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Version 0: 

Reviewer comments: 

Reviewer #1 

(Remarks to the Author) 
The manuscript presents a recurrent neural network (RNN) that can emulate the retinocortical visual pathway and produce
Gabor-like receptive fields. The fields are tuned to visual stimuli with specific orientation and spatial frequency components.
The hardware system developed to experimentally demonstrate the concept comprised of a Dynamic Vision Sensor (DVS)
and a Dynamic Neuromorphic Asynchronous Processor (DyNAP). 

The fundamental contribution is this work is the usage of recurrent inhibition to realize visual receptive fields in spiking
neural networks. The recurrent inhibitory connections realize the Gabor-like selective spatial receptive fields with fewer
neural resources than the feedforward connections. Also, the receptive fields are sharper when using RNNs. 
The proposed scheme can help improve the utilization efficiency of mixed-signal neuromorphic hardware for visual tasks, by
significantly reducing the number of interconnections. 

The work is supported by simulation as well as hardware-based experiments. The methodology and provided details look
sound. 
I have the following comments/questions for the authors: 
Can authors provide a schematic of the neural network showing the recurrent connections, versus the feedforward
connections for realizing the receptive field? It's hard to visualize the network from the text and Figure 1. 

In Table 1, a comparison between the recursive and feedforward scheme is shown in terms of the number of
interconnections for a single neuron. The reduction is about 2X when considering the kernel with 5 subregions. Are there
any other metrics of comparison, such as energy consumption, DyNAP chip area used, accuracy when used with a
classification SNN layer, etc, which can demonstrate substantial improvement at the network level? 

Reviewer #2 

(Remarks to the Author) 
The paper is focused on exploring hardware and algorithms for spike-based implementation of early vision signal analyzers
like 2D Gabor filters. The overall content of the paper can be broadly divided into two parts: 

(A) The paper describes how adding inhibitory recurrent pathways among lateral V1 cells, in addition to excitatory
feedforward pathways between retina and V1 cells, faithfully emulates 2D Gabor-like filtering with the reduced number of
total synaptic connections compared to the case where Gabor-like functionality is emulated using only the excitatory
feedforward connections. Through network simulations, the authors show that V1 neurons have a firing rate curve that peaks
at only a certain value of “orientation” and “spatial frequency” in the input, for a properly chosen set of parameters that define
the Gabor-like functionality. The authors can tune the phase of the Gabor filter by performing appropriate linear
superpositions of the receptive fields of neighboring V1 neurons. The authors can also tune the parameters to create banks



of v1 neurons receptive to specific orientation and radial frequency values in the input. 

(B) More importantly, the authors show that using the effective firing rate of the retina (ON firing rate minus OFF firing rate)
instead of both as a whole or separately, can lead to qualitatively steeper tuning curves of the V1 neurons, supposedly
resulting in better selectivity to orientation & spatial frequency. 

Part (B) of the paper is interesting. However, I have several qualms and reservations about the overall work presented in this
paper: 

1. A major chunk of the material in this paper (classified as part A in my summary) that spans everything in the Results
section except for the last sub-section and all main figures except for Fig. 6 & 7 and parts of Fig. 5, have already been
presented, discussed and proposed in other publications of the authors [1-2]. However, the authors present as if these are
new results pertaining to this paper. For example, Fig. 1 of submission is taken from Fig. 1 of [2], Fig. 2 is the same as Fig. 1
of [1], Fig. 3 is the same as Fig. 2 of [1], Fig. 4 is the same as Fig. 4 of [2] and Fig. 5c is like Fig. 8 of [2]. The abstract,
introduction, and discussion boast of already published work as contributions to this paper. Therefore, the only new result
presented in this work is what is classified as part B in my summary. 

2. Overall, the paper is poorly written and difficult to read. The contributions of the work in the introduction are very vaguely
written, possibly due to the nominal amount of new work put forth. 

3. The overall content of the paper is highly technical and specific, and in my opinion, its implications/contributions do not
appeal to the general interdisciplinary audience of this journal. It is more suited to a more specific journal or conference like
ISCAS, ICCV, ICONS, etc, that focuses on and welcomes such highly technical content. 

4. Since the content is so highly technical, each of the topics discussed in the results section could benefit significantly from
a better writing flow, and detailed explanations either in the main text or the supplementary section. 

5. The authors do not explain why both ON & OFF event firing rates are important. One can appreciate the importance of a
complete set of oriented filters where each filter gathers information about the signal’s phase with reference to the filter's
orientation and, therefore, the usefulness of equations 5-7. But it is unclear how equation 8, the key “push-pull” concept
proposed by the authors, is helping/changing things for the better. 

6. Although the authors highlight through Fig. 7d that the response rate becomes steeper with the inclusion of the “push-pull”
technique, it is unclear how that is happening by just reading the mathematical treatment presented. 

7. A graph showing how the synaptic sparsity advantage of having an inhibitory connection would scale with respect to
strictly feedforward connection-based Gabor filters for different filter sizes and # of sub-regions would be helpful. 

8. A description of the grating experiment in the supplementary would be good, clearly pointing out how the spatial
frequency is defined and what the sinusoidal grating inputs looked like. For example, in the text corresponding to Fig. 6, the
authors say they are varying the phase of the sinusoidal grating, but how exactly is that done in the input? 

9. Statements like “In this paper, we have demonstrated that recurrent clustered inhibition can be successfully used in SNNs,
both in simulation and on mixed-signal analog/digital neuromorphic hardware, to economically implement highly structured
visual receptive fields.” from the discussion section, would be more appropriate to omit as this has already been done
before. 

10. Another statement: “The proposed solutions meet the requirements posed by an effective cortical-like representation in
terms of channel redundancy (i.e., a large number of orientations and spatial frequencies), and in terms of information
efficiency (i.e., highly structured basis functions).” in the discussion section is vague and unsubstantiated. Where have the
requirements been laid down? The concept of having multiple banks of Gabor filters with different parameters has already
been laid down in several studies in literature, both in the non-spiking domain and in the spiking domain, many by the
authors themselves. So, this so-called requirement is not met for the first time in this paper. 

11. The following statement in discussion: “We verified that the linearity assumption still holds despite the high non-linearity
of spiking neurons. Additionally, we showed how it is possible to combine such feature detectors to generate Gabor-like
filters with arbitrary phase values, effectively implementing a full harmonic representation of the image signal.” This is again
misleading for the purposes of this paper, as this has already been shown in previous papers [1-2]. Similarly, the last
statement of the discussion section should also be omitted: “This would pave the way to the implementation of complex bio-
inspired networks for more demanding online visual tasks on neuromorphic hardware.” 

12. In the phrase “but inescapably discard part of the signal.” mentioned in the introduction, it is unclear as to which part of
the signal the authors are referring to. 

13. Please add a proper reference to back up the following statement: “To assess network’s performance and characterize
the receptive fields of its output neurons, we used two dimensional (2D) sinusoidal drifting gratings as visual stimuli, widely
used to investigate the response of cells in the primary visual cortex”. 

14. Fig. 3b should show the different values of the parameters d, sigma, and b used to obtain the tuning curves. The caption



provides the range in which they are varied but not the steps used. 

