And Metabolism
Q Secondary Metabolites Biosynthesis, Transport And Catabolism
R General Function Prediction Only
S Function Unknown
T Signal Transduction Mechanisms
U Intracellular Trafficking, Secretion, And Vesicular Transport
V Defense Mechanisms
W Extracellular Structures
X Mobilome: Prophages, Transposons
Y Nuclear Structure
Z Cytoskeleton

Supplementary Table 11: The corresponding abbreviations for COG function entries.
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Supplementary Notes

SI Note 1: Dataset Details
Supplementary Table 1 provides a comprehensive overview of the training and testing datasets utilized in our
study. This includes the Massive-KB dataset, which was used for training PrimeNovo, and the nine-species
benchmark dataset, employed for training PrimeNovo CV and for conducting comparative evaluations against
baseline models. Following the training phase, PrimeNovo was subsequently evaluated on a diverse set of datasets,
encompassing PT, HCC, IgG1-human-HC, three-species, PXD019483, and the revised nine-species benchmark
datasets. Except for the nine-species benchmark dataset and PepNet training dataset, all other datasets were
downloaded as raw files along with identification results. For these datasets, we first converted the raw files into
mgf files by MSConvert (version 3.0), then incorporated the peptide sequences, charge states, and precursor ion
masses from the identification results into these mgf files. For datasets where the distinction between training and
testing sets was not made during download, we devised a new strategy for partitioning into training and testing
sets. Specifically, we randomly selected a certain number of PSMs from the dataset for testing, while reserving the
remaining annotated data for training and fine-tuning. To ensure that none of spectra with the same peptides appear
in both the testing set and the training set, we implemented a selection method where the inclusion of any PSM in
the test set automatically results in the selection of all other PSMs with the same true peptide sequence to the test
set. This prevents any leakage of answers during fine-tuning/training and guarantees a fair testing environment.
The detailed generation processes of the training and testing dataset are as follows:

1. nine-species benchmark dataset [36]: It was originally curated by Tran et al. during the development of
DeepNovo [36], comprises a diverse assortment of data from nine distinct species. It was meticulously compiled
by aggregating contributions from multiple research teams, with the aim of minimizing biases associated with
species and laboratory sources. This dataset has since gained popularity as a preferred choice for evaluating vari-
ous de novo sequencing algorithms, including Casanovo [37] and PointNovo [38], utilizing the leave-one-species-
out cross-validation method established by DeepNovo. In our study, we accessed this dataset from the MassIVE
repository (MSV000090982) and adopted the same cross-validation strategy to ensure a fair and consistent com-
parison. The mgf files were directly downloaded from the MassIVE repository (identifier: MSV000081382),
shared by the authors of the DeepNovo paper. We did not undertaken any re-partitioning for this dataset and used
downloaded test set directly for testing our model.

2. MassIVE-KB [39]: This dataset played a pivotal role in training our model. It encompasses an extensive
collection of over 2.1 million precursors derived from 19,610 proteins. This dataset was meticulously assembled,
drawing from more than 31 TB of human data originating from 227 public proteomics datasets. Notably, it upholds
rigorous false discovery rate controls, ensuring a comprehensive and robust training environment for our model.
The raw files (in mzML format) and the filtered identification results from the “All Candidate library spectra”
section of the MassIVE Knowledge Base spectral library v1 (https://massive.ucsd.edu/ProteoSAFe/static/massive-
kb-libraries.jsp) were obtained by downloading from the MassIVE repository. We did not split this dataset and
used all psms as training set.

3. ProteomeTools (PT) [40]: The PT dataset, chosen for PrimeNovo’s performance evaluation and fine-
tuning, constitutes a carefully curated assembly of synthetic human peptides. As a prominent component of
the Proteometools project, it comprises in excess of 330,000 synthetic tryptic peptides, encompassing a diverse
spectrum of human gene products. The presence of well-established peptide sequences within this dataset serves
as a reliable foundation for evaluating the algorithm’s precision and accuracy. The raw files and MaxQuant
identification results were obtained by downloading from the PRIDE [41] repository by PXD004732. We applied
the training and testing splitting strategy as described above, selecting 58,000 PSMs as the test set and using the
remaining data for training and fine-tuning.

4. HCC [42]: From a real-world application standpoint, the HCC dataset, centered on proteomics data from
early-stage human hepatocellular carcinoma (HCC) patients, was incorporated. This dataset provides a distinc-
tive insight into the proteomics of both tumor and non-tumor tissues, facilitating an evaluation of our model’s
generalizability in a clinical context.

