Supplementary Materials

Realizing [High](https://scholar.google.com/citations?view_op=view_citation&hl=zh-CN&user=kWm0McEAAAAJ&citation_for_view=kWm0McEAAAAJ:F2VeH06lQh8C) Power Factor and Thermoelectric Performance in Band Engineered AgSbTe²

Yu Zhang, 1,2,§ Congcong Xing,1,2,§ Dongyang Wang,³ Aziz Genç,⁴ Seng Huat Lee,5,6 Cheng Chang,⁷ Zhi Li,⁸ Luyao Zheng,² Khak Ho Lim,⁹ Hangtian Zhu,2,10 Rabeya Bosry Smriti,2,11 Yu Liu,¹² Shaobo Cheng,³ Min Hong,¹³ Xiaolei Fan,1, 14 Zhiqiang Mao,5,6 Li-Dong Zhao,⁷ Andreu Cabot,15,16 Tiejun Zhu,1,17* Bed Poudel,² **

**Corresponding author*

Email: yzhangpeter@163.com (Y.Z.); zhutj@zju.edu.cn (T.Z); bup346@psu.edu (B.P.);

1 Institute of Wenzhou, Zhejiang University, Wenzhou 325006, China

²Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States

³Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450052, China

⁴Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK 5 2D Crystal Consortium, Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States

⁶Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States

7 School of Materials Science and Engineering, Beihang University, Beijing 100191, China ⁸Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States

9 Institute of Zhejiang University-Quzhou, Quzhou 324000, China

¹⁰Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

¹¹Department of Mechanical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States

¹²Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China

¹³Centre for Future Materials, and School of Engineering, University of Southern Queensland, Springfield Central, Queensland 4300, Australia

¹⁴Department of Chemical Engineering, School of Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom

¹⁵Catalonia Institute for Energy Research-IREC, Sant Adrià de Besòs, Barcelona 08930, Catalonia, Spain

¹⁶ICREA, Pg. Lluis Companys, 08010 Barcelona, Catalonia, Spain

¹⁷State Key Laboratory of Silicon and Advanced Semiconductor Materials, and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310058, China §These authors contributed equally to this work.

Supplementary Figure 1. XRD pattern of AgSb1-xSnxTe² pellets. XRD patterns of assynthesized $AgSb_{1-x}Sn_xTe₂$ pellets and the magnification of the XRD pattern showing a clear Ag2Te peak in the pristine AgSbTe² sample.

Supplementary Figure 2. Low temperature hall transport properties. Temperaturedependent carrier concentrations and mobility in pristine AgSbTe_2 and $\text{AgSb}_{0.94}\text{Sn}_{0.06}\text{Te}_2$.

Supplementary Figure 3. **Carrier density simulated from two-carrier model.** Representative field-dependent Hall resistivity (ρ_{xy}) , longitudinal resistivity (ρ_{xx}) and calculated concentration of electrons (n_e) and holes (n_h) by two band model at different temperatures. (A) pristine AgSbTe₂; (B) AgSb_{0.97}Sn_{0.03}Te₂ sample; (C) AgSb_{0.94}Sn_{0.06}Te₂ sample.

Given that $AgSbTe₂$ contains two types of carriers, the accurate concentrations (Figure S3) of electrons and holes requires two-carrier model to evaluate the impact of Sn doping on each carrier. The concentrations of both electrons and holes were estimated using two-carrier model and equation from previous works $1,2$:

$$
\sigma_{xy} = \frac{\rho_{xy}}{\rho_{xx}^2 + \rho_{xy}^2} = \left[\frac{-n_e \mu_e^2}{1 + (\mu_e B)^2} + \frac{n_h \mu_h^2}{1 + (\mu_h B)^2} \right] eB
$$

Where ρ_{xx} , ρ_{xy} and **B** are longitudinal resistivity, Hall resistivity and magnetic field strength measured from PPMS. In pristine AgSbTe2, the hole concentration (*nh*) presents consistently lower values than the electron concentration (n_e) when T>100 K, aligning with previous reports of negative Hall coefficients in AgSbTe₂ at room temperature.³ However, upon Sn doping, a

significant increase in hole concentration was observed, reaching 9×10^{19} cm⁻³ in AgSb_{0.97}Sn_{0.03}Te₂ sample, with all doped samples showing higher n_h than n_e .

Supplementary Figure 4. **Microstructure characterization.** Atomic resolution HAADF-STEM micrograph and FFT pattern of (a) pritstine $AgSbTe₂$ and (b) $AgSb_{0.94}Sn_{0.06}Te₂$ samples visualized along its [111]/[211] zone axis.

Supplementary Figure 5. Lorenz number and thermal conductivity calculation. Temperature dependence of (a) Lorenz number, L ; (b) electronic thermal conductivity (κ_e) ; (c) Subtraction of the electronic thermal conductivity from total thermal conductivity (κ_{tot} - κ_e) and (d) bipolar thermal conductivity (κ_{bi}) of polycrystalline AgSb_{1-x}Sn_xTe₂ samples.