15. The following passage from the sub-section labeled “Linearity test and feature tuning characterization” has redundant
statements and can be shortened: “The best results, i.e., the narrowest tuning curves, are obtained when the size of the
recurrent inhibitory clusters and their distance from the target neuron are both comparable to the width of the feed-forward
excitatory kernel. More precisely, considering fixed parameters for the feed-forward kernel (in particular σh = 3.5, p = 1/3, and
multiplicative weight of the feed-forward excitatory connections a = 103), the parameters that influence the effect of the
recurrent clustered inhibition are the distance d between the target neuron and each of the inhibitory clusters, the spatial
extension of the clusters and the multiplicative weight of the recurrent inhibitory connections b.” 

16. For lines 170 to 179, the authors should add simulation results to support this statement or refer to work that has
demonstrated this before. 

17. The supplementary figure reference in line 201 is incorrect. It should be S2. 

18. The phrase “substantially lower number of” in line 326 is qualitative and has to be quantified. From the numbers
mentioned, I would not call it "substantial". 

[1] Baruzzi, Valentina, Giacomo Indiveri, and Silvio P. Sabatini. "Emergence of Gabor-Like Receptive Fields in a Recurrent
Network of Mixed-Signal Silicon Neurons." 2020 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE,
2020. 

[2] Baruzzi, Valentina, Giacomo Indiveri, and Silvio P. Sabatini. "Compact Early Vision Signal Analyzers in Neuromorphic
Technology." Proceedings of the 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics
Theory and Applications (VISIGRAPP 2020). Vol. 4. SciTePress, 2020. 

Reviewer #3 

(Remarks to the Author) 
-In this paper, the author proposed a recurrent snn model for describing a retinocortical layer mathematically. In addition, the
author implemented the model by a neuromorphic hardware system comprising a Dynamic Vision Sensor that emulates the
transient pathway of real retinas and a mixed-signal Dynamic Neuromorphic Asynchronous Processor with neurons and
synapses. 
-I have the following concerns for the technical quality of the submitted manuscript. 
-The recurrent snn model seems that it comes from the previous publication largely, as the author mentioned in the
manuscript. If so, the author needs to make it clear what novelty the submitted manuscript can show in terms of model
equations, etc. 
-The main contribution of the paper is thought to be the neuromorphic hardware implementation that enables an economic
realization of the retinocortical layer by combining the DVS camera and neuromorphic asynchronous processor with the
emulation results. If so, the author needs to make it clear why the hardware implementation is more economic than the
others, in addition to comparing the number of connections shown in Table 1. 

Version 1: 

Reviewer comments: 

Reviewer #2 

(Remarks to the Author) 
Thanks to the authors’ detailed response to my previous comment regarding its ambiguity, the push-pull technique now
makes sense. However, its impact on potential vision processing pipelines is still not clear. For example, the push-pull
waveforms in Fig. 7 of the main text seem to be in the center of the only-ON and only-OFF waveforms, but their difference
does not seem to be significant. How much improvement in the overall classification accuracy of a full-fledged vision
processor based on these Gabor filters will be due to such (arguably) minor improvements in phase errors brought about by
the push-pull technique? 

Also, the authors provide information on the synaptic sparsity advantage of their technique but how much silicon area and
energy (based on system level analysis) will be saved by using the sparse recurrent inhibition incorporated Gabor filter
implementations compared to ones with only feedforward connections. How will the performance and hardware cost of such
pipelines compare with other spike-based vision processing pipelines already studied in the literature? 

Reviewer #3 

(Remarks to the Author) 
-The author reflected the review comments well in the revised manuscript. 

Version 2: 



Reviewer comments: 

Reviewer #2 

(Remarks to the Author) 
I don't have further comments for the authors 
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Manuscript title: Recurrent models of orientation selectivity enable robust early-vision 
processing in mixed-signal neuromorphic hardware 

Manuscript ID: NCOMMS-23-47095 

Authors: Valentina Baruzzi, Giacomo Indiveri and Silvio P Sabatini 

Journal: Nature Communications 

Content type: Article 

Submitted on October 10th, 2023, Decision received on November 15th, 2023 

  

We would like to thank the Reviewers for the interesting comments, which helped us to 
improve the validity of the results, as well as the quality of the presentation. Reviewer’s 
comments are reported in RED, our responses in BLUE and in PURPLE we report here the 
changed text. The same text is also highlighted in PURPLE in the manuscript. 

Reviewer #1 

The manuscript presents a recurrent neural network (RNN) that can emulate the retinocortical 
visual pathway and produce Gabor-like receptive fields. The fields are tuned to visual stimuli 
with specific orientation and spatial frequency components. The hardware system developed 
to experimentally demonstrate the concept comprised of a Dynamic Vision Sensor (DVS) and 
a Dynamic Neuromorphic Asynchronous Processor (DyNAP). 

The fundamental contribution is this work is the usage of recurrent inhibition to realize visual 
receptive fields in spiking neural networks. The recurrent inhibitory connections realize the 
Gabor-like selective spatial receptive fields with fewer neural resources than the feedforward 
connections. Also, the receptive fields are sharper when using RNNs. 

The proposed scheme can help improve the utilization efficiency of mixed-signal neuromorphic 
hardware for visual tasks, by significantly reducing the number of interconnections. 

The work is supported by simulation as well as hardware-based experiments. The 
methodology and provided details look sound. 

Remarks to the Authors 

1 - Can authors provide a schematic of the neural network showing the recurrent connections, 
versus the feedforward connections for realizing the receptive field? It's hard to visualize the 
network from the text and Figure 1. 

  

We agree with the reviewer. Accordingly, we modified the original Figure 2 of the manuscript 
by including top-view schemes of the feed-forward and the recurrent kernels for the different 
parameters’ settings considered in the work (see Figure R1 here below). 



 

 

 

Figure R1 

Furthermore, we have modified the original Figure 1 of the manuscript by including two new 
panels (B and C) that pictorially show the interconnections of the recurrent scheme and those 
for the equivalent feedforward one (see Figure R2 here below). The feedforward resolvent 
kernel of the recurrent integral equation (see Eq.1 in the manuscript) represents how total 
afferent drive at retina site affects activity at a cortical (V1) site, detecting specific 
characteristics present in the input pattern of excitation. By properly choosing the parameters 
of the kernel of recurrent inhibition, the spatial extension on which these characteristics are 
detected is possibly larger than that of the actual inhibitory connections. This occurs both 
directly, by physical local interactions, and indirectly, through propagation property of 
recursion. In this way, one can speak of “induced” functional couplings not directly related to 
the presence of corresponding specific wirings. 



 

   

Figure R2 

2 - In Table 1, a comparison between the recursive and feedforward scheme is shown in terms 
of the number of interconnections for a single neuron. The reduction is about 2x when 
considering the kernel with 5 subregions. Are there any other metrics of comparison, such as 
energy consumption, DyNAP chip area used, accuracy when used with a classification SNN 
layer, etc, which can demonstrate substantial improvement at the network level? 