5. IgG1-Human-HC [43]: The IgG1-Human-HC dataset, employed to assess the generalizability of de novo
sequencing models, comprises human antibody sequences that have undergone processing with various enzymes,
including trypsin, chymotrypsin, and others. This dataset holds particular importance due to its applicability in
identifying novel or unfamiliar protein sequences, especially in the realm of immunotherapy antibodies where
variable sequences are often unavailable, rendering traditional database search algorithms ineffective. Hence,
we utilized this dataset to evaluate our model’s proficiency in unraveling the amino acid sequences of unknown
antibodies.
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6. three-species [44]: We employed the three-species dataset, made available by GraphNovo [44], which
comprises samples from Arabidopsis thaliana, Caenorhabditis elegans, and Escherichia coli, for our compara-
tive analysis. This dataset, subjected to trypsin digestion and analyzed using state-of-the-art mass spectrometry
techniques, allowed us to conduct a thorough performance comparison between PrimeNovo and GraphNovo.

7. PXD019483 [45]: In order to facilitate a comparison with the recently published PepNet [46], we acquired
the publicly available test dataset PXD019483, which is the testing set used by PepNet. This dataset, consisting
of extensive human proteomics data, is accessible through the PRIDE repository under the identifier PXD019483.
In line with PepNet’s approach, we filtered the spectra to include only those with charge states 2+ and 3+, as
identified by MaxQuant with a false discovery rate (FDR) threshold of less than or equal to 1%, and with precursor
mass differences of no more than 10 ppm. The raw files and MaxQuant identification results were obtained by
downloading from the PRIDE [41] repository by PXD019483. This dataset was used as the test dataset for
PepNet [46]. We did not undertaken any re-partitioning for this dataset and used downloaded test set directly for
testing our model.

8. Revised nine-species benchmark [37] : The dataset was acquired by the authors of Casanova V2 [37]
through a process that involved downloading the raw files of the nine-species benchmark dataset and subsequently
reanalyzing them using Crux version 4.1 [47]. Following this analysis, peptides shared between species were
removed. The resulting dataset, known as the new nine-species benchmark, encompasses approximately 2.8
million PSMs and is derived from a total of 343 raw files. For our study, we directly obtained the identification
results that were shared by the authors.

9. PepNet training dataset [46]: The mgf files were provided by the authors [46] after we contacted them.
We downloaded their training and testing data and made no further changes or splitting before using them for
training/fine-tuning and testing.

Supplementary Table 2 presents a comprehensive overview of the datasets utilized for downstream applications
in our investigation.

1. Cell-metaproteome [48]: This dataset was utilized to assess the performance of our model on com-
plex samples containing multiple coexisting species, such as microbial communities that often lack reference
sequences. We accessed a publicly available human-gut-derived bacterial metaproteomics dataset, which was
sampled from the human gastric organ and processed using an LTQ Orbitrap mass spectrometer, resulting in the
generation of MS/MS spectra. These MS/MS spectra were subjected to analysis using MyriMatch v.2.2. We ob-
tained approximately 26 million PSMs by downloading the identification results generously shared by the authors
of the analysis [48]

2. 21PTMs [49]: The 21PTMs dataset represents a publicly available benchmark dataset notable for con-
taining the most extensive variety of post-translational modifications (PTMs) to date. This dataset comprises
approximately 5,000 peptides, which in turn represent 21 different naturally occurring human PTMs, encom-
passing modifications of lysine, arginine, proline, and tyrosine side chains, along with their corresponding un-
modified counterparts. the raw files and MaxQuant identification results were obtained by downloading from the
PRIDE [41] repository by PXD009449. Following our splitting strategy, we split all 24 portions using a 95% train-
ing to 5% testing ratio for training and fine-tuning. Each PTM portion was then combined with its corresponding
non-PTM portion. For example, the Trimethyl of K amino acid training data was combined with Non-PTM of K
amino acid training data to form the training set for Trimethyl of K amino acid. Similarly, Trimethyl of K amino
acid testing data was combined with Non-PTM of K amino acid testing data to evaluate the accuracy of PTM
identification.

3. 2020-Cell-LUAD [50]: To assess our model’s ability to infer phosphorylated peptides, we obtained a
publicly available phosphoproteomics dataset, known as 2020-Cell-LUAD [50]. This dataset was specifically de-
signed for the study of lung adenocarcinoma (LUAD) and was compiled from the tumors of 103 LUAD patients
and their corresponding non-cancerous adjacent tissues. It offers both phospho-enriched data (the phosphopro-
teomic data) and non-enriched data (the proteomic data), facilitating a comprehensive analysis of phosphorylation
events.
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SI Note 2: Additional model details
CTC loss calculation with dynamic programming.

