Supplementary Information

Helical dislocation-driven plasticity and flexible high-performance thermoelectric generator in α -Mg₃Bi₂ single crystals

Mingyuan Hu^{1, 2}[†], Jianmin Yang¹[†], Yan Wang¹[†], Junchao Xia^{1,3}, Quan Gan¹, Shuhuan Yang^{1,3}, Juping Xu⁴, Shulin Liu⁴, Wen Yin⁴, Baohai Jia¹, Lin Xie¹, Haifeng Li³, and Jiaqing He^{1, 2*}

¹Shenzhen Key Laboratory of Thermoelectric Materials, Department of Physics, Southern University of Science and Technology, Shenzhen, 518055, China.

²Guangdong Provincial Key Laboratory of Advanced Thermoelectric Materials and Device Physics,

Southern University of Science and Technology, Shenzhen 518055, China.

³Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macao SAR, 999078, China.

⁴Spallation Neutron Source Science Center, Dongguan 523803, China.

[†]These authors contributed equally to this work.

*Correspondence to: hejq@sustech.edu.cn (J.Q.H.)

Contents:

Supplementary Notes 1 Equations of carrier transport properties
Supplementary Section 1 Phase and Mechanical performance for α-Mg ₃ Bi ₂ crystals6
Supplementary Figure 1 The as-grown p-type α-Mg ₃ Bi ₂ crystal6
Supplementary Figure 2 Single crystal' XRD and Laue diffraction patterns of α -
Mg3Bi27
Supplementary Figure 3 Powder XRD patterns for n-type and p-type α -Mg ₃ Bi ₂
crystals8
Supplementary Figure 4 Deformed α-Mg ₃ Bi ₂ crystal slabs9
Supplementary Figure 5 Mechanical properties of α-Mg ₃ Bi ₂ 10
Supplementary Figure 6 The nanoindentation tests
Supplementary Figure 7 Images of the samples before and after mechanical property
testing12
Supplementary Figure 8 SEM images of the samples before and after deformation13
Supplementary Section 2: Atomic-scale locally distorted structures around helical
dislocation14
Supplementary Figure 9 HAADF-STEM images of bent α-Mg ₃ Bi ₂ crystal14
Supplementary Figure 10 Atomic-scale observations of strain-induced locally
distorted structures15
Supplementary Figure 11 Atom-column displacement maps for 13 lines of Mg and Bi
atoms, generated using CalAtom software16
Supplementary Figure 12 Distortion of interlayer MgBi6 and intralayer MgBi4
polyhedra around helical dislocation as shown in Figs. 2e and 2g17
Supplementary Figure 13 The structure model of helical dislocation based on the TEM
results
Supplementary Section 3 The crystal structure used for ab initio molecular dynamics
(AIMD) simulations19
Supplementary Figure 14 The crystal structure used for ab initio molecular dynamics
(AIMD) simulations

Supplementary Section 4 | Chemical bonding analysis α-Mg₃Bi₂ by DFT calculation.20 Supplementary Figure 15 The schematic diagram of the $(0001)[01\overline{1}0]$ slip system..20 Supplementary Figure 16 Plastic properties of α-Mg₃Bi₂......21 Supplementary Figure 17 Plastic properties of α -Mg₃Bi₂ along with other typical Supplementary Section 5 | Thermoelectric performances of n-type and p-type α -Mg₃Bi₂ Supplementary Figure 18 Transport properties for n-type α -Mg₃Bi₂ crystals......23 Supplementary Figure 19 Transport properties for p-type α -Mg₃Bi₂ crystals......24 Supplementary Figure 20 Transport properties for p-type α -Mg₃Bi₂ crystals......25 Supplementary Figure 21 Transport properties for p-type α -Mg₃Bi₂ crystals......26 Supplementary Figure 22 | Mechanical properties of n-type α-Mg₃Bi₂.....27 Supplementary Figure 23 Variations of electrical resistance with deformation Supplementary Figure 24 Repeat tests of the thermoelectric properties of the n-type α -Supplementary Section 6 Phase, thermoelectric and mechanical performances of ptype AgCu(Se, S, Te) pseudoternary solid solutions......30 Supplementary Figure 25 The power XRD patterns of p-type AgCu(Se, S, Te) Supplementary Figure 26 Thermoelectric and mechanical performances of p-type Supplementary Section 7 The Module fabrication of f-TEGs and output Supplementary Figure 27 | Fracture models under stress in different crystallographic Supplementary Figure 28 Schematic of the preparation of Cu/Fe/a-Mg3Bi2/Fe/Cu Supplementary Figure 29 Output performances of n-type and p-type single-lag

