Supplementary Information

Helical dislocation-driven plasticity and flexible high-performance thermoelectric generator in *α***-Mg3Bi2 single crystals**

Mingyuan Hu^{1, 2}†, Jianmin Yang¹†, Yan Wang¹†, Junchao Xia^{1,3}, Quan Gan¹, Shuhuan Yang^{1,3}, Juping Xu⁴, Shulin Liu⁴, Wen Yin⁴, Baohai Jia¹, Lin Xie¹, Haifeng Li³, and Jiaqing He^{1, 2*}

¹Shenzhen Key Laboratory of Thermoelectric Materials, Department of Physics, Southern University of Science and Technology, Shenzhen, 518055, China.

²Guangdong Provincial Key Laboratory of Advanced Thermoelectric Materials and Device Physics,

Southern University of Science and Technology, Shenzhen 518055, China.

³Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macao SAR, 999078, China.

4 Spallation Neutron Source Science Center, Dongguan 523803, China.

†These authors contributed equally to this work.

*Correspondence to: hejq@sustech.edu.cn **(J.Q.H.)**

Contents:

Supplementary Section 4│Chemical bonding analysis *α*-Mg3Bi2 by DFT calculation.20 Supplementary Figure 15 The schematic diagram of the $(0001)[01\overline{1}0]$ slip system..20 Supplementary Figure 16│Plastic properties of *α*-Mg3Bi2……………………...…....21 Supplementary Figure 17│Plastic properties of *α*-Mg3Bi2 along with other typical materials……………………………………………………………………………...22 Supplementary Section 5│Thermoelectric performances of n-type and p-type *α*-Mg3Bi2 crystals………………………………………………………………………………..23 Supplementary Figure 18│Transport properties for n-type *α*-Mg3Bi2 crystals……...23 Supplementary Figure 19│Transport properties for p-type *α*-Mg3Bi2 crystals……...24 Supplementary Figure 20│Transport properties for p-type *α*-Mg3Bi2 crystals……...25 Supplementary Figure 21│Transport properties for p-type *α*-Mg3Bi2 crystals………26 Supplementary Figure 22│Mechanical properties of n-type *α*-Mg3Bi2……………...27 Supplementary Figure 23│Variations of electrical resistance with deformation cycles…………………………………………………………………………………28 Supplementary Figure 24│Repeat tests of the thermoelectric properties of the n-type *α*-Mg3Bi2……………………………………………………………………..…………29 Supplementary Section 6│Phase, thermoelectric and mechanical performances of ptype AgCu(Se, S, Te) pseudoternary solid solutions……………………………..…..30 Supplementary Figure 25│The power XRD patterns of p-type AgCu(Se, S, Te) pseudoternary solid solutions in this job……………………………………………..30 Supplementary Figure 26│Thermoelectric and mechanical performances of p-type AgCu(Se, S, Te) pseudoternary solid solutions………………………………………31 Supplementary Section 7│The Module fabrication of f-TEGs and output performances…………………………………………..………………………...…...32 Supplementary Figure 27│Fracture models under stress in different crystallographic directions for *α*-Mg3Bi2 crystal……………………………………..…………….….32 Supplementary Figure 28│Schematic of the preparation of Cu/Fe/*α*-Mg3Bi2/Fe/Cu layer structure……………………………………………………………………......33 Supplementary Figure 29│Output performances of n-type and p-type single-lag TEGs………………………………………………………………………………....34

Supplementary Note 1

Equations of carrier transport properties

The carrier transport properties of thermoelectric materials mainly include σ and *S*. According to Boltzmann transport theory, in the single parabolic band model, the *σ* can generally be obtained by the following formula^{76,77}:

$$
\sigma = n e \mu \tag{1}
$$

where μ is Hall mobility, which is $\mu = \frac{e\tau}{m^*}$, where τ is carrier relaxation time and m^* is density of states effective mass.

The *S* of a metal and a degenerate semiconductor (heavily doped semiconductor, whose carrier concentration generally exceeds 10^{19} cm⁻³) can be expressed as:

$$
S = \frac{8\pi^2 k_B^2 m^* T}{3eh^2} \left(\frac{\pi}{3n}\right)^{2/3} \tag{2}
$$

where k_B is the Boltzmann constant, e is the charge of the electron, h is the Planck constant, *n* is the carrier concentration.

Supplementary Section 1: Phase and Mechanical performance for *α***-Mg3Bi2 crystals.**

Supplementary Figure 1. The as-grown p-type *α*-Mg3Bi2 crystal.