As we mentioned in “Section Methods. Definition of CTC loss” of our main manuscript, CTC loss hinges on
calculating the total probability of all paths that lead to a desired target sequence. However, enumerating all
paths in the model output to calculate the P (A|S) is too time-consuming as there are (m + 1)t different decoding
paths, with m being the total number of amino acids adding one ϵ token. To enable efficient calculation, dynamic
programming is used during the training using CTC. Let denote α(τ, r) as the probability of generating A1:r, the
first r amino acids in the ground truth sequence A, using only the output positions up to τ , formally:

α(τ, r) = P (A1:r|S) =
∑

y1:τ :Γ(y1:τ )=A1:r

τ∑
yi∈y

P (yi|S) (1)

Consequently, α(τ, 0) is the probability of generating ϵ tokens at all first τ positions in the model output, as
|Γ(y1:τ )| = 0⇒ y1:τ = (ϵ, ϵ, · · · , ϵ). And α(1, 1) is the probability of generating the exact first true amino acid
at the first position. We initialize our DP as follows:

α(τ, 0) = P (y1 = ϵ|S) ∗ P (y2 = ϵ|S) ∗ · · · ∗ P (yτ = ϵ|S), ∀1 ≤ τ ≤ t (2)

α(1, 1) = P (y1 = a1|S) (3)

α(1, r) = 0, ∀r > 1 (4)

For the convenience of explanation, we further decompose the α(τ, r) into α(τ, r|yτ = ϵ) + α(τ, r|yτ ̸= ϵ) by
the law of total probability. We then recursively calculate α(τ, r) using the following rule:

α(τ, r) =


(α(τ − 1, r|yτ−1 ̸= ϵ) + α(τ − 1, r − 1)|yτ−1 = ϵ) ∗ P (yτ = ar|S)

+(α(τ − 1, r)) ∗ P (yτ−1 = ϵ|S), if ar = ar−1

(α(τ − 1, r|yτ ̸= ϵ) + α(τ − 1, r − 1)) ∗ P (yτ−1 = ar|S)
+(α(τ − 1, r)) ∗ P (yτ = ϵ|S), if ar ̸= ar−1.

(5)

When ar = ar−1, either by adding the ar to decoded sequence up toτ − 1 time step yτ−1 which can be reduced
to A1:r−1, with yτ−1 = ϵ, or repeating the last token of yτ−1 which can be reduced to A1:r can both yield A1:r.
Otherwise, when ar ̸= ar−1, we wouldn’t need to consider yτ−1 = ϵ when adding ar, with everything else being
the same.

Then, our loss function Lctc is:
Lctc = −P (A|S) = −α(t, |A|), (6)

as we are trying to maximize the total probability of all paths that can be reduced to A. This is precisely the value
of α(t, |A|) as we defined above. We make it negative to make it a minimization problem.

It’s worth noting that dynamic programming is employed to efficiently compute the CTC loss by identifying
all valid paths without affecting the backpropagation algorithm. Instead of naively enumerating all possible paths
that can be reduced to a target label (which grows exponentially), dynamic programming simplifies the process by
applying CTC recursion rules, reducing complexity. This method finds all valid paths more efficiently but does
not alter the loss calculation, which remains the sum of probabilities for the correct paths.
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CUDA algorithm for PMC unit

Algorithm 1 CUDA PMC Algorithm.

1: procedure PMC inference(lock, aa mass, grid size)
2: w ← blockIdx.x
3: dim← blockDim.x
4: h← threadIdx.x ▷ The [w,h] grid is calculated by this thread.
5: if w = 0 ∨ h = 0 then
6: return
7: end if ▷ The zero position and the zero mass do not need calculation.
8: if w > maxW then
9: lock[w × dim+ h]← 1

10: return
11: end if
12: if h = 1 then
13: Calculateh1(w, h) ▷ Find the amino acid which could be placed in [w,h] grid, with the maximum

log probability.
14: lock[w × dim+ h]← 1
15: return
16: end if
17: while lock[w × dim+ h− 1] ̸= 1 do
18: end while ▷ Waiting the dependency lock to release.
19: PutInϵOrSim()
20: for i← 1 to AA num− 1 do
21: minw ← ⌊w × grid size− aa mass[i]/grid size⌋
22: for each minw and minw + 1 do
23: while lock[minw × dim+ h− 1] ̸= 1 do
24: end while ▷ Waiting for the dependency lock to release.
25: PutInNumiAA()
26: end for
27: end for
28: lock[w × dim+ h]← 1
29: return
30: end procedure

Our CUDA algorithm begins by constructing a two-dimensional dynamic table. In this table, we store the most
probable partial sequence at time step t, ensuring that it satisfies the mass constraint for each cell. Each cell
independently carries out its calculations. Since the computation of each cell relies on all the cells in its upper left
column, we employ a lock mechanism to prevent computational race conditions. Starting from the first column,
we select the amino acid whose mass aligns with the mass constraint for each row, filling in the respective cell.
After completing its computation, the cell releases its dependency lock, allowing the subsequent cell to utilize
its results for further computation. Throughout the column, we perform recursive updates in accordance with the
PMC rule. Once all cells in the table have completed their calculations, we can retrieve the value in the last cell,
which represents the final sequence we seek.

Model configurations and training process

PrimeNovo utilizes an encoder-decoder transformer network configuration. More precisely, both the encoder and
decoder components consist of 9 multi-head attention layers. Each attention layer within the network is composed
of 8 heads. The hidden embedding dimension for our model is set to 400.

For the training process, we employed a Cosine learning rate scheduler in conjunction with the AdamW
optimizer. To mitigate the risk of excessive overfitting, we set the dropout rate at 0.18.