  

Actually, with a proper choice of parameters, the RNN allows us to obtain Gabor-like receptive 
fields characterized by five subregions (i.e., corresponding to a relative spatial frequency 
bandwidth β=0.8÷0.9 octaves, calculated for a half-power cut-off frequency). A direct 
comparison with equivalent receptive fields obtained by a strictly feed-forward scheme shows 
an advantage for RNN over the former by a factor of 3.13 in terms of number of 
interconnections. In case we settle for receptive fields with a larger relative bandwidth (e.g., 
β~1.5 octaves, and thus a less number of subregions, e.g., three), the higher efficiency of the 
RNN over the FF one could drop to a factor of 1.65, yet paying the price of (accepting) a 



 

reduced selectivity in the spatial frequency domain. Considering that typical vision applications 
require front-end convolutions with a huge number of receptive fields, the 
advantage/convenience of RNN-based solutions turns out to be so far substantial. 

We have included these considerations in the manuscript. 

Furthermore, following the reviewers’ suggestion, we have included in the manuscript a 
discussion of the power consumption of the recurrent network, providing an estimate for the 
21x21 hardware implementation. The average estimated power consumption for a neuron of 
the relay layer and for the corresponding neuron of the V1 layer, when responding to the 
preferred stimulus at the highest temporal frequency, is 6.54 μJ and 446 nJ, respectively. 
(Details on the estimation are reported in section ‘Methods’). 

However, a comparison with equivalent feed-forward networks was not possible, as, actually, 
they have not been implemented on the DyNAP, and as the average number of spikes 
estimated by simulations significantly differ from those actually observed in hardware. 

Concerning the chip area used, the reduction of area for the recurrent network implementation 
with respect to the equivalent feed-forward one, is still of a factor of 3, when considering a five 
subregion kernel, along with the reduction of the required interconnections. 
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Authors: Valentina Baruzzi, Giacomo Indiveri and Silvio P Sabatini 
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Content type: Article 

Submitted on October 10th, 2023, Decision received on November 15th, 2023 

  

We would like to thank the Reviewers for the interesting comments, which helped us to 
improve the validity of the results, as well as the quality of the presentation. Reviewer’s 
comments are reported in RED, our responses in BLUE and in PURPLE we report here the 
changed text. The same text is also highlighted in PURPLE in the manuscript. 

Reviewer #2 

The paper is focused on exploring hardware and algorithms for spike-based implementation 
of early vision signal analyzers like 2D Gabor filters. The overall content of the paper can be 
broadly divided into two parts: 

(A) The paper describes how adding inhibitory recurrent pathways among lateral V1 cells, in 
addition to excitatory feedforward pathways between retina and V1 cells, faithfully emulates 
2D Gabor-like filtering with the reduced number of total synaptic connections compared to the 
case where Gabor-like functionality is emulated using only the excitatory feedforward 
connections. Through network simulations, the authors show that V1 neurons have a firing 
rate curve that peaks at only a certain value of “orientation” and “spatial frequency” in the input, 
for a properly chosen set of parameters that define the Gabor-like functionality. The authors 
can tune the phase of the Gabor filter by performing appropriate linear superpositions of the 
receptive fields of neighboring V1 neurons. The authors can also tune the parameters to create 
banks of v1 neurons receptive to specific orientation and radial frequency values in the input. 

(B) More importantly, the authors show that using the effective firing rate of the retina (ON 
firing rate minus OFF firing rate) instead of both as a whole or separately, can lead to 
qualitatively steeper tuning curves of the V1 neurons, supposedly resulting in better selectivity 
to orientation & spatial frequency. 

Part (B) of the paper is interesting. However, I have several qualms and reservations about 
the overall work presented in this paper: 

We thank the reviewer for having acknowledged and pointed out the novelty of Part (B). As 
detailed in the following, we have revised the manuscript to better analyze the results obtained 
by combining ON and OFF channels with respect to those for each single channel, presented 
in our previous preliminary works. 



 

Remarks to the Authors 

1 - A major chunk of the material in this paper (classified as part A in my summary) that spans 
everything in the Results section except for the last sub-section and all main figures except 
for Fig. 6 & 7 and parts of Fig. 5, have already been presented, discussed and proposed in 
other publications of the authors [1-2]. However, the authors present as if these are new results 
pertaining to this paper. For example, Fig. 1 of submission is taken from Fig. 1 of [2], Fig. 2 is 
the same as Fig. 1 of [1], Fig. 3 is the same as Fig. 2 of [1], Fig. 4 is the same as Fig. 4 of [2] 
and Fig. 5c is like Fig. 8 of [2]. The abstract, introduction, and discussion boast of already 
published work as contributions to this paper. Therefore, the only new result presented in this 
work is what is classified as part B in my summary. 

 

We agree with the reviewer that part of the material presented in this manuscript was already 
presented in the two cited conference proceedings [1] and [2], which indeed we have 
disclosed. We believe that the manuscript has significant added value, because it integrates 
in an organic and complete way the body of all the results, only partially covered in previous 
conference proceedings, and integrates them with additional novel contributions (i.e., the part 
B in the reviewer’s summary). Irrespective of our opinion, to address this issue we have 
substantially extended the new parts, and adapted the technical parts to better target the 
audience of Nature Communication, taking into account the valuable comment #3 of the 
reviewer. 
Accordingly, new sections have been added, technical details have been explained better, old 
figures 1,2,3,6 have been revised and enriched with new panels to be more clear and 
explicative, and finally a new figure 4 has been introduced to substitute Table 1. 

  

2 - Overall, the paper is poorly written and difficult to read. The contributions of the work in the 
introduction are very vaguely written, possibly due to the nominal amount of new work put 
forth. 

  

We thank the reviewer for pointing out these issues. We did a major revision of the text 
throughout, to improve the clarity of the approach and better highlight the contributions of the 
work. Specifically in the ‘Introduction’, the amount of new work has been underlined and 
valued (see also our reply to point 1). ] 

  

3-4 - The overall content of the paper is highly technical and specific, and in my opinion, its 
implications/contributions do not appeal to the general interdisciplinary audience of this 
journal. It is more suited to a more specific journal or conference like ISCAS, ICCV, ICONS, 
etc, that focuses on and welcomes such highly technical content. Since the content is so highly 
technical, each of the topics discussed in the results section could benefit significantly from a 
better writing flow, and detailed explanations either in the main text or the supplementary 
section. 



 

  

We thank the reviewer for having highlighted this point. We agree. Hence, we have revised 
the text throughout to make it more appealing to a general interdisciplinary audience (see also 
our responses to previous points). 

In particular, the new parts (highlighted in purple in the manuscript) make the revised 
manuscript much more different from the preceding conference papers (ISCAS and VISAPP). 

 

5 - The authors do not explain why both ON & OFF event firing rates are important. One can 
appreciate the importance of a complete set of oriented filters where each filter gathers 
information about the signal’s phase with reference to the filter's orientation and, therefore, the 
usefulness of equations 5-7.  

But it is unclear how equation 8, the key “push-pull” concept proposed by the authors, is 
helping/changing things for the better. 

  

We agree with the reviewer, indeed we devoted the original Figure 7d only to support this 
claim.  

To answer to this remark, and, in particular, to better clarify the role of equation 8, and thus 
the necessity of a push-pull mechanism, we have to consider that linearity is an essential 
property to define the phase of a signal. In order to demonstrate that our model V1 cells are 
capable of extracting phase of local contrast, we have first to demonstrate how we can gain 
linear weighting of signed contrast over the cells’ receptive fields, despite the high non-
linearities of their activation functions.  