Supplementary Figure 6. **TE performance comparison.** *zT* comparison with state-of-art TE materials across low-, middle- and high-temperature regimes.⁴⁻¹¹

Supplementary Figure 7. Maximum *zT* **comparison**. Comparison of the maximum figure of merit, zT_{max} , of AgSb_{0.94}Sn_{0.06}Te₂ with other reported AgSbTe₂-based materials.^{10,12-21}

Supplementary Figure 8. Reproducibility of TE properties on three AgSb0.94Sn0.06Te² samples. Temperature dependent TE performance of (a) electrical conductivity (σ) , (b) Seebeck coefficient (S) , (c) total thermal conductivity (k) and (d) TE figure of merit (zT) , the uncertainty of zT measurement is ~20% as indicated by error bar.

Supplementary Figure 9. Reversibility of TE properties of AgSb0.94Sn0.06Te² with three heating-cooling cycles. Temperature-dependent TE performance: (a) electrical conductivity (σ) , (b) Seebeck coefficient (*S*), (c) total thermal conductivity (κ) and (d) TE figure of merit (zT), the uncertainty of zT measurement is \sim 20% as indicated by error bar.

Supplementary Figure 10. Thermoelectric properties of n-leg Yb0.25Co3.75Fe0.25Sb12. TE properties of Yb_{0.25}Co_{3.75}Fe_{0.25}Sb₁₂ skutterudite woking as a n-leg. Temperature-dependent TE performance: (a) electrical conductivity (σ) , (b) Seebeck coefficient (*S*), (c) total thermal conductivity (k) and (d) TE figure of merit (zT) .

Supplementary Figure 11. Power generation test. (a) Schematic diagram of the unicouple measurement and (b) photograph of the fabricated device and the power generation measurement setup.

Supplementary Figure 12. Cyclic performance of the unicouple device. (a) Resistance; (b) Open circuit voltage (*Voc*); (c) heat flow (*Qout*); (d) maximum output power (*Pmax)* as a function of *ΔT*.

Supplementary Figure 13. Contact resistance measurement. The schematic diagram of home-made four-probe contact resistance measurement system and the contact resistance plots of $AgSb_{0.94}Sn_{0.06}Te_2$ leg.

Supplementary Figure 14. Power density of unicouple devices. (a) Current-dependent power density of fabricated $AgSb_{0.94}Sn_{0.06}Te_2$ unicouple module. (b) Power density comparison of state-of-art AgSbTe₂ based devices^{1,16,19-22}.

Supplementary Figure 15. **COMSOL Multiphysics Simulation.** (a) Schematic illustration of the simulated unicouple device made of $AgSb_{0.94}Sn_{0.06}Te_2$ leg and $Yb_{0.25}Co_{3.75}Fe_{0.25}Sb_{12}$ leg. (b) Simulated current-dependent conversion efficiency (η_{max}) and (c) output power (P_{max}) of the unicouple. (d) Simulated maximum power density and (e) open circuit voltage as a function of *ΔT*.

Supplementary Figure 15-2. **Data comparison.** Comparison of experimental data (red color) with the data from COMSOL Multiphysics simulation software (orange color) on the unicouple device made of $AgSb_{0.94}Sn_{0.06}Te_2$ leg and $Yb_{0.25}Co_{3.75}Fe_{0.25}Sb_{12}$ leg: (a) open-circuit voltage, V_{oc} ; (b) internal resistance; (c) power output, P_{max} ; (d) power density; (e) heat flow, Q_{in} and (f) efficiency, *max*.

Supplementary Figure 16. Stability Assessment. XRD patterns of (a) pristine AgSbTe₂ and (b) AgSb_{0.94}Sn_{0.06}Te₂ samples before and after annealing in argon atmosphere at 673 K for 72 hours. (c) Cyclic test on the unicouple device after thermal cycling between 373 K and 673 K for ten cycles.

Supplementary Figure 17. **Mechanical Properties.** Comparisons on the Vickers hardness for AgSbTe₂ and AgSb_{0.94}Sn_{0.06}Te₂ with several typical TE materials. The Vickers hardness data are taken from references.²³⁻²⁶

Supplementary Figure 18. **Carrier transport properties in pristine AgSbTe2.** (a) Hall carrier concentration and (b) mobility of at temperatures 300-600 K in undoped AgSbTe2.

Supplementary Table 1. Comparison of carrier density and mobility of AgSbTe₂ and AgSb₁. ^xSnxTe2 samples at room temperature.