Supplementary Figure 30 Optical images of the as-prepared six-couple flexible TE
devices with filling factors of 73.5%
Supplementary Figure 31 Homemade apparatus for testing the output performance of
f-TEG
Supplementary Figure 32 Service stability of the f-TEG devices
Supplementary Figure 33 Service stability of the f-TEG devices
Supplementary Tables
Supplementary Table 1 Plastic properties of α -Mg ₃ Bi ₂ along with other typical
materials
Supplementary Table 2 Thermoelectric performances of α -Mg ₃ Bi ₂ along with other
typical materials40
Supplementary Table 3 Output performances of flexible thermoelectric devices41
Supplementary Table 4 Room temperature mechanical properties of <i>a</i> -Mg ₃ Bi ₂ 42
Supplementary Table 5 Partial refined results from neutron diffraction data of small-
sized α -Mg ₃ Bi ₂ single crystals before and after bending at room temperature43
Supplementary Table 6 The values of integrated crystal orbital Hamilton population
of different Mg-Bi bonds44
Supplementary Table 7 Thermoelectric performances of n-type a-Mg3Bi2-based
materials45
Supplementary Table 8 Output performance testing conditions of f-TEG46
Supplementary References

Supplementary Note 1

Equations of carrier transport properties

The carrier transport properties of thermoelectric materials mainly include σ and *S*. According to Boltzmann transport theory, in the single parabolic band model, the σ can generally be obtained by the following formula^{76,77}:

$$\sigma = ne\mu \tag{1}$$

where μ is Hall mobility, which is $\mu = \frac{e\tau}{m^*}$, where τ is carrier relaxation time and m^* is density of states effective mass.

The *S* of a metal and a degenerate semiconductor (heavily doped semiconductor, whose carrier concentration generally exceeds 10^{19} cm⁻³) can be expressed as:

$$S = \frac{8\pi^2 k_B^2 m^* T}{3eh^2} \left(\frac{\pi}{3n}\right)^{2/3}$$
(2)

where k_B is the Boltzmann constant, e is the charge of the electron, h is the Planck constant, n is the carrier concentration.

Supplementary Section 1: Phase and Mechanical performance for α -Mg₃Bi₂ crystals.

Supplementary Figure 1. The as-grown p-type α-Mg₃Bi₂ crystal.

Supplementary Figure 2. Single crystal' XRD and Laue diffraction patterns of α -Mg₃Bi₂. **a**, XRD pattern for cleavage α -Mg₃Bi₂ crystal, showing the (000L) facet. **b**, Obtained Laue diffraction pattern in experiment, which matched with the calculated Laue diffraction pattern (**c**).

Supplementary Figure 3. Powder XRD patterns for n-type and p-type α -Mg₃Bi₂ crystals, which matched with the PDF#04-0464 card, meaning there were no second phase.

Supplementary Figure 4. Deformed α -Mg₃Bi₂ crystal slabs. **a**, The crystal slab with a thickness of 175 µm showed a small bending radius of 1.5 mm. **b**, The SEM image of a bent crystal slab, and the thickness is about 273 µm. **c**, A flexible chain deformed by crystal slabs. **d**, A twisted crystal slab. α -Mg₃Bi₂ crystal slabs can be morphed into various shapes without breaking.

Supplementary Figure 5. Mechanical properties of α -Mg₃Bi₂. The stress-strain curves of biaxial tensile test (a) and three-point bending test (b).

Supplementary Figure 6. The nanoindentation tests. a, The nanoindentation tests along ab-plane. **b**, Young's modulus, and Vickers Hardness along ab-plane. **c**, The nanoindentation tests along c-axis. **d**, Young's modulus, and Vickers Hardness along c-axis.