To this end, at the beginning of subsection “Extraction of full harmonic content through …” we 
added a detailed analysis on how a push-pull mechanism of ON and OFF channels determines 
the neuron’s linear response to stimulus contrast. 

We report the new text here below in purple. 

In general, input-output characterization of visual RFs is based on the notion of contrast. 
Accordingly, we can represent the spatial image (i) as the combination of two components: 
one part is the average luminance of the stimulus (m), the second part is the variation of 
luminance about the mean, which defines the stimulus contrast (c): 

i=(1+c)m  

where c can be either positive or negative, and m≥0. 

In early stages of the visual system, for each contrast polarity channel, local changes of 
contrast in a cell's receptive field yield to changes of that cell rate of response (r) : 

\Delta  rON = rON – r0        \Delta rOFF = rOFF – r0, 



 

where r0 is the neuron's spontaneous firing rate that we can assume equal for both ON and 
OFF channels. In order to gain equivalent a linear summation response to a signed contrast 
pattern within the overall neuron's receptive field (composed of ON and OFF subregions), a 
push-pull mechanism is usually advocated [Tolhurst & Dean, 1990; Hirsch & Martinez, 2006; 
Jo et al., 2023], that collects positive (i.e., excitatory) contribution from relay cells of preferred 
polarity and negative (i.e., inhibitory) contribution from relay cells of opposite polarity. ON and 
OFF event detectors in the retina-like DVS camera cannot per se encode negative responses. 
Yet, assuming a push-pull configuration, events provided by DVS camera can be conceptually 
combined to obtain positive or negative changes of response on the basis of the sign of 
contrast. As a result, stimulating an ON neuron by a not appropriate contrast polarity results 
in a decrease of its response, due to inhibition from the corresponding OFF neuron, which, 
conversely, has received the appropriate stimulus in its RF: 

- \Delta rON  \stackrel{\rm def}{=} \Delta rOFF . 

In other words, we take the excitatory response of the OFF channel as the estimate of the 
inhibitory response of the ON channel, and the combined response can be written as: 

\Delta r = \Delta rON - \Delta rOFF =  rON -  rOFF . 

To prove the efficacy of the push-pull mechanism we can test the superposition property. 
Suppose we have two contrast stimuli $c_1>0$ and $c_2<0$. The response variations of the 
ON and OFF channels will be: 

\begin{equation} 

\Delta  rON  = h1 c1
+ + h2 c2

+ = h1 c1 + 0 = h1 c1 

  \Delta  rOFF  = h1 c1
- + h2 c2

- = 0 – h2 c2 = h2 |c2| 

respectively, where c+ = max{0,c} and c- = - min{0,c} and h1, h2 denote the values of the 
receptive field profile. By combining the two responses we obtain: 

\Delta r = \Delta  rON - \Delta  rOFF = h1 c1 - h2 |c2| =h1 c1  + h2 c2 

which proves the linearity of the response, provided we model as negative the weights of the 
OFF subregions of the receptive field. In this way, the receptive field properly acts as a linear 
filter by mapping a weighted sum of the signed input contrast of the stimulus to the neural 
response. 

In addition, we have conducted a comparative analysis on the accuracy and reliability of the 
phase obtained with the push-pull mechanism and without it (i.e., for the ON-only and OFF-
only conditions). 

Figures R3 and R4 here below show the results of such a comparison for the three stimulus 
gratings considered in Fig.6 of the original manuscript. For all the simulated conditions, the 
push-pull combination of the ON and OFF channels does not show any bias, thus resulting in 
a better estimate. 



 

 

k_s = 0.1 cpd 

 

k_s = 0.2 cpd 

 

k_s = 0.3cpd 

 

Figure R3: Comparative results of the phase estimate for different spatial frequencies of the 
stimulus grating and for single ON- and OFF- channels (left and right columns) and their 
push-pull combination (central column). In general, the estimate obtained by the push-pull 
configuration is more accurate than the corresponding estimates when a single channel is 
used. Red dashed lines represent the actual phase of the stimulus as a function of time, 
black thin lines represent the estimated phase, thick blue lines represent the phase errors. 

 



 

 

Figure R4: Comparative results of the error of phase estimation, and its reliability as a 
function of time, for different spatial frequencies of the stimulus grating (k_s=0.1, 0.2, and 
0.3 cpd), and for single ON- (light gray), OFF- channel (black), and their push-pull 
combination (purple). 

 

In the revised manuscript, we have included a graph with the comparative results only for the 
case in which the stimulus’ spatial frequency matched the peak frequency of the Gabor-like 
receptive field (i.e., k_s = 0.2cpd ≃ k_0), see new panel (d) of the new Fig.7. For the sake of 
clarity, the actual (i.e., ground truth) phase signal was also displayed in the plots as reference. 

In relation to that, in the ‘Methods’ section, we have included the methodology used for such 
a comparison: 

In order to analyze the advantages of the push-pull combination of ON and OFF channels, we 
computed the capacity of the recurrent network to provide an effective estimate (\phi_est) of 
the local phase of the input stimulus (\phi_act) in terms of accuracy and reliability. To this end, 
the phase error \Delta \phi(n,t) = \phi_est(n,t) – \phi_s(n,t) was directly computed in the 
complex plane by using the following identity: 

 \Delta \phi(n,t) = atan2(C_s(n,t)*S(n,t) - C(n,t)*S_s(n,t), C(n,t)*C_s(n,t) + S(n,t)*S_s(n,t)), 
where C(n,t) and S(n,t) are the responses of a quadrature pair of neurons with Gabor-like 
receptive fields centered in a fixed spatial position (for the sake of convenience, to minimize 
the border effect, we considered the center of the layer, i.e., n=0), whereas C_s(n,t) e S_s(n,t) 
are the actual quadrature components of the stimulus drifting grating s(n,t) characterized by a 
spatial frequency k_s: 

 s(n,t) = sin(k_s*n + \phi_s(n,t)) = sin(k_s*n)*cos(\phi s(n,t)) + cos(k_s*n)*sin(\phi_s(n,t)) = 
C_s(n,t) + j S_s(n,t). 



 

  

In this way, since the four-quadrant inverse tangent atan2 function returns values in the closed 
interval [–π, π], we avoided the attendant problem of phase unwrapping of the angle 
difference. The reliability of the phase estimate was obtained by the associated response 
energy associated response energy/amplitude C^2(n,t) + S^2(n,t). 

In the revised manuscript, we have also included a graph that shows, as violin plots, the 
distributions around the mean of the estimation errors of the phase of the drifting grating, for 
the case in which the stimulus’ spatial frequency matched the peak frequency of the Gabor-
like receptive field (i.e., k_s = 0.2cpd ≃ k_0), see Figure R5 here below and the new panel (d) 
of the new Fig.7. 

 

 

Figure R5: (Left) Comparison of the stimulus phase estimates for the ON-channel only 
(gray), the OFF-channel only (black), and their push-pull combination (purple). (Middle, 
Right) The distributions of the phase errors and phase estimate reliability for the three 
conditions considered. The minor bias in the error and the higher energy make the phase 
estimate by the push-pull configuration more accurate and reliable than those attainable 
by single channels. 