Supplementary Figure 2. Single crystal' XRD and Laue diffraction patterns of *α***-Mg3Bi2. a**, XRD pattern for cleavage *α*-Mg3Bi2 crystal, showing the (000L) facet. **b**, Obtained Laue diffraction pattern in experiment, which matched with the calculated Laue diffraction pattern (**c**).

Supplementary Figure 3. Powder XRD patterns for n-type and p-type *α*-Mg3Bi2 crystals, which matched with the PDF#04-0464 card, meaning there were no second phase.

Supplementary Figure 4. Deformed *α***-Mg3Bi2 crystal slabs. a**, The crystal slab with a thickness of 175 µm showed a small bending radius of 1.5 mm. **b**, The SEM image of a bent crystal slab, and the thickness is about 273 µm. **c**, A flexible chain deformed by crystal slabs. **d**, A twisted crystal slab. *α*-Mg3Bi2 crystal slabs can be morphed into various shapes without breaking.

Supplementary Figure 5. Mechanical properties of *α***-Mg3Bi2.** The stress-strain curves of biaxial tensile test (**a**) and three-point bending test (**b**).

Supplementary Figure 6. The nanoindentation tests. a, The nanoindentation tests along ab-plane. **b**, Young's modulus, and Vickers Hardness along ab-plane. **c**, The nanoindentation tests along c-axis. **d**, Young's modulus, and Vickers Hardness along caxis.

Supplementary Figure 7. Images of the sample before and after mechanical property testing. The samples for compression tests along the ab-plane (**a**) and c-axis (**b**). Samples for tensile (**c**) and three-point bending tests (**d**). These pictures show alterations in these samples before and after mechanical tests.

Supplementary Figure 8. SEM images of the samples before and after deformation.

a, The fresh cleavage surface of *α*-Mg3Bi2, showing obvious layer structures. **b**, The SEM image of the sample after the compression test. There are many slip bands. **c**, After the biaxial tensile test, the cleavage plane showed many interlayer slips. (**d**, **e**) SEM images of the fractured cross section morphologies after the tension test, in which numerous interlayer slips were observed. Beyond the tensile limit, the sample underwent plastic fracture.

Supplementary Section 2: Atomic-scale locally distorted structures around helical dislocation.

Supplementary Figure 9. HAADF-STEM images of bent p-type *α***-Mg3Bi2. a**, The atomic resolution iDPC image of another area in α -Mg₃Bi₂ along the [1010] orientation and the corresponding strain map. **b**, The average ellipse and it mass center of α -Mg₃Bi₂ (marked in the red box in Supplementary Figure 9a) generated using CalAtom software.

Supplementary Figure 10. Atomic-scale observations of strain-induced locally distorted structures. a, The atomic-resolution iDPC image of α -Mg₃Bi₂ along the [$10\overline{1}0$] orientation with strain. **b**, The average ellipse and its mass center of α -Mg₃Bi₂ determined using CalAtom software (marked by the red box in Supplementary Figure 10a, including 13 rows of atoms).

Supplementary Figure 11. Atom-column displacement maps for 13 lines of Mg and Bi atoms, generated using CalAtom software.

Supplementary Figure 12. Distortion of interlayer MgBi6 and intralayer MgBi4 polyhedra around helical dislocation as shown in Figs. 2e and 2g. a, The initial interlayer MgBi6 octahedra. **b**, The distorted interlayer MgBi6 octahedron. **c**, The initial intralayer MgBi4 tetrahedra. **d**, The distorted interlayer MgBi4 octahedron.

Supplementary Figure 13. The structure model of helical dislocation based on the TEM results. The solid red arrow represents the Burgers vector (*b*).

Supplementary Section 4: The crystal structure used for ab initio molecular dynamics (AIMD) simulations.

Supplementary Figure 14. The crystal structure used for ab initio molecular dynamics (AIMD) simulations. a, The structure of α -Mg₃Bi₂ viewed along the [1010]. **b**, The optimized supercell of *α*-Mg3Bi2 with layer slip by half a cycle (the slip direction is indicated by yellow arrow). The supercell of α -Mg₃Bi₂, containing 135 atoms, was optimized with layer slip distortion. As shown in Supplementary Fig. 14b, the optimized supercell with distortion forms a specific helical dislocation, which results in a unique reorientation or flipping of the atomic arrangement around the dislocation planes, highlighted in the red circle.

Supplementary Section 5: Chemical bonding analysis *α***-Mg3Bi2 by DFT calculation**

Supplementary Figure 15. The schematic diagram of the (0001)[0110] slip system.