During inference, we use the PMC with precision e of 0.1Da. This precision constraint ensures that the
decoded peptide always falls within a range of 0.1 Da from the precursor mass indicated in the spectrum.

Our model utilizes a vocabulary of size 28, including 27 amino acid-related tokens: ”G”, ”A”, ”S”, ”P”, ”V”,
”T”, ”C+57.021”, ”L”, ”I”, ”N”, ”D”, ”Q”, ”K”, ”E”, ”M”, ”H”, ”F”, ”R”, ”Y”, ”W”, ”M+15.995”, ”N+0.984”,
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”Q+0.984”, ”+42.011”, ”+43.006”, ”-17.027”, and ”+43.006-17.027”, along with one CTC placeholder token ϵ.
The feedforward layer in the Transformer has a dimension of 1024. We have fixed the maximum generational

length to 40 tokens, which will be reduced using CTC post-reduction. Training is conducted over a maximum of
150 epochs, with each epoch covering the sampled 1 million data in the training dataset. We use the nine-species
Bacillus validation set for all training validation, as we believe it can reflect the model’s generalization on out-of-
distribution data. Training is stopped when the validation loss converges, which is indicated by minimal changes
(+- 0.05) or an increase (overfitting). The last checkpoint before convergence is used for testing. Our PMC unit
functions as the post-generational decoding module and does not require additional training or tuning.

During Training, we use a base learning rate of 0.0004, with a linear warmup over the first 5 epochs. From the
6th epoch onward, a cosine learning rate scheduler with a 0.5 decay factor is applied. The total batch size is 3200,
distributed across 8 GPUs. We use the Adam optimizer with β1 = 0.9 and β2 = 0.999, and no additional weight
decay (set to 0).

Non-autoregressive versus autoregressive

As our model is fundamentally different from the traditional autoregressive architect, we further clarify the dif-
ferences in architect design to facilitate future research. The differences between autoregressive (AR) models
and non-autoregressive (NAR) models, specifically in the context of Transformer architecture (AT vs NAT), are
detailed as follows, with each counterpart outlined:

1. Decoder Input and Decoder Masking: During the training of AT models, all tokens are fed into the Trans-
former decoder to parallelize the training. However, because the modeling objective for autoregression is the
conditional probability P (ai+1|a1:i), exposing all tokens to the AR model would lead to information leak-
age and fail to model the conditional probability correctly. Therefore, AR model training employs ”causal
masking.” This mask forces each attention mechanism to focus only on the preceding tokens by masking the
values after each token with −∞, effectively zeroing out those values after applying the softmax function,
as softmax(−∞) = 0. In contrast, during NAT model training, none of the true tokens are fed into the
decoder, and the model learns to generate all positions from ”scratch.” Since the model’s objective is not a
conditional probability like in AT models, the decoder does not use ”masking” to prevent information leak-
age. This approach also allows the model to be bidirectional, as each position can attend to both preceding
and succeeding positions.

2. Token-Level Loss vs. Sequence-Level Loss: AT model training uses cross-entropy loss on each token,
meaning that the ”reward” signal is applied to each correctly predicted token. On the other hand, NAT
models apply the connectionist temporal classification (CTC) loss, as detailed in the manuscript. CTC’s
reward signal is applied to entire ”paths,” meaning that partially predicted tokens do not receive a reward.
Only entirely correct paths receive a positive reward, while any incorrect path receives a negative reward.
This loss mechanism better enhances global sequence coherence.

3. Decoding Dynamics: Since NAT models generate probabilities independently at each position, the resulting
probability distribution is static. However, in AT models, each token’s probability is conditional, making
it dynamic. At each position of an AT model, the selection of a particular token affects the distribution of
all subsequent positions. For instance, selecting ”good” at the first position might increase the probability
of ”bye” in the second position, while selecting ”see” might increase the probability of ”you” in the second
position. This dependency prevents the model from having accurate global control over the generational
output, as any modification to a previous token requires re-decoding all subsequent tokens due to the shifted
distribution. In contrast, because the NAR model’s probability is static, any position can be modified without
such concerns, which is the motivation behind the Precise Mass Control (PMC) unit.

SI Note 3: Peptide annotation for metaproteomic research
The quality assessment of decoded peptides from both PrimeNovo and Casanovo V2, when applied to unlabeled
spectra, encompassed various facets, including peptide counts, taxonomic annotations, and functional annotations.
Taxonomic annotation was conducted utilizing Unipept (version 5.1.2, employing UniProt 2023.04), while func-
tional annotation was carried out using eggNOG-mapper v2 (utilizing the eggNOG 5 database). To construct
the taxon-function network, we employed a protein-peptide bridge approach with the assistance of a pre-existing
Python script [51].
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SI Note 4: Additional results on speed of PrimeNovo
We observed that a larger batch size does not always result in faster inference. We discuss the cases where post-
modification processes—PMC for PrimeNovo and beam search for Casanovo v2—are enabled, compared to when
these processes are disabled.