 

6 - Although the authors highlight through Fig. 7d that the response rate becomes steeper with 
the inclusion of the “push-pull” technique, it is unclear how that is happening by just reading 
the mathematical treatment presented. 

  

We have included a thorough mathematical treatment for justifying the linearity gained by the 
push-pull mechanism (see our response to previous point). 

If c(x) is a sinusoidal contrast pattern, c+(x) and c-(x) are its complementary half-wave rectified 
patterns. By combining in push-pull the rON and rOFF responses, and by modeling as negative 
the weights of OFF subregions of the RF h(x), we can gain a linear response to the full 
(signed) contrast pattern c(x). 

 



 

7 - A graph showing how the synaptic sparsity advantage of having an inhibitory connection 
would scale with respect to strictly feedforward connection-based Gabor filters for different 
filter sizes and # of sub-regions would be helpful. 

  

Following the suggestion of the Reviewer, we have substituted Table 1 with  the new Fig.4 of 
the revised manuscript (see also Figure R6 here below) that comparatively shows the number 
of interconnections required for the recursive and feedforward scheme, as the receptive field 
is scaled from 13x13 to 61x61 pixels, which also directly relate to the DyNAP chip area used.  

 

 

Figure R6: Comparison between recursive and feed-forward scheme in terms of required 
interconnections. 

The different curves show the synaptic sparsity advantage of the recurrent implementation of 
Gabor-like receptive fields (red curves) over strictly feed-forward ones (blue curves), and how 
it scales for different sizes and number of sub-regions. Dashed and solid red lines represent 
the number of total interconnections used for a recurrent implementation of a five sub-region 
receptive field when the width of the inhibitory cluster (\sigma_k) was equal to 0.8 and 1.2 deg, 
respectively, corresponding to a relative spatial frequency bandwidth β=0.8÷0.9  octaves; the 
size of the feed-forward kernel (\sigma_h) was kept fixed to 3.5 deg. Light and dark blue lines 
represent the number of interconnections required by equivalent strictly feed-forward receptive 
fields of three and five sub-regions, respectively. The inset details the numerical comparison 
for a five pixel size of the central sub-region. Rescaling was done by maintaining the same 
proportions among kernels and by flooring to the greatest odd integers for obtaining the 
resulting sizes in pixels. 

The advantage of the RNN over strictly feed-forward schemes is up to more than 3x for a five 
sub-region receptive field with a size of 21x21, and progressively increases with the rescaling 
of the filter's size. When the clusterization of the inhibitory kernel with respect to the size of 
the feed-forward (excitatory) one is chosen above an optimal value (e.g., \sigma_k=0.16*d 
and \sigma_h=0.7*d, where d is the distance of the lateral recurrent inhibition), Gabor-like 
receptive fields reach the highest possible number of sub-regions by acting on the strength of 
inhibition b, which can be increased up to the limit of network instability, with no impact on the 
number of the required synaptic interconnections. 



 

 We have included these considerations in the manuscript. 

 

8 - A description of the grating experiment in the supplementary would be good, clearly 
pointing out how the spatial frequency is defined and what the sinusoidal grating inputs looked 
like. For example, in the text corresponding to Fig. 6, the authors say they are varying the 
phase of the sinusoidal grating, but how exactly is that done in the input? 

As suggested by the Reviewer, we added a section in the Supplementary Notes in which we 
detailed the definition of the moving sinusoidal gratings used in the experiment, including also 
explicative figures (e.g., see figure R7 here below). The mathematical expression of the 
traveling grating has been also included in the ‘Methods’ section (see also point 5 above). 

 

 

Figure R7: a) Consecutive snapshots of a moving sinusoidal grating with a temporal 
frequency of 3 Hz captured at intervals of 0.2 s. The red dashed line highlights the same 
wavefront in all snapshots, whereas the green arrow indicates the direction of movement, 
perpendicular to the wavefront. b) Pairs of snapshots of moving sinusoidal gratings as 
reproduced on the screen and of the corresponding DVS recordings as visualized through 
the jAER interface. 
 

 

  

9 - Statements like “In this paper, we have demonstrated that recurrent clustered inhibition 
can be successfully used in SNNs, both in simulation and on mixed-signal analog/digital 
neuromorphic hardware, to economically implement highly structured visual receptive fields.” 
from the discussion section, would be more appropriate to omit as this has already been done 
before. 



 

We agree with the reviewer, for added clarity we have rephrased these statements and added 
appropriate references: 

In previous works [VISAPP20 and ISCAS20], we indicatively demonstrated that recurrent 
clustered inhibition can be successfully used in SNNs, both in simulation and on mixed-signal 
analog/digital neuromorphic hardware, to economically implement highly structured visual 
receptive fields. The results of this paper corroborate those preliminary findings, specifically 
extending the analysis of the linearity of the resulting receptive fields when using the effective 
firing rate of the retina (ON firing rate minus OFF firing rate) instead of both as a whole or 
separately. Such a push-pull combination of the complementary ON and OFF channels led to 
more reliable and unbiased representation of the harmonic content (see phase and energy in 
Fig.~6d) which would eventually lead to steeper tuning curves of the V1 neurons, resulting in 
better selectivity to the local orientation, spatial frequency and phase of the visual input. 

  

10 - Another statement: “The proposed solutions meet the requirements posed by an effective 
cortical-like representation in terms of channel redundancy (i.e., a large number of orientations 
and spatial frequencies), and in terms of information efficiency (i.e., highly structured basis 
functions).” in the discussion section is vague and unsubstantiated. Where have the 
requirements been laid down? The concept of having multiple banks of Gabor filters with 
different parameters has already been laid down in several studies in literature, both in the 
non-spiking domain and in the spiking domain, many by the authors themselves. So, this so-
called requirement is not met for the first time in this paper. 

  

We agree with the reviewer. Indeed, employing multiple banks of Gabor filters at the front-end 
of a bio-inspired vision system is not a novel concept per se [Daugman 1984; Watson, 1987; 
Riesenhuber & Poggio, 2000; Carandini et al., 2005; Dapello et al., 2020]. Several band-bass 
filters characterized by different orientations and bandwidths are usually employed in the linear 
stages of early vision for extracting compact and complete information about the local structure 
in the visual signal, on which to build higher-order image descriptors. However, the novelty 
here is in having proposed an economic implementation of nearly linear receptive fields that 
can be efficiently scaled with the kernel size. Although examples of hardware implementation 
of Gabor filters can be found in the literature [Shi 1999; Raffo et al., 1999; Cheung et al. 2005; 
Choi et al., 2005; Shimonomura & Yagi, 2008; Pauwels et al., 2012], to the best of our 
knowledge, this is the first time that linear Gabor-like receptive fields are implemented in 
hardware by a spiking neural network. 

We have modified the text in the ‘Discussion’ accordingly, and included therein these 
considerations. 

 

11 - The following statement in discussion: “We verified that the linearity assumption still holds 
despite the high non-linearity of spiking neurons. Additionally, we showed how it is possible to 
combine such feature detectors to generate Gabor-like filters with arbitrary phase values, 
effectively implementing a full harmonic representation of the image signal.” This is again 
misleading for the purposes of this paper, as this has already been shown in previous papers 



 

[1-2]. Similarly, the last statement of the discussion section should also be omitted: “This would 
pave the way to the implementation of complex bio-inspired networks for more demanding 
online visual tasks on neuromorphic hardware.” 