Supplementary Figure 7. Images of the sample before and after mechanical property testing. The samples for compression tests along the ab-plane (a) and c-axis (b). Samples for tensile (c) and three-point bending tests (d). These pictures show alterations in these samples before and after mechanical tests.

Supplementary Figure 8. SEM images of the samples before and after deformation.

a, The fresh cleavage surface of α -Mg₃Bi₂, showing obvious layer structures. **b**, The SEM image of the sample after the compression test. There are many slip bands. **c**, After the biaxial tensile test, the cleavage plane showed many interlayer slips. (**d**, **e**) SEM images of the fractured cross section morphologies after the tension test, in which numerous interlayer slips were observed. Beyond the tensile limit, the sample underwent plastic fracture.

Supplementary Section 2: Atomic-scale locally distorted structures around helical dislocation.

Supplementary Figure 9. HAADF-STEM images of bent p-type α -Mg₃Bi₂. a, The atomic resolution iDPC image of another area in α -Mg₃Bi₂ along the [1010] orientation and the corresponding strain map. b, The average ellipse and it mass center of α -Mg₃Bi₂ (marked in the red box in Supplementary Figure 9a) generated using CalAtom software.

Supplementary Figure 10. Atomic-scale observations of strain-induced locally distorted structures. **a**, The atomic-resolution iDPC image of α -Mg₃Bi₂ along the [1010] orientation with strain. **b**, The average ellipse and its mass center of α -Mg₃Bi₂ determined using CalAtom software (marked by the red box in Supplementary Figure 10a, including 13 rows of atoms).

Supplementary Figure 11. Atom-column displacement maps for 13 lines of Mg and Bi atoms, generated using CalAtom software.

Supplementary Figure 12. Distortion of interlayer MgBi6 and intralayer MgBi4 polyhedra around helical dislocation as shown in Figs. 2e and 2g. a, The initial interlayer MgBi6 octahedra. b, The distorted interlayer MgBi6 octahedron. c, The initial intralayer MgBi4 tetrahedra. d, The distorted interlayer MgBi4 octahedron.

Supplementary Figure 13. The structure model of helical dislocation based on the TEM results. The solid red arrow represents the Burgers vector (*b*).

Supplementary Section 4: The crystal structure used for ab initio molecular dynamics (AIMD) simulations.

Supplementary Figure 14. The crystal structure used for ab initio molecular dynamics (AIMD) simulations. a, The structure of α -Mg₃Bi₂ viewed along the [1010]. b, The optimized supercell of α -Mg₃Bi₂ with layer slip by half a cycle (the slip direction is indicated by yellow arrow). The supercell of α -Mg₃Bi₂, containing 135 atoms, was optimized with layer slip distortion. As shown in Supplementary Fig. 14b, the optimized supercell with distortion forms a specific helical dislocation, which results in a unique reorientation or flipping of the atomic arrangement around the dislocation planes, highlighted in the red circle.

Supplementary Section 5: Chemical bonding analysis α -Mg₃Bi₂ by DFT calculation

Supplementary Figure 15. The schematic diagram of the $(0001)[01\overline{1}0]$ slip system.

Supplementary Figure 16. Plastic properties of α -Mg₃Bi₂. **a**, Energy variation as a function of the interlayer distance (*d*) for each step through slipping. **b**, The step-by-step variations of slipping energy E_s and cleavage energy E_c through slipping.

Supplementary Figure 17. Plastic properties of α -Mg₃Bi₂ along with other typical materials. **a**, calculated slipping energy (*E*_s), cleavage energy (*E*_c); **b**, intralayer Young's modulus *E*_{in} of α -Mg₃Bi₂ and several other materials, and details are listed in Supplementary Table 1^{30,32,34,35}.

Supplementary Section 5: Thermoelectric performances of n-type and p-type α -Mg₃Bi₂ crystals

Supplementary Figure 18. Transport properties for n-type α -Mg₃Bi₂ crystals. a, Temperature-dependent carrier concentration (*n*) and Hall mobility (μ) of n-type α -Mg₃Bi₂ crystal. b, Experimental data versus calculated plots of Seebeck coefficient. The solid line connecting the scatter was predicted from a single parabolic band model, and *m** is the density of states effective mass.