Supplementary Figure 16. Plastic properties of *α***-Mg3Bi2. a**, Energy variation as a function of the interlayer distance (*d*) for each step through slipping. **b**, The step-bystep variations of slipping energy *E*s and cleavage energy *E*c through slipping.

Supplementary Figure 17. Plastic properties of *α***-Mg3Bi2 along with other typical materials. a**, calculated slipping energy (*E*s), cleavage energy (*E*c); **b**, intralayer Young's modulus *E*in of *α*-Mg3Bi2 and several other materials, and details are listed in Supplementary Table $1^{30,32,34,35}$.

Supplementary Section 5: Thermoelectric performances of n-type and p-type *α***-Mg3Bi2 crystals**

Supplementary Figure 18. Transport properties for n-type *α***-Mg3Bi2 crystals. a**, Temperature-dependent carrier concentration (*n*) and Hall mobility (*µ*) of n-type *α*-Mg3Bi2 crystal. **b**, Experimental data versus calculated plots of Seebeck coefficient. The solid line connecting the scatter was predicted from a single parabolic band model, and *m** is the density of states effective mass.

Supplementary Figure 19. Transport properties for p-type *α***-Mg3Bi2 crystals.** Temperature-dependent electrical conductivity (**a**), Seebeck coefficient (**b**), and power factor (**c**) of p-type *α*-Mg3Bi2 crystal.

Supplementary Figure 20. Transport properties for p-type *α***-Mg3Bi2 crystals.** Temperature-dependent thermal conductivity (**a**) and zT value (**b**) of p-type α -Mg₃Bi₂ crystal.

Supplementary Figure 21. Transport properties for p-type *α***-Mg3Bi2 crystals. a**, Temperature-dependent carrier concentration (*n*) and Hall mobility (*µ*) of p-type *α*-Mg3Bi2 crystal. **b**, Experimental data versus calculated plots of Seebeck coefficient. The solid line connecting the scatter was predicted from a single parabolic band model.

Supplementary Figure 22. Mechanical properties of n-type Te-doped *α***-Mg3Bi2. a**, The stress-strain curve of three-point bending test. **b**, Single-crystal specimens used for three-point bending tests $(3.07 \times 1.52 \times 6.46 \text{ mm}^3)$. **c**, The bent sample of n-type α -Mg3Bi2 crystal. The n-type *α*-Mg3Bi2 crystals also exhibited >30% bending strain.

Supplementary Figure 23. Variations of electrical resistance with deformation cycles. The thickness of the *α*-Mg3Bi2 crystal slab is about 477 µm, and the bending radius is 4.5 mm.

Supplementary Figure 24. Repeat tests of the thermoelectric properties of the ntype *α***-Mg3Bi2.** Temperature-dependent electrical resistivity (**a**, **d**), Seebeck coefficient (**b**, **e**), and power factor (**c**, **f**). The transport properties are highly comparable among these samples, indicating the good reproducibility of the thermoelectric properties.

Supplementary Section 6: Phase, thermoelectric and mechanical performances of p-type AgCu(Se, S, Te) pseudoternary solid solutions

Supplementary Figure 25. The power XRD patterns of p-type AgCu(Se, S, Te) pseudoternary solid solutions in this job, which matched with that for Yang' work⁶.

Supplementary Figure 26. Thermoelectric and mechanical performances of p-type AgCu(Se, S, Te) pseudoternary solid solutions. (**a-e**) Temperature-dependent electric and thermal transport properties of p-type $AgCuTe_{0.7}Se_{0.3}$ -based ingots. In the (AgCu)0.999Te0.69Se0.3S0.01 ingot, we obtained best thermoelectric performance with room-temperature *zT* value of 0.45, max *zT* value of 0.96 at 393 K, and the average *zT* value was 0.66 between 300-400 K. **f**, The stress-strain curves of three-point bending test for $(AgCu)_{0.999}Te_{0.69}Se_{0.3}So_{0.01}$ slab $(4.43*0.58*40.15$ mm³), which exhibited a bending strain greater than 17%.

Supplementary Section 7: The Module fabrication of f-TEGs and output performances

Supplementary Figure 27. Fracture models under stress in different crystallographic directions (**a**. Press along ab-plane; **b**. press in c-axis) for *α*-Mg3Bi2 crystal. The interlayer Mg1-Bi chemical bonds are relatively weak, and *α*-Mg3Bi2 easily dissociates along the ab-plane. When subjected to stress along the ab-plane, the samples are prone to dissociation, leading to an open circuit in the device. Although the thermoelectric performance along the c-axis is not optimal, it is suitable for the out-of-plane devices.