  

In the revised ‘Discussion’ we have deleted those statements, as suggested by the Reviewer. 

  

12 - In the phrase “but inescapably discard part of the signal.” mentioned in the introduction, 
it is unclear as to which part of the signal the authors are referring to. 

  

We agree that the statement is unclear. Accordingly, also considering that we get back on this 
concept further ahead in the ‘Introduction’, we have deleted the statement. 

 

13 - Please add a proper reference to back up the following statement: “To assess network’s 
performance and characterize the receptive fields of its output neurons, we used two 
dimensional (2D) sinusoidal drifting gratings as visual stimuli, widely used to investigate the 
response of cells in the primary visual cortex”. 

  

We have added the following references to support the statement: 

- Graham, N. Spatial-frequency channels in human vision: Detecting edges without edge 
detectors. In Harris, C. (ed.) Visual coding and adaptability, 215–262 (Psychology Press, New 
York, NY,1981. 

- Jones, J., Stepnoski, A. & Palmer, L. The two-dimensional spectral structure of simple receptive 
fields in cat striate cortex. J. Neurosci. 58, 1212–1232 (1987). 

- De Valois, R. & De Valois, K. Spatial vision (Oxford University Press, 1988). 

 

 14 - Fig. 3b should show the different values of the parameters d, sigma, and b used to obtain 
the tuning curves. The caption provides the range in which they are varied but not the steps 
used. 

  

The Reviewer is right, we have added the missing information in the figure caption. 

  

15 - The following passage from the sub-section labeled “Linearity test and feature tuning 
characterization” has redundant statements and can be shortened: “The best results, i.e., the 
narrowest tuning curves, are obtained when the size of the recurrent inhibitory clusters and 
their distance from the target neuron are both comparable to the width of the feed-forward 
excitatory kernel. More precisely, considering fixed parameters for the feed-forward kernel (in 
particular σh = 3.5, p = 1/3, and multiplicative weight of the feed-forward excitatory connections 



 

a = 103), the parameters that influence the effect of the recurrent clustered inhibition are the 
distance d between the target neuron and each of the inhibitory clusters, the spatial extension 
of the clusters and the multiplicative weight of the recurrent inhibitory connections b.” 

  

We agree with the reviewer. We have shortened the passage accordingly: 

The narrowest tuning curves are obtained when recurrent inhibitory connections cluster at a 
distance (d) comparable to the width of the feed-forward excitatory kernel (\sigma_h). Other 
parameters that play a key role in shaping the periodicity of the resulting receptive field profiles 
are the spatial extension of the clusters (\sigma_k) and the strength of the recurrent inhibitory 
connections (b). 

  

16 - For lines 170 to 179, the authors should add simulation results to support this statement 
or refer to work that has demonstrated this before. 

  

As suggested by the Reviewer, we added the results in the Supplementary Notes (see 
Supplementary Fig.3). 

  

17 - The supplementary figure reference in line 201 is incorrect. It should be S2. 

  

We thank the reviewer for having pointed it out. Yet, since we have removed that figure from 
the Supplementary Notes,  we have removed that reference in the manuscript, accordingly. 

  

18 - The phrase “substantially lower number of” in line 326 is qualitative and has to be 
quantified. From the numbers mentioned, I would not call it "substantial". 

  

We have removed the adverb ‘substantially’. See also response to point 7. 
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We would like to thank the Reviewers for the interesting comments, which helped us to 
improve the validity of the results, as well as the quality of the presentation. Reviewer’s 
comments are reported in RED, our responses in BLUE and in PURPLE we report here the 
changed text. The same text is also highlighted in PURPLE in the manuscript. 

Reviewer #3 

In this paper, the author proposed a recurrent snn model for describing a retinocortical layer 
mathematically. In addition, the author implemented the model by a neuromorphic hardware 
system comprising a Dynamic Vision Sensor that emulates the transient pathway of real 
retinas and a mixed-signal Dynamic Neuromorphic Asynchronous Processor with neurons and 
synapses. 

  

I have the following concerns for the technical quality of the submitted manuscript. 

  

 Remarks to the Authors 

1 - The recurrent SNN model seems that it comes from the previous publication largely, as the 
author mentioned in the manuscript. If so, the author needs to make it clear what novelty the 
submitted manuscript can show in terms of model equations, etc. 

  

According to the Reviewer’s comment, in the revised manuscript we have substantially 
extended the novel contributions, with respect to previous publications. As a whole, the revised 
manuscript presents, in an organic and complete way, the body of all the results, only partially 
covered in our previous conference papers, and integrates them with: 

(1) an additional modeling and analysis of the combination of ON and OFF channels provided 
by the DVS sensor; 



 

(2) a thorough mathematical treatment of the role of the push-pull mechanism on the 
generation of almost linear response to luminance contrast visual stimuli; 

(3) a detailed assessment of the accuracy and reliability of the local phase information 
extracted by a hypercolumn of V1 modeled neurons. 

Furthermore, we have: 

- modified the original Figure 2 of the manuscript by including top-view schemes of the 
feed-forward and the recurrent kernels for the different parameters’ settings 
considered in the work; 

- included in the same Figure two new panels (B and C) that pictorially show the 
interconnections of the recurrent scheme and those for the equivalent feedforward one; 

- included considerations about other metrics of comparison between the recursive and 
feedforward scheme, such as power consumption and DYNAP-SE chip area; 

- added a section in the Supplementary Note that details the definition of the moving 
sinusoidal gratings used in the experiment; 

- improved the readability of the text, particularly in the 'Introduction' and 'Discussion' 
sections. 

- added several missing important references to support statements, where necessary. 

  

2 - The main contribution of the paper is thought to be the neuromorphic hardware 
implementation that enables an economic realization of the retinocortical layer by combining 
the DVS camera and neuromorphic asynchronous processor with the emulation results. If so, 
the author needs to make it clear why the hardware implementation is more economic than 
the others, in addition to comparing the number of connections shown in Table 1. 

  

To make more complete the analysis, we have substituted Table 1 with the new Fig.4 of the 
revised manuscript that comparatively shows the number of interconnections required for the 
recursive and feedforward scheme, as the receptive field is scaled from 13x13 to 61x61 pixels, 
which also directly relate to the DyNAP chip area used.  

The advantage of the RNN over strictly feed-forward schemes is up to more than 3x for a five 
sub-region receptive field with a size of 21x21, and progressively increases with the rescaling 
of the filter's size.  

Furthermore, following the Reviewer’s suggestion, we have included in the manuscript a 
discussion of the power consumption of the recurrent network, providing an estimate for the 
21x21 hardware implementation. 

To calculate the power consumption of the neuron of the relay layer and of the central neuron 
of the V1 layer we considered the following equation, which approximates the power 
consumption of a silicon neuron on the DYNAP-SE including spike generation and routing as 
primitive operations [Risi et al., 2020]: 

    P_n=r_inp (E_spike + E_ pulse ) + r_out (E_en + E_br + RT · E_rt) 



 

where r_inp and r_out are the average input firing rate and average output firing rate, 
respectively; E_spike is the energy required to generate one spike, corresponding to 883 pJ; 
E_pulse is the energy required by the pulse extender circuit, corresponding to 324 pJ; E_en 
is the energy required to encode one spike and append destination, corresponding to 883 pJ; 
E_br is the energy required to broadcast one event to the same core, corresponding to 6.84 
nJ; E_rt is the energy required to route the event to a different core, corresponding to 360 pJ; 
RT is set to 1 if the spike is sent to a different core, and is set to 0 otherwise. 