Supplementary Figure 19. Transport properties for p-type α -Mg₃Bi₂ crystals. Temperature-dependent electrical conductivity (a), Seebeck coefficient (b), and power factor (c) of p-type α -Mg₃Bi₂ crystal.

Supplementary Figure 20. Transport properties for p-type α -Mg₃Bi₂ crystals. Temperature-dependent thermal conductivity (a) and zT value (b) of p-type α -Mg₃Bi₂ crystal.

Supplementary Figure 21. Transport properties for p-type α -Mg₃Bi₂ crystals. a, Temperature-dependent carrier concentration (*n*) and Hall mobility (μ) of p-type α -Mg₃Bi₂ crystal. b, Experimental data versus calculated plots of Seebeck coefficient. The solid line connecting the scatter was predicted from a single parabolic band model.

Supplementary Figure 22. Mechanical properties of n-type Te-doped α -Mg₃Bi₂. a, The stress-strain curve of three-point bending test. b, Single-crystal specimens used for three-point bending tests (3.07×1.52×6.46 mm³). c, The bent sample of n-type α -Mg₃Bi₂ crystal. The n-type α -Mg₃Bi₂ crystals also exhibited >30% bending strain.

Supplementary Figure 23. Variations of electrical resistance with deformation cycles. The thickness of the α -Mg₃Bi₂ crystal slab is about 477 μ m, and the bending radius is 4.5 mm.

Supplementary Figure 24. Repeat tests of the thermoelectric properties of the ntype α -Mg₃Bi₂. Temperature-dependent electrical resistivity (a, d), Seebeck coefficient (b, e), and power factor (c, f). The transport properties are highly comparable among these samples, indicating the good reproducibility of the thermoelectric properties.

Supplementary Section 6: Phase, thermoelectric and mechanical performances of p-type AgCu(Se, S, Te) pseudoternary solid solutions

Supplementary Figure 25. The power XRD patterns of p-type AgCu(Se, S, Te) pseudoternary solid solutions in this job, which matched with that for Yang' work⁶.

Supplementary Figure 26. Thermoelectric and mechanical performances of p-type AgCu(Se, S, Te) pseudoternary solid solutions. (a-e) Temperature-dependent electric and thermal transport properties of p-type AgCuTe_{0.7}Se_{0.3}-based ingots. In the $(AgCu)_{0.999}Te_{0.69}Se_{0.3}S_{0.01}$ ingot, we obtained best thermoelectric performance with room-temperature *zT* value of 0.45, max *zT* value of 0.96 at 393 K, and the average *zT* value was 0.66 between 300-400 K. **f**, The stress-strain curves of three-point bending test for $(AgCu)_{0.999}Te_{0.69}Se_{0.3}S_{0.01}$ slab $(4.43*0.58*40.15 \text{ mm}^3)$, which exhibited a bending strain greater than 17%.

Supplementary Section 7: The Module fabrication of f-TEGs and output performances

Supplementary Figure 27. Fracture models under stress in different crystallographic directions (a. Press along ab-plane; b. press in c-axis) for α -Mg₃Bi₂ crystal. The interlayer Mg1-Bi chemical bonds are relatively weak, and α -Mg₃Bi₂ easily dissociates along the ab-plane. When subjected to stress along the ab-plane, the samples are prone to dissociation, leading to an open circuit in the device. Although the thermoelectric performance along the c-axis is not optimal, it is suitable for the out-of-plane devices.

Supplementary Figure 28. Schematic of the preparation of Cu/Fe/α-Mg₃Bi₂/Fe/Cu layer structure.

Supplementary Figure 29. Output performances of n-type and p-type single-lag TEGs. a, The n-type α-Mg₃Bi₂-based single-leg TEG, and its output performance. **b**, p-type (AgCu)_{0.999}Te_{0.69}Se_{0.3}S_{0.01}-based single-leg TEG, and its output performance.