Supplementary Figure 28. Schematic of the preparation of Cu/Fe/*α*-Mg3Bi2/Fe/Cu layer structure.

Supplementary Figure 29. Output performances of n-type and p-type single-lag TEGs. a, The n-type *α*-Mg3Bi2-based single-leg TEG, and its output performance. **b**, p-type (AgCu)0.999Te0.69Se0.3S0.01-based single-leg TEG, and its output performance.

The as-prepared n-type α -Mg₃Bi₂ crystal and p-type $(AgCu)_{0.999}Te_{0.69}Se_{0.3}S_{0.01}$ ingots were cut into thin plates with the thickness about 330 μm by using the diamond wire cutting. The metallic barrier layers were both prepared for n-type and p-type materials by using spark plasma sintering (SPS- 211LX) at 773 K under a pressure of 50 MPa for 5 min, as shown in Supplementary Fig. 28. Then the plates were cut into square thermoelectric legs of 4×4 mm² by using the diamond wire cutting. The single-leg TEGs were fabricated by placing n-type and p-type legs between copper foils, as shown in Supplementary Figs. 29a and 29b. For n-type single-leg TEG, the measured open circuit voltage (V_{∞}) and maximum output power (P_{max}) were 1.151 mV and 51.4 μ W, respectively, under a temperature gradient (ΔT) of 12.1 K. For p-type single-leg TEG, the measured open circuit voltage (V_{∞}) and maximum output power (P_{\max}) were 2.43 mV and 147.7 μW, respectively, under a temperature gradient (Δ*T*) of 14.3 K. In a word, the output performance of the six-couple out-of-plane f-TEG, as shown in Fig. 5, benefits from the combined contributions of the n-type and p-type legs.

Supplementary Figure 30. Optical images of the as-prepared six-couple flexible TE devices with filling factors of 73.5%. And the thickness of this flexible TE was only 0.88 mm.

Supplementary Figure 31. Homemade apparatus for testing the output performance of f-TEG.

Supplementary Figure 32. Service stability of the f-TEG devices. a, *ΔR*in/*R*in,0 of the 6-couple flexible devices with different bending radius. **b**, *ΔR*in/*R*in,0 of the 6-couple flexible devices in the bending test with the bending radius of 15 mm.

Supplementary Figure 33. Service stability of the f-TEG devices. (**a**, **b**) The output performance of the device after 1000 bending times. Current (*I*) dependencies of the output voltage (V) and output power (P) . (c, d) The output performance of the device after 2000 bending times. **e**, Bending time-dependent maximum output power (*P*max). **f**, Bending time-dependent maximum normalized power density $(P_{\text{max}}/A\Delta T^2)$.

Supplementary Table 1.

Plastic properties of *α***-Mg3Bi2 along with other typical materials.** Band gap, space group, calculated slipping energy *E*s, cleavage energy *E*c, in-plane modulus *E*in along the slipping direction, and the deformability factor Ξ of selected materials^{30,32,34,35}.

Supplementary Table 2.

Thermoelectric performances of *α***-Mg3Bi2 along with other typical materials.** The electrical conductivity (σ) , Seebeck coefficient (*S*), and power factor (*PF*) of some inorganic plastic thermoelectric semiconductors^{6,20-29,31,39}.

Supplementary Table 3.

Output performances of flexible thermoelectric devices.

Supplementary Table 4.

Room temperature mechanical properties of *α*-Mg3Bi2.

Supplementary Table 5.

Partial refined results from neutron diffraction data of small-sized *α*-Mg3Bi2 single crystals before and after bending at room temperature.

Peak Index	Peak type	Area Integral	FWHM (\AA)	Max Height	Center Peak (Å)	
Mg2-Bi	Gaussian	0.09078	0.14063	0.60645	2.81752	
$Mg2-Bi$	Gaussian	0.38102	0.18803	1.90366	2.91462	
$Mg1-Bi$	Gaussian	0.43247	0.24994	1.62549	3.0348	
$Mg2-Mg2$	Gaussian	0.41614	0.39024	1.00184	3.23349	
$Mg1-Mg2$	Gaussian	0.16379	0.3851	0.39957	3.71541	
Bi-Bi	Gaussian	0.27019	0.42879	0.59223	4.5412	
$Mg1-Mg1$	Gaussian	0.87816	0.33706	2.45185	4.72673	
Partial refined results of Mg ₃ Bi ₂ single crystals after bending						
Peak Index	Peak type	Area Integral	FWHM (A)	Max Height	Center Peak (Å)	
Mg2-Bi	Gaussian	0.8122	0.17459	0.43843	2.77755	
Mg2-Bi	Gaussian	0.58836	0.2338	2.3653	2.90201	
$Mg1-Bi$	Gaussian	0.62382	0.29129	2.01193	3.06633	
$Mg2-Mg2$	Gaussian	0.22421	0.28499	0.73907	3.30314	
$Mg1-Mg2$	Gaussian	0.51032	0.82473	0.58183	3.66774	
Bi-Bi	Gaussian	0.44629	0.50414	0.83213	4.45084	