(These details on the estimation are reported in section ‘Methods’ of the revised manuscript). 

The average estimated power consumption for a neuron of the relay layer and for the 
corresponding neuron of the V1 layer, when responding to the preferred stimulus at the highest 
temporal frequency, is 6.54 μJ and 446 nJ, respectively.  

However, a comparison with equivalent feed-forward networks was not possible, as, actually, 
they have not been implemented on the DYNAP-SE, and as the average number of spikes 
estimated by simulations significantly differ from those actually observed in hardware. 

Concerning the chip area used, the reduction of area for the recurrent network implementation 
with respect to the equivalent feed-forward one, is still of a factor of 3, when considering a five 
sub-region receptive field, along with the reduction of the required interconnections. 

We have included these considerations in the manuscript. 
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Manuscript title: Recurrent models of orientation selectivity enable robust early-vision 
processing in mixed-signal neuromorphic hardware 

Manuscript ID: NCOMMS-23-47095B 
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Content type: Article 
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Submitted in revised form on 8th July, 2024. Decision received on 15th August, 2024 

  

We would like to thank the Reviewers again for having acknowledged the improvements 
brought on the revised manuscript steered by their comments, and for the further observations, 
which helped us to better clarify the validity of the results, and their impact in the field of 
Neuromorphic Vision Processing. 

Reviewer #1 

Reviewer’s comments are reported in RED, our responses in BLUE and in PURPLE we report 
the changed text, which appears also highlighted in PURPLE in the revised manuscript, with 
respect to the first revision. New references, highlighted in bold,  are listed in progressive 
order at the end of this document, and appear with different numbers in the full bibliography 
of the revised manuscript. 

  

1.  The push-pull technique now makes sense. However, its impact on potential vision 
processing pipelines is still not clear. For example, the push-pull waveforms in Fig. 7 
of the main text seem to be in the center of the only-ON and only-OFF waveforms, but 
their difference does not seem to be significant. How much improvement in the overall 
classification accuracy of a full-fledged vision processor based on these Gabor filters 
will be due to such (arguably) minor improvements in phase errors brought about by 
the push-pull technique? 

We certainly agree with the reviewer that the accuracy of classification of the original images 
convolved with the proposed Gabor-like filter would be only marginally affected when 
considering the responses of the only-ON or only-OFF components with respect to the case 
of considering their push-pull combination. This because – generally speaking – image 
classification can well rely upon intrinsically 1D (i1D) properties, like edges and contours, 
which are often sufficient to obtain a compact and complete feature description that enables 
a similarity measure to be applied to the different samples of popular image dataset (e.g., N-
MNIST and N-Caltech101 [1], HOTS [2], MNIST_DVS [3], the event-based UCF-50 [4],  
Plane Dropping Dataset  [5]). 
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However, advancing the front-end stage of an image classification processor is not our goal. 
The effort due for implementing the proposed filtering stage can be appreciated only when 
one considers more complex machine vision problems. 

Actually, the advantage of the push-pull configuration (over single polarity, either ON or OFF) 
becomes prominent, not to say crucial, when we compare the efficacy and stability of the 
associated wavelet-based feature maps in reconstructing the 3D properties of the objects in 
the scene, or their relative motion. The difference can indeed be negligible for extracting i1D 
objects’ properties, like edges and contours, attributable to (sparse) local image energy peaks, 
disregarding phase information (but see [6]). This is not the case for unveiling intrinsically 2D 
(i2D) properties, like textures, which convey quantitative and dense information about the 
scene’s 3D structure, and require extracting precise relations among the phases of the various 
harmonics [7]. In particular, accurate phase detection depends on an ideal quadrature pair of 
bandpass filters to obtain the analytic signal. The dc sensitivity of even-symmetry filter 
components (arisen from the locality of the basis functions of the wavelet transform) is a well-
recognized issue, which we must deal with ([8] [9]), e.g. by correcting for, or constraining their 
shape [7]. The push-pull configuration automatically cancels the dc sensitivity, which 
otherwise would dramatically affect the reliability and stability of the local phase 
measurements and thus those of the derived visual features. 

To substantiate this statement, we refer to facts and evidence reported in the literature for 
classical, and neuromorphic computer vision. An actual benchmarking would require the 
design of large-scale cortical networks of spiking neurons for depth or motion perception, 
which evades the scope of the paper. 

In order to clarify this point (which indeed was not sufficiently discussed in the original 
manuscript), we have included: 

 Specific comments in the "Results" section on how to interpret the comparative 
assessment of the different local phase estimates in view of what discussed herewith 
above. 

The zero mean (i.e., zero dc) feature of the combined response, differently from the others, 
yields to almost unbiased and reliable phase estimates (see Fig. 7d leftmost panel). The 
phase error and energy violin plot distributions underline this conclusion, pointing out the 
overall higher efficiency of the push-pull response compared to those of the ON and OFF 
channels, separately. Certainly, these differences would have only negligible effect on the 
(eventual) classification accuracy achieved from the band-passed images obtained by 
convolving the original images with the three filters. This because, typically, image 
classification can well rely upon local image energy peaks, which are sufficient for 
characterizing the different samples of popular image dataset (e.g., N-MNIST and N-
Caltech101 [1], HOTS [2], MNIST_DVS [3], the event-based UCF-50 [4]) used for 
benchmarking. However, the advantage of implementing the proposed filtering stage in 
the push-pull configuration becomes prominent, and even crucial, when we compare the 
efficacy of the associated phase-based feature maps in more complex machine vision 
problems. Accurate phase detection depends on ideal quadrature pair of bandpass filters 
to obtain the analytic signal. The dc sensitivity of the real (symmetric) part of the Gabor 
kernel is therefore an issue, which we must deal with [8] [9], e.g. by correcting for, or 
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constraining their shape [7]. The push-pull configuration automatically cancels the dc 
sensitivity, which otherwise introduces a positive bias in the real part of the response that 
would affect the reliability and stability of local phase measurements and thus those of the 
derived visual features. 

It is worth noting that, although in principle the value of the phase associated to each 
orientation channel is correct, its confidence decreases as far as the symmetry axis of the 
image structure deviates from the orientation axis of the filter. We can thus state that the 
energy value of the associated wavelet-like transform is not isotropic, since it is not 
invariant under rotations of the signal. The isotropy of the representation is yet regained 
when one considers the whole set of oriented channels (i.e., the whole hypercolumn [31]). 

  

 A paragraph in the "Discussion" section to highlight the importance of stable feature 
extraction from the incoming visual signal. 

Discussion 

Neuromorphic sensing modules - Today’s neuromorphic systems represent a promising 
alternative to conventional von Neumann architectures for both understanding and 
reproducing the properties of biological sensory processing systems, as they are subject 
to similar constraints in terms of noise, variability, and parameter resolution [32]. 
Reproducing the dynamics of biological neural systems using subthreshold analog circuits 
and asynchronous digital ones make these systems ideal computational substrate for 
testing and validating hypotheses about models of sensory processing for a wide range of 
application domains [33, 14]. In addition, their real-time response properties allow us to 
test these models in closed-loop sensory-processing hardware setups and to get 
immediate feedback on the effect of different parameter settings. 