The as-prepared n-type α -Mg₃Bi₂ crystal and p-type (AgCu)_{0.999}Te_{0.69}Se_{0.3}S_{0.01} ingots were cut into thin plates with the thickness about 330 µm by using the diamond wire cutting. The metallic barrier layers were both prepared for n-type and p-type materials by using spark plasma sintering (SPS-211LX) at 773 K under a pressure of 50 MPa for 5 min, as shown in Supplementary Fig. 28. Then the plates were cut into square thermoelectric legs of 4 × 4 mm² by using the diamond wire cutting. The single-leg TEGs were fabricated by placing n-type and p-type legs between copper foils, as shown in Supplementary Figs. 29a and 29b. For n-type single-leg TEG, the measured open circuit voltage (V_{oc}) and maximum output power (P_{max}) were 1.151 mV and 51.4 µW, respectively, under a temperature gradient (ΔT) of 12.1 K. For p-type single-leg TEG, the measured open circuit voltage (V_{oc}) and maximum output power (P_{max}) were 2.43 mV and 147.7 µW, respectively, under a temperature gradient (ΔT) of 14.3 K. In a word, the output performance of the six-couple out-of-plane f-TEG, as shown in Fig. 5, benefits from the combined contributions of the n-type and p-type legs.

Supplementary Figure 30. Optical images of the as-prepared six-couple flexible TE devices with filling factors of 73.5%. And the thickness of this flexible TE was only 0.88 mm.

Supplementary Figure 31. Homemade apparatus for testing the output performance of f-TEG.

Supplementary Figure 32. Service stability of the f-TEG devices. a, $\Delta R_{in}/R_{in,0}$ of the 6-couple flexible devices with different bending radius. b, $\Delta R_{in}/R_{in,0}$ of the 6-couple flexible devices in the bending test with the bending radius of 15 mm.

Supplementary Figure 33. Service stability of the f-TEG devices. (a, b) The output performance of the device after 1000 bending times. Current (*I*) dependencies of the output voltage (*V*) and output power (*P*). (c, d) The output performance of the device after 2000 bending times. e, Bending time-dependent maximum output power (P_{max}). f, Bending time-dependent maximum normalized power density ($P_{\text{max}}/A\Delta T^2$).

Supplementary Table 1.

Plastic properties of α -Mg₃Bi₂ along with other typical materials. Band gap, space group, calculated slipping energy E_s , cleavage energy E_c , in-plane modulus E_{in} along the slipping direction, and the deformability factor Ξ of selected materials^{30,32,34,35}.

Materials	Bandgap	Space	Es	Ec	Ein	Slip & cleavage	Ξ factor	Ref.
	(eV)	group	(eV/atom)	(eV/atom)	(Gpa)	system	(Gpa ⁻¹)	
NaCl	8.7	Fm3m	0.188	0.0527	41	(001) [100]	0.0068	30
Diamond	5.6	Fd3m	1.041	0.0585	1149	(111) [1-10]	0.000049	30
Au	0	Fm3m	0.12	0.85	38	(110) [1-10]	0.19	30
Ti	0	P63/mmc	0.147	2.149	128	(001) [100]	0.11	30
Graphere	0	P63/mmc	0.00413	0.0209	951	(001) [100]	0.0053	30
β -AgI	3	P63mc	0.145	0.165	14.8	(001) [100]	0.077	30
InSe	1.2	P63/mmc	0.058	0.0844	53	(001) [100]	0.027	30
CrCl ₃	1.53	C2/m	0.019	0.0716	62.1	(001) [010]	0.06104	32
CrI ₃	1.58	C2/m	0.037	0.0997	43.4	(001) [010]	0.0633	32
SnIP	1.8	P12/c1	0.041	0.064	13.6	[100]	0.1148	34
SnSe ₂	1	P3m1	0.022	0.143	78.77	(001)[120]	0.0821	35
MoS_2	1.491	P63/mmc	0.0511	0.0499	206	(001) [100]	0.0047	30
a-Mg3Bi2	0	P3m1	0.04184	0.13051	39	(0001) [0100]	0.08	This work
Ag ₂ S	1.01	P21/c	0.166	0.148	65	(100) [001]	0.014	30

Supplementary Table 2.

Thermoelectric performances of α -Mg₃Bi₂ along with other typical materials. The electrical conductivity (σ), Seebeck coefficient (*S*), and power factor (*PF*) of some inorganic plastic thermoelectric semiconductors^{6,20-29,31,39}.