Supplementary Table 2. Density of AgSbTe₂ and AgSb_{1-x}Sn_xTe₂ samples

Sample	Density $(g/cm3)$	Relative density
AgSbTe ₂	6.85	96.1 %
$AgSb_{0.97}Sn_{0.03}Te_2$	6.81	95.5 %
$AgSb_{0.94}Sn_{0.06}Te_2$	6.87	96.3 %
$AgSb0.9Sn0.1Te2$	6.89	96.7 %

References

- 1 Zhang, K. *et al.* Dual Alloying Enables High Thermoelectric Performance in AgSbTe₂ by Manipulating Carrier Transport Behavior. *Adv. Funct. Mater.* 2400679 (2024).
- 2 Pan, Y. *et al.* Ultrahigh transverse thermoelectric power factor in flexible Weyl semimetal WTe2. *Nat. Commun.* **13**, 3909 (2022).
- 3 Du, B., Li, H., Xu, J., Tang, X. & Uher, C. Enhanced figure-of-merit in Se-doped p-type AgSbTe² thermoelectric compound. *Chem. Mater.* **22**, 5521-5527 (2010).
- 4 Kim, S. I. *et al.* Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics. *Science* **348**, 109-114 (2015).
- 5 Zhou, C. *et al.* Polycrystalline SnSe with a thermoelectric figure of merit greater than the single crystal. *Nat. Mater.* **20**, 1378-1384 (2021).
- 6 Jiang, Y. *et al.* Evolution of defect structures leading to high ZT in GeTe-based thermoelectric materials. *Nat. Commun.* **13**, 6087 (2022).
- 7 Zong, P.-a. *et al.* Construction of a 3D-rGO network-wrapping architecture in a Yb_yCo₄Sb₁₂/rGO composite for enhancing the thermoelectric performance. *J. Mater. Chem.* **3**, 8643-8649 (2015).
- 8 Tan, G. *et al.* Non-equilibrium processing leads to record high thermoelectric figure of merit in PbTe-SrTe. *Nat. Commun.* **7**, 12167 (2016).
- 9 Hu, H. *et al.* Highly stabilized and efficient thermoelectric copper selenide. *Nat. Mater.* **23**, 527- 534 (2024).
- 10 Roychowdhury, S. *et al.* Enhanced atomic ordering leads to high thermoelectric performance in AgSbTe2. *Science* **371**, 722-727 (2021).
- 11 Ghosh, S. *et al.* High-entropy-driven half-Heusler alloys boost thermoelectric performance. *Joule* (2024).
- 12 Du, R. *et al.* Enhanced thermoelectric performance of Mg-doped AgSbTe² by inhibiting the formation of Ag2Te. *ACS Appl. Mater. Interfaces.* **15**, 9508-9516 (2023).
- 13 Cao, J. *et al.* Non-equilibrium strategy for enhancing thermoelectric properties and improving stability of AgSbTe2. *Nano Energy* **107**, 108118 (2023).
- 14 Lee, J. K. *et al.* Enhanced thermoelectric properties of AgSbTe₂ obtained by controlling heterophases with Ce doping. *Sci. Rep.* **7**, 4496 (2017).
- 15 Kim, J. H. *et al.* Enhancement of Phase Stability and Thermoelectric Performance of Meta-Stable AgSbTe2 by Thermal Cycling Process. *Adv. Funct. Mater.* 2404886 (2024).
- 16 Chen, B. C., Wang, K. K. & Wu, H. J. Cation Modulation in AgSbTe₂ Realizes Carrier Optimization, Defect Engineering, and a 7% Single‐Leg Thermoelectric Efficiency. *Small*, 2401723 (2024).
- 17 Ganesan, P. *et al.* Carrier optimization and reduced thermal conductivity leading to enhanced thermoelectric performance in (Mg, S) co-doped AgSbTe2. *Mater. Today Phys.* **42**, 101358 (2024).
- 18 Hong, M. *et al.* Achieving zT>2 in p-type AgSbTe_{2-x}Se_x alloys via exploring the extra light valence band and introducing dense stacking faults. *Adv. Energy Mater.* **8**, 1702333 (2018).
- 19 Pathak, R. *et al.* Vacancy controlled nanoscale cation ordering leads to high thermoelectric performance. *Energy Environ. Sci.* **16**, 3110-3118 (2023).
- 20 Taneja, V. *et al.* High Thermoelectric Performance in Phonon-Glass Electron-Crystal Like AgSbTe2. *Adv. Mater.* 2307058 (2024).
- 21 Bhui, A. *et al.* Hg Doping Induced Reduction in Structural Disorder Enhances the Thermoelectric Performance in AgSbTe2. *J. Am. Chem. Soc.* **145**, 25392-25400 (2023).
- 22 Zhang, Y. *et al.* Defect-engineering-stabilized AgSbTe₂ with high thermoelectric performance. *Adv. Mater.* **35**, 2208994 (2023).
- 23 Wu, Y. *et al.* High-performance and stable AgSbTe₂-based thermoelectric materials for near room temperature applications. *J Materiomics.* **8**, 1095-1103 (2022).
- 24 Perumal, S., Roychowdhury, S. & Biswas, K. Reduction of thermal conductivity through nanostructuring enhances the thermoelectric figure of merit in Ge_{1-x}Bi_xTe. *Inorg. Chem. Front.* **3**, 125-132 (2016).
- 25 Wang, D.-Z. *et al.* Simultaneously achieving high ZT and mechanical hardness in highly alloyed GeTe with symmetric nanodomains. *J. Chem. Eng.* **441**, 136131 (2022).
- 26 Dahal, T. *et al.* Thermoelectric and mechanical properties on misch metal filled p-type

skutterudites Mm0.9Fe4-xCoxSb12. *J. Appl. Phys.* **117** (2015).