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Supplementary Figure 1. XRD pattern of AgSb1-xSnxTe2 pellets. XRD patterns of as-

synthesized AgSb1-xSnxTe2 pellets and the magnification of the XRD pattern showing a clear 

Ag2Te peak in the pristine AgSbTe2 sample. 

 

 

Supplementary Figure 2. Low temperature hall transport properties. Temperature-

dependent carrier concentrations and mobility in pristine AgSbTe2 and AgSb0.94Sn0.06Te2.  
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Supplementary Figure 3. Carrier density simulated from two-carrier model. 

Representative field-dependent Hall resistivity (𝜌xy), longitudinal resistivity (𝜌xx) and  

calculated concentration of electrons (ne) and holes (nh) by two band model at different 

temperatures. (A) pristine AgSbTe2; (B) AgSb0.97Sn0.03Te2 sample; (C) AgSb0.94Sn0.06Te2 

sample. 

 

Given that AgSbTe2 contains two types of carriers, the accurate concentrations (Figure S3) of 

electrons and holes requires two-carrier model to evaluate the impact of Sn doping on each 

carrier. The concentrations of both electrons and holes were estimated using two-carrier model 

and equation from previous works1,2: 

𝑥𝑦 =

𝑥𝑦


𝑥𝑥
2 + 

𝑥𝑦
2

= [
−𝑛𝑒µ𝑒

2

1 + (µ𝑒𝐵)
2
+

𝑛ℎµℎ
2

1 + (µℎ𝐵)
2
] 𝑒𝐁 

 

Where 
𝑥𝑥

, 
𝑥𝑦

 and B are longitudinal resistivity, Hall resistivity and magnetic field strength 

measured from PPMS. In pristine AgSbTe2, the hole concentration (nh) presents consistently 

lower values than the electron concentration (ne) when T>100 K, aligning with previous reports 

of negative Hall coefficients in AgSbTe2 at room temperature.3 However, upon Sn doping, a 
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significant increase in hole concentration was observed, reaching 9×1019 cm-3 in 

AgSb0.97Sn0.03Te2 sample, with all doped samples showing higher nh than ne. 

 

 

Supplementary Figure 4. Microstructure characterization. Atomic resolution HAADF-

STEM micrograph and FFT pattern of (a) pritstine AgSbTe2 and (b) AgSb0.94Sn0.06Te2 samples 

visualized along its [111]/[211] zone axis. 
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Supplementary Figure 5. Lorenz number and thermal conductivity calculation. 

Temperature dependence of (a) Lorenz number, L; (b) electronic thermal conductivity (e); (c) 

Subtraction of the electronic thermal conductivity from total thermal conductivity (tot-e) and 

(d) bipolar thermal conductivity (bi) of polycrystalline AgSb1-xSnxTe2 samples. 
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Supplementary Figure 6. TE performance comparison. zT comparison with state-of-art TE 

materials across low-, middle- and high-temperature regimes.4-11 

 

 

Supplementary Figure 7. Maximum zT comparison. Comparison of the maximum figure of 

merit, zTmax, of AgSb0.94Sn0.06Te2 with other reported AgSbTe2-based materials.10,12-21 
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Supplementary Figure 8. Reproducibility of TE properties on three AgSb0.94Sn0.06Te2 

samples. Temperature dependent TE performance of (a) electrical conductivity (), (b) 

Seebeck coefficient (S), (c) total thermal conductivity () and (d) TE figure of merit (zT), the 

uncertainty of zT measurement is ~20% as indicated by error bar. 

300 400 500 600 700
0

1

2

3

4

5

 Sample 3

 Sample 2

 Sample 1

 

 


 (

x
1

0
4
 S

/m
)

T(K)

300 400 500 600 700

180

240

300

360

420

 

 

S
 (

m
V

/K
)

T (K)

300 400 500 600 700
0.0

0.2

0.4

0.6

0.8

1.0

 

 

T (K)

κ
 (

W
m

-1
K

-1
)

300 400 500 600 700
0.0

0.5

1.0

1.5

2.0

2.5

3.0

T (K)

 

 

z
T

a b

c d



  

S9 

 

 

Supplementary Figure 9. Reversibility of TE properties of AgSb0.94Sn0.06Te2 with three 

heating-cooling cycles. Temperature-dependent TE performance: (a) electrical conductivity 

(), (b) Seebeck coefficient (S), (c) total thermal conductivity () and (d) TE figure of merit 

(zT), the uncertainty of zT measurement is ~20% as indicated by error bar. 

  

300 400 500 600 700

180

240

300

360

420

 

 

S
 (

m
V

/K
)

T (K)

300 400 500 600 700
0.2

0.4

0.6

0.8

1.0

 

 

T (K)


 (

W
m

-1
K

-1
)

300 400 500 600 700
0

1

2

3

4

5  3rd cycle

 2nd cycle

 1st cycle

 

 


 (

x
1

0
4
 S

/m
)

T(K)

300 400 500 600 700
0.0

0.5

1.0

1.5

2.0

2.5

3.0

T (K)

 

 

z
T

a b

c d



  

S10 

 

 

Supplementary Figure 10. Thermoelectric properties of n-leg Yb0.25Co3.75Fe0.25Sb12.  TE 

properties of Yb0.25Co3.75Fe0.25Sb12 skutterudite woking as a n-leg. Temperature-dependent TE 

performance: (a) electrical conductivity (), (b) Seebeck coefficient (S), (c) total thermal 

conductivity () and (d) TE figure of merit (zT).  
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Supplementary Figure 11. Power generation test. (a) Schematic diagram of the unicouple 

measurement and (b) photograph of the fabricated device and the power generation 

measurement setup. 