		σ	S	PF	Df
-	wateriais		(µV K ⁻¹)	(µW cm ⁻¹ K ⁻²)	Ref.
M D'	// ab-plane	2230	-123.3	35	This
α -Mg ₃ B ₁₂	// c-axis	2907.4	-95	26.2	work
$(AgCu)_{0.998}Se_{0.22}S_{0.08}Te_{0.7}$		83.4	246.6	5.1	6
A	$ag_2Se_{0.69}S_{0.31}$	1324	-120	22	20
	Ag _{3.96} SSe	345.4	-121.5	5.26	21
Ag	$2S_{0.5}Se_{0.45}Te_{0.05}$	270	-136	4.496	22
	$Ag_2S_{0.8}Te_{0.2}$	390	-101	3.98	22
L	$Ag_2S_{0.5}Se_{0.5}$	300	-123	4.84	22
$Ag_2Se_{0.6}S_{0.4}$		600	-100	6	23
$Ag_{2}Te_{0.7}S_{0.3}$		1050	-65	4.44	24
	Ag _{3.95} TeS	130	-195	5.16	25
I	$Ag_{20}S_{7.1}Te_{2.9}$	275.3	-128	4.5	26
Ag	₂ S _{0.6} Te _{0.4} fiber	420	-115	6.63	27
Ag	$2S_{0.45}Se_{0.45}Te_{0.1}$	659.6	-91	5.8	28
Ag	$z_2 S_{1/3} Se_{1/3} Te_{1/3}$	600	-100	6	29
Cu _{0.005} S	nSe _{1.95} Cl _{0.05} (375K)	268	-259.4	18	21
Cu _{0.005} SnSe _{1.95} Br _{0.05} (375 K)		390	-218.6	18.5	31
Mg3.2Bi1.998Te0.002		1420	200	55	
	// <i>ab</i> -plane	1429	-200	22	20
Mg	3.2Bi1.998Te0.002 // c-plane	2356	-57	7.65	39

Supplementary Table 3.

Flexible devices	ΔT (K)	$P_{\rm max}/A\Delta T^2$	Ref.
	10	5.7	
	20	5.5	
$n-Mg_{3,2}B1_{1,498}Sb_{0.5}1e_{0.002} +$	30	5.5	41
p-B10.4Sb1.61e3	40	5.4	
	50	5.5	
$n\text{-}Mg_{3.2}Bi_{1.498}Sb_{0.5}Te_{0.002} + \\$	7.2	2.04E-5	40
Cu wire	13.1	2.08E-5	40
p-(AgCu) _{0.998} Se _{0.22} S _{0.08} Te _{0.7} + n-Ag ₂₀ S ₃ Te ₇	2.2	30	6
Ag ₂ Se network-based device	16	15.6E-3	42
$Bi_2Te_3 + Sb_2Te_3$ on Si	20	0.3475	43
Bi ₂ Te ₃ + Sb ₂ Te ₃ on glass fabric	47.5	1.58	44
Screen-printed $Bi_{0.5}Sb_{1.5}Te_3 + Bi_2Te_{2.7}Se_{0.3}$	25	7.6	45
Bi ₂ Te ₃ -based	50	6.68E-4	46
Bi ₂ Te ₃ -based	150	8.22	47
PEDOT-based	10	2.33E-4	9
poly(metal 1,1,2,2-	20	1 315 3	40
ethenetetrathiolate)-based	30	1.31E-3	48
Carbon nanotube yarn-based	48	2.32E-3	49
PEDOT:PSS (p) +	25	4.86E-5	50
fullerene derivative (n)			

Output performances of flexible thermoelectric devices.

Supplementary Table 4.

Comm	magion		Tancian			Donding		Vickers	Young's
Comp	ression		Tension			Denuing		Hardness	modulus
Madalaa	Yield	Madalaa	Yield	Fracture	Ma dalaa	Yield	Fracture		
(CD-)	strength	(CD-)	strength	strength	(CD-)	strength	strength	(GPa)	(GPa)
(GPa)	(MPa)	(GPa)	(MPa)	(MPa)	(GPa)	(MPa)	(MPa)		
0.51	17.43							5.7	36.95
(// <i>ab</i> -plane)	(// <i>ab</i> -plane)	5 405	2.462	2	1.044	2.20		(// <i>ab</i> -plane)	(// ab-plane)
5.69	116.44	5.405	2.462	2	1.044	3.38	-	5.72	42.79
(// c-axis)	(// c-axis)							(// ab-plane)	(// c-axis)

Room temperature mechanical properties of α -Mg₃Bi₂.