• When both post-modification processes were included, we found that the optimal inference speed was
achieved with a batch size between 10 and 50 for both models (Supplementary Figure 2 right-hand side).
Increasing or decreasing the batch size beyond this range resulted in reduced speed. Specifically, Casanovo
with beam search reached its peak performance at a batch size of 10, processing 8 spectra per second.
PrimeNovo with PMC achieved its best performance at a batch size of 50, processing 227 spectra per
second—28 times faster than Casanovo V2. The small optimal batch size is due to the heavy reliance
of both post-decoding algorithms on CPU processing after our investigation, which involves many non-
parallelizable components and conditional branches (e.g., if statements). Larger batch sizes lead to CPU
offloading inefficiencies beyond the optimal threshold.

• When both post-decoding algorithms were disabled, we observed a continuous increase in speed with larger
batch sizes (Supplementary Figure 2 left hand side). Specifically, both models reached their speed plateau at
a batch size more than 1000. In this case, PrimeNovo without PMC was able to decode up to 714 spectra per
second, while Casanovo without beam search reached 212 spectra per second. This is because, without the
post-decoding algorithms, both models primarily rely on GPU processing, which efficiently handles large
amounts of parallel work. Larger batch sizes improve GPU utilization.

Additionally, we tested other factors such as the number of spectra peaks and GPU card numbers and found
minimal impact on speed, indicating that batch size is likely the primary factor affecting performance.

SI Note 5: Additional results on nine-species benchmark dataset
PrimeNovo extends its strong performance to the revised nine-species benchmark dataset. The widely ac-
cepted nine-species benchmark dataset has faced criticism due to its limited amount of testing data. In an effort
to address this limitation and provide a more comprehensive evaluation of model performance, Yilmaz et al. [37]
introduced a new nine-species test dataset in conjunction with the Casanovo V2 model. This updated test set
offers a significantly larger volume of data points compared to its predecessor and features a broader distribution
of data across each species. In our study, we conducted tests on this new nine-species dataset using PrimeNovo
and compared its performance with that of Casanovo V2. As illustrated in Supplementary Fig. 4, Fig. 5 and Table
5, PrimeNovo consistently outperforms Casanovo V2 across all test species, achieving an average peptide recall
rate that surpasses Casanovo V2 by 10%. This outcome reinforces the superior accuracy and efficacy of our model.

PrimeNovo Achieves State-of-the-Art Amino Acid Level Accuracy. While sequence-level accuracy, measured
by peptide recall, remains a paramount metric for evaluating model performance, amino acid (AA) level accuracy
holds significance for de novo models. Partially correct amino acids can often provide valuable biological insights
and aid in identifying essential components within a peptide. In our comparison of AA level accuracy between
PrimeNovo and all other baseline models using the nine-species benchmark dataset, PrimeNovo consistently out-
performs its counterparts in AA precision, as illustrated in Supplementary Fig. 6.

Furthermore, we delve into the AA level accuracy at various confidence levels of the model. We rank predic-
tions from both PrimeNovo and Casanovo V2 based on their confidence scores and assess amino acid accuracy
within each confidence level range. As demonstrated in Supplementary Fig. 7, amino acid accuracy increases
with higher confidence scores for both PrimeNovo and Casanovo. This indicates that model confidence scores
serve as meaningful indicators of token-level accuracy. PrimeNovo exhibits superior AA level accuracy in the
high-confidence region compared to Casanovo V2, highlighting its ability to make higher-quality token-level pre-
dictions when confident in its own predictions. For detailed metrics regarding peptide level accuracy and amino
acid level accuracy on the nine-species benchmark dataset, please refer to Supplementary Tables 3 and 4.

We also compare the AA recall performance by PrimeNovo and Casanovo V2. As shown in Supplementary
Figure 3.a-b, PrimeNovo consistently outperforms Casanovo V2 in both AA precision and AA recall across all
species. For both models, we observe that AA recall and AA precision are very similar, with AA recall being, on
average, 0.5%–1% higher than AA precision. We further investigated the difference between AA precision and
AA recall using statistical testing. As shown in Supplementary Figure 3.c-d, the Mann-Whitney U test indicates
no significant difference (p-value < 0.05) between recall and precision across all species, with the mean recall
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value slightly higher (less than 1%) than precision. This lack of significance is consistent for both PrimeNovo and
Casanovo V2, with PrimeNovo showing even smaller differences between recall and precision (Supplementary
Figure 3.d) and higher confidence level (lower p-value) in rejecting the non-difference using Mann-Whitney U
test. In conclusion, these two metrics do not show substantial differences in representing Amino Acid level
prediction performance and can be used interchangeably. Thus, our reported AA precision across all datasets
serves as a robust evaluation of AA-level accuracy.