 

Supplementary Figure 12. Cyclic performance of the unicouple device. (a) Resistance; (b) 

Open circuit voltage (Voc); (c) heat flow (Qout); (d) maximum output power (Pmax) as a function 

of ΔT. 
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Supplementary Figure 13. Contact resistance measurement. The schematic diagram of 

home-made four-probe contact resistance measurement system and the contact resistance plots 

of AgSb0.94Sn0.06Te2 leg. 

 

 
Supplementary Figure 14. Power density of unicouple devices. (a) Current-dependent power 

density of fabricated AgSb0.94Sn0.06Te2 unicouple module. (b) Power density comparison of 

state-of-art AgSbTe2 based devices1,16,19-22. 
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Supplementary Figure 15. COMSOL Multiphysics Simulation. (a) Schematic illustration 

of the simulated unicouple device made of AgSb0.94Sn0.06Te2 leg and Yb0.25Co3.75Fe0.25Sb12 leg. 

(b) Simulated current-dependent conversion efficiency (𝜂max) and (c) output power (Pmax) of the 

unicouple. (d) Simulated maximum power density and (e) open circuit voltage as a function of 

ΔT.   

 
Supplementary Figure 15-2. Data comparison. Comparison of experimental data (red color) 

with the data from COMSOL Multiphysics simulation software (orange color) on the unicouple 

device made of AgSb0.94Sn0.06Te2 leg  and Yb0.25Co3.75Fe0.25Sb12 leg: (a) open-circuit voltage, 

Voc; (b) internal resistance; (c) power output, Pmax; (d) power density; (e) heat flow, Qin and (f) 

efficiency, max. 

0 100 200 300 400
0.0

0.3

0.6

0.9

1.2

1.5

 

 

DT (K)

P
o

w
e

r 
D

e
n

s
it
y

 (
W

.c
m

-2
)

100 200 300 400
0

30

60

90

120

150

180

V
o
c
 (

m
V

)

DT

0 1 2 3 4
0

3

6

9

12

15

η
 （

%
）

I (A)

 DT=370K

 DT=350K

 DT=300K

 DT=250K

 DT=180K

 DT=80K

0 1 2 3 4
0

40

80

120

160

P
 （

m
W
）

I (A)
np

Conductive metal

Ceramic plate

a

b c

d e

100 200 300 400

3

6

9

12

DT


m

a
x
 (

%
)

100 200 300 400
0

30

60

90

120

150

180

P
m

a
x
 (

m
W

)

DT
100 200 300 400

0

30

60

90

120

150

180

V
o
c
 (

m
V

)

DT

100 200 300 400
0.0

0.3

0.6

0.9

1.2

1.5

Q
in
 (

W
)

DT

100 200 300 400
0

20

40

60

80

 Simulated data

DT

 Experimental data

R
e

s
is

te
n

c
e

 (
m

W
)

100 200 300 400
0.0

0.3

0.6

0.9

1.2

1.5

DT

P
o

w
e

r 
D

e
n

s
it
y

 (
W

.c
m

-2
)

a b c

d e f



  

S14 

 

 

 

 

Supplementary Figure 16. Stability Assessment. XRD patterns of (a) pristine AgSbTe2 and 

(b) AgSb0.94Sn0.06Te2 samples before and after annealing in argon atmosphere at 673 K for 72 

hours. (c) Cyclic test on the unicouple device after thermal cycling between 373 K and 673 K 

for ten cycles.  

 

 
Supplementary Figure 17. Mechanical Properties. Comparisons on the Vickers hardness for 

AgSbTe2 and AgSb0.94Sn0.06Te2 with several typical TE materials. The Vickers hardness data 

are taken from references.23-26 
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Supplementary Figure 18. Carrier transport properties in pristine AgSbTe2. (a) Hall 

carrier concentration and (b) mobility of at temperatures 300-600 K in undoped AgSbTe2. 
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Supplementary Table 1. Comparison of carrier density and mobility of AgSbTe2 and AgSb1-

xSnxTe2 samples at room temperature. 

 

Sample Charger carrier density (nH, 

cm-3) 

Charger carrier mobility 

(µH, cm2/Vs) 

AgSbTe2 1.2 × 1018 288.0 

AgSb0.97Sn0.03Te2 3.9 × 1019 38.9 

AgSb0.94Sn0.06Te2 2.0 × 1019 77.3 

AgSb0.9Sn0.1Te2 3.5 × 1019 31.0 

 

 

 

 

Supplementary Table 2. Density of AgSbTe2 and AgSb1-xSnxTe2 samples 

 

Sample Density (g/cm3) Relative density 

AgSbTe2 6.85 96.1 % 

AgSb0.97Sn0.03Te2 6.81 95.5 % 

AgSb0.94Sn0.06Te2 6.87 96.3 % 

AgSb0.9Sn0.1Te2 6.89 96.7 % 
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