Supplementary Table 5.

Partial refined results from neutron diffraction data of small-sized α -Mg₃Bi₂ single crystals before and after bending at room temperature.

		8			
Peak Index	Peak type	Area Integral	FWHM (Å)	Max Height	Center Peak (Å)
Mg2-Bi	Gaussian	0.09078	0.14063	0.60645	2.81752
Mg2-Bi	Gaussian	0.38102	0.18803	1.90366	2.91462
Mg1-Bi	Gaussian	0.43247	0.24994	1.62549	3.0348
Mg2-Mg2	Gaussian	0.41614	0.39024	1.00184	3.23349
Mg1-Mg2	Gaussian	0.16379	0.3851	0.39957	3.71541
Bi-Bi	Gaussian	0.27019	0.42879	0.59223	4.5412
Mg1-Mg1	Gaussian	0.87816	0.33706	2.45185	4.72673
Pa	rtial refined r	esults of Mg ₃ B	i2 single cryst	als after bend	ling
Peak Index	rtial refined r	esults of Mg ₃ B	i ₂ single cryst	als after bend Max Height	ling Center Peak (Å)
Pa Peak Index Mg2-Bi	rtial refined r Peak type Gaussian	Area Integral	i2 single cryst FWHM (Å) 0.17459	Max Height 0.43843	Center Peak (Å) 2.77755
Pak Index Mg2-Bi Mg2-Bi	rtial refined r Peak type Gaussian Gaussian	Area Integral 0.8122 0.58836	i2 single cryst FWHM (Å) 0.17459 0.2338	Max Height 0.43843 2.3653	Ling Center Peak (Å) 2.77755 2.90201
Peak Index Mg2-Bi Mg2-Bi Mg1-Bi	rtial refined r Peak type Gaussian Gaussian Gaussian	results of Mg ₃ B Area Integral 0.8122 0.58836 0.62382	i2 single cryst FWHM (Å) 0.17459 0.2338 0.29129	als after bend Max Height 0.43843 2.3653 2.01193	Ling Center Peak (Å) 2.77755 2.90201 3.06633
Peak Index Mg2-Bi Mg2-Bi Mg1-Bi Mg2-Mg2	rtial refined r Peak type Gaussian Gaussian Gaussian Gaussian	results of Mg ₃ B Area Integral 0.8122 0.58836 0.62382 0.22421	i2 single cryst FWHM (Å) 0.17459 0.2338 0.29129 0.28499	Als after bend Max Height 0.43843 2.3653 2.01193 0.73907	ling Center Peak (Å) 2.77755 2.90201 3.06633 3.30314
Peak Index Mg2-Bi Mg2-Bi Mg1-Bi Mg2-Mg2 Mg1-Mg2	rtial refined r Peak type Gaussian Gaussian Gaussian Gaussian Gaussian	results of Mg ₃ B Area Integral 0.8122 0.58836 0.62382 0.22421 0.51032	i ₂ single cryst FWHM (Å) 0.17459 0.2338 0.29129 0.28499 0.82473	als after bend Max Height 0.43843 2.3653 2.01193 0.73907 0.58183	Ling Center Peak (Å) 2.77755 2.90201 3.06633 3.30314 3.66774
Peak Index Mg2-Bi Mg2-Bi Mg1-Bi Mg2-Mg2 Mg1-Mg2 Bi-Bi	rtial refined r Peak type Gaussian Gaussian Gaussian Gaussian Gaussian Gaussian	results of Mg ₃ B Area Integral 0.8122 0.58836 0.62382 0.22421 0.51032 0.44629	i2 single cryst FWHM (Å) 0.17459 0.2338 0.29129 0.28499 0.82473 0.50414	als after bend Max Height 0.43843 2.3653 2.01193 0.73907 0.58183 0.83213	Ling Center Peak (Å) 2.77755 2.90201 3.06633 3.30314 3.66774 4.45084

Partial refined results of Mg₃Bi₂ single crystals before bending

Supplementary Table 6.