Partial refined results of Mg₃Bi₂ single crystals before bending

Supplementary Table 6.

The values of integrated crystal orbital Hamilton population of different Mg-Bi bonds, as shown in Figs. 3d-3f, for steps 0-5 during slip along the $[01\overline{1}0]$ direction.

Supplementary Table 7.

Thermoelectric performances of n-type *α***-Mg3Bi2-based materials.** Electric conductivity (*σ*), Seebeck coefficient (*S*), power factor (*PF*), carrier concentration (*n*), Hall mobility (μ), effective mass (m^*), weighted mobility ($\mu_w = \mu (m^*/m_e)^{3/2}$) of some n-type *α*-Mg₃Bi₂-based single crystals and polycrystalline samples^{30,59-66}.

Materials	σ	\boldsymbol{S}	PF	\boldsymbol{n}	μ	m^*/m_e	$\mu(m^*/m_e)^{3/2}$	Ref.	
	$(S \text{ cm}^{-1})$	$(\mu V K^{-1})$	$(\mu W \text{ cm}^{-1} K^{-2})$	$(10^{19} \text{ cm}^{-3})$	$(cm2 V-1 s-1)$		$(cm2 V-1 s-1)$		
n-Mg ₃ Bi ₂ // ab-plane	2300	-123.3	35	13.3	108	1.60	218	This	
n-Mg ₃ Bi ₂ // c -axis	2907.4	-95	26.2	13.3	136.4	1.23	186.24	work	
Mg3.2Bi1.998Te0.002	1429		55	3.7					
$\frac{1}{ab}$ -plane		-200			232	1.3	343.88		
Mg3.2Bi _{1.998} Teo.002								39	
$\frac{1}{c}$ -plane	2356	-57	7.65	3.7	397	0.89	333.33		
Mg3.2Bi1.998Te0.002	1234.6	-129	20	3.25	200	0.53	77.17	59	
Mg ₃ Bi _{1.49} Sb _{0.5} Te _{0.01}									
// ab -plane	1606.9	-150	36.16	$\overline{4}$	266	0.87	216.93		
Mg ₃ Bi _{1.49} Sb _{0.5} Te _{0.01}									60
$\frac{1}{c}$ -axis	1141.7	-143	26.6	$\overline{4}$	189	0.83	143.47		
Y:Mg ₃ Bi _{1.25} Sb _{0.75}	886.3	-214.9	40.9	$\overline{4}$	140	1.25	195.92	61	
Te:Mg ₃ Sb ₂	531.5	-204.4	22.2	3.27	236	1.04	250.62	62	
Mg3.032Y0.018BiSb	1282	-141	25.5	7.1	120	1.4	198.78	63	
Mg ₃ Sb _{0.6} Bi _{1.4}	1361.7	-142.6	27.69	5.71	149	1.27	212.49	64	
Mg3.15Sb0.5Bi1.4975Te0.0025	680	-224	33.22	2.02	210	0.83	157.83	65	
Nb _{0.1} /Mg ₃ Sb _{1.5} Bi _{0.49} Te _{0.01}	760	-205	31.64	\mathfrak{Z}	158.5	0.98	154.89	66	

Supplementary Table 8.

Output performance testing conditions of f-TEG. Heating element temperature (*T*hot), circulating water temperature (T_{cold}), and the estimated temperature difference (ΔT) across f-TEG device.

T_{hot} (K)	T_{cold} (K)	ΔT (K)
313	295	1.3
323	295	2.3
333	295	3.3
343	295	4.3
353	295	5.3
363	295	6.3
383	295	7.3

Supplementary References

- 76. Snyder G. J. & Toberer, E. S. Complex thermoelectric materials. *Nat. Mater.* **7**, 105– 114 (2008).
- 77. Shakouri, A. Recent developments in semiconductor thermoelectric physics and materials. *Annu. Rev. Mater Res.* **41**, 399-431 (2011).