SI Note 6: Additional results on other test datasets
PrimeNovo Demonstrates Superior Amino Acid Prediction Across Diverse Unseen Datasets. We also con-
ducted a comparison of PrimeNovo with other de novo algorithms based on amino acid (AA) level precision
across three additional datasets. Notably, all models were evaluated under the zero-shot setting, without any
fine-tuning on the target data distribution. As depicted in Supplementary Fig. 8a and 8b, along with the results
provided in Supplementary Table 6, PrimeNovo excels in AA level accuracy, surpassing the previous best model,
in both the HCC and PT datasets. Furthermore, PrimeNovo outperforms all baseline models on the three-species
dataset across all tested species, as indicated in Supplementary Table 6. To provide a more detailed analysis,
we compared AA level accuracy within each confidence range, having ranked the peptides based on their output
confidence scores. Our observations reveal that PrimeNovo consistently achieves higher accuracy levels across all
confidence ranges compared to Casanovo V2. These results collectively highlight PrimeNovo’s superior capability
in accurately predicting amino acids across a range of unseen datasets, even when operating in a zero-shot setting.

PrimeNovo Demonstrates Robust Performance in the Face of Missing Peaks and Varied Peptide Lengths.
We conducted an analysis of PrimeNovo’s performance, as measured by peptide recall, when dealing with peptides
of different lengths and input spectra containing missing data. To accomplish this, we utilized the PT dataset and
categorized the MS/MS data based on the length of the target peptide. Within each length category, we quantified
the number of missing peaks in each spectrum, following the methodology outlined in previous research [52].
Subsequently, we reported the peptide-level recall under a zero-shot setting for each combination of target peptide
length and missing peak count. As observed in Supplementary Fig. 12 and Fig. 10, both models experience a
drop in accuracy (indicated by lighter colors) when more peaks are missing from the spectrum, regardless of the
peptide length. However, the heat map illustrating the performance gap between PrimeNovo and Casanovo V2
highlights that PrimeNovo consistently maintains a significantly higher level of peptide-level accuracy across all
combinations of missing peaks and target lengths. Furthermore, PrimeNovo consistently outperforms Casanovo
V2 across all target lengths, underscoring its robustness in handling variations in peptide length as well as the
presence of missing peaks in the input data.

PrimeNovo Demonstrates Enhanced Adaptability on the PT Dataset. In our investigation, we conducted fine-
tuning experiments on both Casanovo V2 and PrimeNovo using the PT dataset. The objective was to evaluate the
adaptability of both models to unseen data distributions. Similar to the observations in the ”Results” section of our
main manuscript, when the model is exclusively fine-tuned using the PT training data, we observe a phenomenon
known as catastrophic forgetting, where the model’s performance on the original data distribution significantly
declines. This is evident in the left portion of Supplementary Fig. 11, where the addition of more PT data results
in a drop in performance on the nine-species benchmark dataset. To address this issue, we implemented a strat-
egy of mixing the training data from PT with the original MassiveKB training data in a proportional manner. As
illustrated in the right-hand side of Supplementary Fig. 11, fine-tuning with a mixture of the original training data
and PT data led to stable performance on the original nine-species dataset. Moreover, with the gradual addition
of more PT training data, performance on the PT test set consistently improved. Crucially, throughout these fine-
tuning experiments with varying dataset sizes and mixing ratios (10:1, 1:1, and 1:10), PrimeNovo consistently
outperformed Casanovo V2 across all configurations. This robust performance underlines PrimeNovo’s superior
adaptability to different data distributions and highlights its strong generalization capabilities.

PrimeNovo Excels in Predicting Peptides with Various Charges, Outperforming Recently Published Pep-
Net. We conducted a comparison of PrimeNovo’s prediction accuracy with the most advanced CNN-based deep
learning model, PepNet [46]. For this analysis, we utilized the PXD019483 dataset, which was employed as the
test set by the authors, and organized predictions based on the charges of each peptide. As demonstrated in Sup-
plementary Fig. 13a, PrimeNovo attains the highest peptide-level accuracy across peptides with different charges,
outperforming PepNet. Additionally, we compared the performance of the PepNet model with PrimeNovo on the
nine-species benchmark dataset, as depicted in Supplementary Fig. 13b. In this evaluation as well, PrimeNovo
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exhibits a significant advantage in terms of peptide-level recall over PepNet, underscoring its superior predictive
capabilities.

We conducted a comparison of PrimeNovo’s prediction accuracy with the most advanced CNN-based deep
learning model, PepNet [46]. For this analysis, we utilized the PXD019483 dataset, which was employed as the
test set by the authors, and organized predictions based on the charges of each peptide. As demonstrated in Sup-
plementary Fig. 13a, PrimeNovo attains the highest peptide-level accuracy across peptides with different charges,
outperforming PepNet. Additionally, we compared the performance of the PepNet model with PrimeNovo on the
nine-species benchmark dataset, as depicted in Supplementary Fig. 13b. In this evaluation as well, PrimeNovo
exhibits a significant advantage in terms of peptide-level recall over PepNet, underscoring its superior predictive
capabilities.