Bonds		-ICOHP (eV)	
Step	Step 0	Step 2	Step5
Mg1(2)-Bi(2)	0.1944	0.334	0.399
Mg1(2)-Bi(3)	0.245	0.224	0.205
Mg2(2)-Bi(1)	0.408	0.385	0.373
Mg2(2)-Bi(2)	0.333	0.383	0.339
Mg2(4)-Bi(3)	0.231	0.259	0.283
Mg2(3)-Bi(3)	0.252	0.249	0.234

The values of integrated crystal orbital Hamilton population of different Mg-Bi bonds, as shown in Figs. 3d-3f, for steps 0-5 during slip along the $[01\overline{1}0]$ direction.

Supplementary Table 7.

Thermoelectric performances of n-type α -Mg₃Bi₂-based materials. Electric conductivity (σ), Seebeck coefficient (S), power factor (*PF*), carrier concentration (*n*), Hall mobility (μ), effective mass (m^*), weighted mobility ($\mu_w = \mu (m^*/m_e)^{3/2}$) of some n-type α -Mg₃Bi₂-based single crystals and polycrystalline samples^{30,59-66}.

	σ	S	PF	n	μ	str /	$\mu (m^*/m_{\rm e})^{3/2}$	D.C
Materials	(S cm ⁻¹)	(µV K ⁻¹)	(µW cm ⁻¹ K ⁻²)	$(10^{19}\mathrm{cm}^{-3})$	(cm ² V ⁻¹ s ⁻¹)	<i>m*/m</i> e	(cm ² V ⁻¹ s ⁻¹)	Kel.
n-Mg ₃ Bi ₂ // <i>ab</i> -plane	2300	-123.3	35	13.3	108	1.60	218	This
n-Mg3Bi2 // c-axis	2907.4	-95	26.2	13.3	136.4	1.23	186.24	work
Mg3.2Bi1.998Te0.002	1.420	200	55	2.7	222	1.2	242.88	
// <i>ab</i> -plane	1429	-200	55	3./	232	1.3	343.88	20
Mg3.2Bi1.998Te0.002	2254			2.5	207	0.00	222.22	39
// <i>c</i> -plane	2356	-57	7.65	3.7	397	0.89	333.33	
Mg3.2Bi1.998Te0.002	1234.6	-129	20	3.25	200	0.53	77.17	59
$Mg_{3}Bi_{1.49}Sb_{0.5}Te_{0.01}$	1.000.0	150	2616		244	0.07	21 4 92	
// <i>ab</i> -plane	1606.9	-150	36.16	4	266	0.87	216.93	
Mg3Bi1.49Sb0.5Te0.01								60
// <i>c</i> -axis	1141.7	-143	26.6	4	189	0.83	143.47	
Y:Mg3Bi1.25Sb0.75	886.3	-214.9	40.9	4	140	1.25	195.92	61
Te:Mg ₃ Sb ₂	531.5	-204.4	22.2	3.27	236	1.04	250.62	62
Mg3.032Y0.018BiSb	1282	-141	25.5	7.1	120	1.4	198.78	63
Mg3Sb _{0.6} Bi _{1.4}	1361.7	-142.6	27.69	5.71	149	1.27	212.49	64
Mg3.15Sb0.5Bi1.4975Te0.0025	680	-224	33.22	2.02	210	0.83	157.83	65
Nb _{0.1} /Mg ₃ Sb _{1.5} Bi _{0.49} Te _{0.01}	760	-205	31.64	3	158.5	0.98	154.89	66

Supplementary Table 8.

Output performance testing conditions of f-TEG. Heating element temperature (T_{hot}), circulating water temperature (T_{cold}), and the estimated temperature difference (ΔT) across f-TEG device.

T _{hot} (K)	T _{cold} (K)	ΔT (K)
313	295	1.3
323	295	2.3
333	295	3.3
343	295	4.3
353	295	5.3
363	295	6.3
383	295	7.3

Supplementary References

- 76. Snyder G. J. & Toberer, E. S. Complex thermoelectric materials. *Nat. Mater.* 7, 105–114 (2008).
- 77. Shakouri, A. Recent developments in semiconductor thermoelectric physics and materials. *Annu. Rev. Mater Res.* **41**, 399-431 (2011).