From pixels to features - Assuring sufficient resources to enable complex transformations 
- from pixels to features - and to implement the corresponding computational models for 
such transformations sets a specific challenge for such systems, being the amount of data 
and operations in visual processing intrinsically high. Indeed, front-end early vision 
modules have to construct high-dimensional quantitative representations of image 
properties, referable to local contrast variations across different orientations, and 
according to different spatial frequencies. Subsequent stages eventually combine these 
properties in various ways, to come up with categorical qualitative descriptors, in which 
information is used in a non-local way to formulate more global spatial and temporal 
predictions (e.g., see [34]). However, it is worth remarking that only rarely classical (i.e., 
frame-based) computational theories can be applied directly to event-based sensory data. 
More properly, the adopted solutions for object detection, pattern recognition, and scene 
property reconstruction rely upon algorithms and computational procedures that well 
conform to the peculiar properties of the sensory data representation. Considering 
specifically image classification tasks [2][10][11], intrinsically 1D properties, like edges 
and contours, are often sufficient to obtain a compact and complete feature description 
that enables a similarity measure to be applied to the different samples of popular image 
dataset. Other applications, like depth perception, optic flow, or simultaneous localization 
and mapping (SLAM), more decisively rely upon the timings of events [12][13][14]. 
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Although fully exploiting the time coding of spikes trains can be extremely efficient, we 
cannot disregard extracting the information conveyed by the spatial structure (i.e., the 
texture) of the luminance pattern, which depends on precise relations among the phases 
of the various harmonics [6] [7]. We must ensure that such information is not lost. The 
latter indeed plays a pivotal role in gaining dense feature maps potentially informative for 
several machine vision applications. Extracting stable spatial image structure requires 
local operations to regularize the information contained in spike trains. This can be done 
afterwards, on the result of the interpretation of the event stream (as mostly adopted by 
event-based machine vision algorithms, e.g., see [15]), or concurrently with picking-up 
sensory signals. Having such an early stage dedicated to the extraction of general-purpose 
regularized features brings about enormous advantages in terms of adaptability and 
versatility for compositionally building or learning a variety of higher-order visual 
descriptors. At a first level of abstraction, it is thus important that the rate coding model of 
network’s neuronal firing replicates the known encoding properties of the cells in the 
primary retinocortical pathway, according to a linear filtering model with appropriate 
kernels (i.e., receptive fields) [16]. It is well acknowledged that Gabor wavelets are a 
powerful tool to gain an efficient regularized representation of the information contained in 
frame-based visual signals, in terms of local amplitude, phase and orientation maps of the 
transformed signal. 

Progress beyond state-of-art - In previous works [9, 10], we indicatively demonstrated that 
recurrent clustered inhibition can be successfully used in SNNs, both in simulation and on 
mixed-signal analog/digital neuromorphic hardware, to economically implement highly 
structured Gabor-like RFs. The results of this paper corroborate those preliminary findings, 
specifically extending the analysis of the linearity of the resulting RFs when using the net 
firing rate of the retina (ON firing rate minus OFF firing rate) instead of both as a whole, or 
separately. Such a push-pull combination of the complementary ON and OFF channels 
led to more reliable and unbiased representation of the harmonic content (see phase and 
energy in Fig. 7d) which would eventually lead to steeper tuning curves of the V1 neurons, 
resulting in better selectivity to the local orientation, spatial frequency and phase of the 
visual input. Employing multiple banks of Gabor filters at the front-end of a bio-inspired 
vision system is not a novel concept per se [35] [36] [37] [38] [39]. Several band-bass filters 
characterized by different orientations and bandwidths are usually employed in the linear 
stages of early vision for extracting compact and complete information about the local 
structure in the visual signal, on which to build higher order image descriptors. However, 
the novelty here is in having proposed an economic  implementation of nearly linear RFs 
that can be efficiently scaled with the kernel size. Although examples of hardware 
implementation of Gabor filters can be found in the literature [40] [41] [42] [43] [44] [45], to 
the best of our knowledge, this is the first time that linear Gabor-like RFs are implemented 
in hardware by a spiking neural network. The resulting RFs are characterized by spatial 
profiles and by tuning curves that are typically sharper than the ones obtained using 
equivalent feed-forward schemes. Yet, RFs obtained through a recursive scheme use a 
lower number of interconnections than that required when using an exclusively feed-
forward approach. The advantage of the recurrent network over strictly feed-forward 
schemes is up to more than 3× for a five sub-region RF with a size of 21 × 21, and 
increases with the rescaling of the filter’s size. This is an important feature when dealing 
with the limitations in terms of available synaptic connections posed by neuromorphic 
processors. 
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In summary, the solution proposed in this work demonstrates that an early vision filtering 
stage can be implemented in mixed-signal neuromorphic hardware in a relatively 
economic way, with adequate accuracy and stability. Particularly, exploiting both ON and 
OFF channels – through their push-pull combinations – shows to be an appropriate 
approach to remove the undesired effect of dc component sensitivity (see Section 
“Results”), and thus obtain highly informative phase-based features. The implemented 
units act as multiple oriented bandpass frequency channels, well supporting a compact 
and reliable representation of position, orientation and phase of local image patches. As a 
whole, the resulting harmonic signal description provided by the proposed neuromorphic 
circuit could be potentially used for a complete characterization of the 2D local structure 
of the visual signal in terms of phase relationships from all the available oriented channels. 
The amplitude (i.e., energy) information can be used as an indicator for the likelihood of 
the presence of a certain structure, while the orientation of contrast transitions and their 
spatial symmetry (i.e., phase, [7] [17]) can be used as an attribute of the visual descriptor. 

   

2.  Also the authors provide information on the synaptic sparsity advantage of their 
technique but how much silicon area and energy (based on system level analysis) will 
be saved by using the sparse recurrent inhibition incorporated Gabor filter 
implementation compared to ones with only feedforward connections. How will the 
performance and hardware cost of such pipelines compare with other spike-based 
vision processing pipelines already studied in the literature? 

The number of interconnections of a feedforward network that can produce receptive fields 
comparable to those obtained with the proposed recurrent connectivity scheme is 
approximately 2.5 times higher (e.g., a feedforward network for a 7-pixel wide Gabor patch 
with 5 subregions requires 481 connections, while its recurrent equivalent requires 191 
connections). As a consequence, the number of wires required in an equivalent feedforward 
architecture is at least 2.5 times longer, assuming a best case scenario in which one 
interconnection requires just one unity wire element (i.e. a square metal layout block). In this 
case both area usage and power consumption would increase by at least a factor of 2.5. In 
practice, area is likely to increase significantly more (because VIAs need to be taken into 
account and additional wire lengths to optimize routing). The increase in power consumption 
will depend on the activity (i.e., voltage changes) on those wires. Assuming sparse activations, 
the factor of 2.5 is a good estimate. As, to the best of our knowledge, there are no other 
feedforward equivalent architectures present in the literature,  it is impossible to make 
comparisons with past designs. 

We have added these considerations in the "Results" section. 
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