PrimeNovo perform accurate sequencing on data generated from the instrument other than Thermo orbi-
trap. The mass spectrometry data generated by different types of experimental instruments can exhibit significant
differences. Models trained on mass spectrometry data sourced from Thermo orbitrap instrument may not nec-
essarily perform effectively on other types of instruments. To test our method’s robustness against spectrum data
from different instruments, we have chosen a public DDA-PASEF dataset [53] generated from timsTOF Pro in-
strument to evaluate our model’s performance. The raw files (in .d format) and MSFragger identification results
were obtained by downloading from the PRIDE repository by PXD041421. Mzml files generated by MSFragger
were converted to mgf files and added identified information. This dataset contains 3667330 PSMs with 83272
peptides.

We randomly sampled 5% of the entire dataset for evaluation, with the results shown in Supplementary Figure
14. As observed, PrimeNovo demonstrates the ability to effectively decode spectra generated by the timsTOF
Pro instrument. Specifically, it achieved a 45% peptide recall in a zero-shot setting, where no fine-tuning was
performed on this data distribution. In comparison, Casanovo V2 achieved a peptide recall of 31%, significantly
lower than our approach. This 14% improvement over Casanovo V2 is consistent with the performance advantage
observed in other datasets (ranging from 10% to 30%).

SI Note 7: Additional results on model explainability
Analyzing the orthogonality of the Value matrix projection by the norm of the Gram matrix. In order to
maintain consistency with previous studies, we utilized the norm of the Gram matrix to measure the orthogonality
of the Value matrix projection. In this methodology, the Value matrices from all heads at each layer are concate-
nated to form a complete Value matrix. Subsequently, each column of the Value matrix is normalized according
to the L2 norm to transform it into a vector with a magnitude of 1. This normalized matrix is then transposed and
multiplied by itself to generate a Gram matrix. The measure of orthogonality is quantified by taking the Frobenius
norm of the resulting matrix after the subtraction of an identity matrix. A smaller value of this norm indicates
better orthogonality of the Value matrix projection, implying reduced redundancy in the extracted features. As
shown in Supplementary Fig. 18, we employ a line graph to visualize and compare the orthogonality of the Value
matrix projections in the Casanovo and PrimeNovo encoders. Notably, the curve for PrimeNovo consistently lies
below that of Casanovo, demonstrating superior orthogonality in the Value matrix projection of the PrimeNovo
encoder, which suggests more diverse feature extraction.

Analyzing the bias of the PrimeNovo encoder’s attention mechanism towards b − y ions. On the nine-
species benchmark dataset, we random select a spectrum as an example and examine the distribution of match
ratio for different layers in the PrimeNovo encoder (Supplementary Fig. 16 and 17 ). Here, match ratio refers
to the proportion of by ions in the top 10 peaks (excluding the first token) that receive the most attention in each
sample. This attention level is measured by the L1 norm of the corresponding column in the attention score matrix,
with a larger norm indicating a higher attention level.

Visualization of the distribution of match ratio. As shown in Supplementary Fig. 19, we conducted the
analysis on the test dataset of H.sapiens, in which the proportion of b ions and y ions among all peaks is 0.16.
This threshold signifies the expected match ratio if the attention mechanism’s bias towards b ions and y ions
were random. A value exceeding this threshold indicates a preference for ions. The majority of layers exhibit
a preference for focusing on b ions and y ions, particularly the second and eighth layers, aligning with the prior
knowledge that ions contain crucial information for de novo sequencing. Conversely, layers 1, 5, and 6 tend
to overlook b ions and y ions, possibly due to their function in extracting useful information from other peaks.
A common feature across all layers is the deviation of match ratio from that of random selection, suggesting a
definitive selective bias of the attention mechanism towards b ions and y ions.
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Generation of all possible fragment ions. In this analysis, we considered only the fragment ions generated
by the cleavage of chemical bonds along the peptide backbone. It is well-known that in mass spectrometry analysis
of peptides, the focus is primarily on six ions generated by the cleavage of three types of chemical bonds. These
include a-ions and x-ions formed by the cleavage between the α-carbon atom and the carboxyl group, b ions and y
ions formed by the cleavage between the carbonyl group and the amino group of the peptide bond, and c ions and
z ions formed by the cleavage between the α-carbon atom and the amino group. For this study, we also focused
on these three types of chemical bond cleavages. However, we not only considered these six ions but also took
into account all possible intermediate fragment ions of variable lengths. This process was implemented by the
programming language Python.
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SI Note 8: Additional Result on Synthesizing phospho-peptide from PrimeNovo
Peptide Selection Process

We applied the fine-tuned PrimeNovo model to the non-enriched 2020-Cell-LUAD dataset, notably a dataset
without pre-identified peptide labels. The model’s confidence score served as the primary criterion for selection
due to the absence of these labels. We initially filtered for the top 300 predicted peptides featuring phospho
modifications, all of which boasted confidence scores exceeding 0.99. Subsequent manual scrutiny allowed us
to refine this selection based on quality indicators, specifically: 1) Preference for peptides terminating with the
amino acids K or R; 2) Selection of peptides of an optimal length, avoiding those excessively long or short; 3)
Requirement that more than half of the 20 most intense peaks could be aligned with the theoretical ions of the
peptide in question. 4) The presence of a matched ion both preceding and following the phospho modification
site.

Following these criteria, we identified 12 peptides as prime candidates for laboratory synthesis and subsequent
functional analyses.

Mass Spectrometry Analysis of Synthetic Phosphopeptides

Liquid chromatography tandem mass spectrometry (LC-MS/MS) analyses were conducted using an Orbitrap Fu-
sion Tribrid Lumos mass spectrometer (Thermo Fisher Scientific), directly interfaced with a nanoflow LC system
(EASY-nLC 1200, Thermo Fisher Scientific). A quantity of 50 ng of synthetic phosphopeptides was resuspended
in solvent A (0.1% formic acid (FA) in HPLC-grade water) and introduced onto a 2 cm self-packed trapping col-
umn (100-µm inner diameter, 1.9 µm resin, ReproSil-Pur C18-AQ, Dr. Maisch GmbH) in solvent A. Following
loading and washing steps, peptides were eluted to a 30 cm analytical column (150-µm inner diameter, 1.9 µm
resin, ReproSil-Pur C18-AQ, Dr. Maisch GmbH) and separated using a non-linear gradient of solvent B (0.1% FA
in acetonitrile, ACN) over 30 minutes at a flow rate of 600 nL/min. The gradient program was as follows: from 0
to 2 minutes, 7–12% solvent B; 2 to 13 minutes, 12–32% solvent B; 13 to 19 minutes, 32–45% solvent B; 19 to
21 minutes, 45–95% solvent B; and maintaining 95% solvent B from 21 to 30 minutes. Ionization was achieved
with a 2.0 kV spray voltage and a capillary temperature set at 320 °C. Data acquisition was carried out in OT-OT
mode with full MS scans (350 to 1,500 m/z) at a resolution of 120,000, a maximum injection time of 50 ms, and
an Automatic Gain Control (AGC) target of 1e6. MS2 fragmentation was performed using higher-energy collision
dissociation (HCD) with a normalized collision energy of 32%, on 2+ to 7+ precursor ions within a 3 s duty cycle,
in top-speed mode. MS2 spectra were acquired in the ion trap in rapid mode, with an AGC target of 50,000 and a
maximum injection time of 22 ms, at a resolution of 15,000. Dynamic exclusion was applied for 25 s to prevent
the redundant selection of peptides.

Analysis of MS Data for Synthetic Phosphopeptides

The acquired Thermo raw files were analyzed using MaxQuant (version 2.1.4), querying against the human
UniProt database (SwissProt, 20,266 entries, release date 2021-01-22). The analysis incorporated variable modi-
fications such as oxidation on methionine, phosphorylation on serine, threonine, and tyrosine, and acetylation at
the N-termini of proteins. Fixed modifications included carbamidomethylation of cysteine. The search parameters
permitted up to two missed cleavages by trypsin (with full specificity). To ensure data quality, the Percolator
algorithm was employed to maintain the false discovery rate (FDR) below 1% at both the peptide spectrum match
(PSM) and protein levels.

Details of 12 synthesized Phosphopeptides

We analyzed each one of 12 phosphopeptides in detail from various aspects, with summarized information in
Supplementary Table 11 and Table 12.

More about Three LUAD-Unrelated Peptides from Twelve Selected Predictions

SRRM2 is indispensable for pre-mRNA splicing, serving as a vital component of the spliceosome. Within the
minor spliceosome, it potentially contributes to the splicing of U12-type introns found in pre-mRNAs. Research
highlights a notable correlation between SRRM2 expression and prostate cancer prognosis [51]. Additionally,
SRRM2 possesses phosphorylation sites uniquely regulated by GSK3α, significantly impacting the survival out-
comes of colorectal cancer patients [4].
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SNTB2 is crucial for the subcellular localization and organization of various membrane proteins. It may
connect different receptors to the actin cytoskeleton and the dystrophin-glycoprotein complex, influencing the
regulation of secretory granules through interactions with PTPRN. Recent studies have identified SNTB2 as a
critical immune marker in macrophages, linked to melanoma metastasis [7]. Mutations within the SNTB2 gene
are prevalent across Burkitt lymphoma (BL) subtypes, underscoring its potential significance in the disease’s
pathology [6].

HACD3 plays a crucial role in the third of four reactions in the long-chain fatty acid elongation cycle. It is
involved in producing very long-chain fatty acids (VLCFAs) of various lengths, serving as precursors for mem-
brane lipids and lipid mediators, essential for numerous biological functions. Studies have linked HACD3 to the
aggressiveness and prognosis of breast cancer, including its association with patient survival rates [34, 35].
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