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Supplementary Note 1. Comparison between SCNN and on-chip snapshot 

hyperspectral imaging. 

On-ship snapshot spectral imaging (SSI) strategy needs to design a universal SSI 

chip for arbitrary spectrum reconstruction. It is based on compressive sensing theory. 

Therefore, SSI usually needs dozens to hundreds of different optical filters such as 

metasurface or Fabry-Pérot structures to get more compressive measurements and thus 

obtain higher spectrum reconstruction precision. Its applications focus on measuring 

spectra.  

Take face anti-spoofing (FAS) as an example. SCNN is much more effective and 

practical. The comparison between our previous SSI-based method1,2 and SCNN are 

listed below. 

Supplementary Table 1: Comparison between SSI-based and SCNN-based FAS 

 SSI1,2  SCNN 

Number of different metasurfaces 49~400 9 

Spatial resolution (pixels) 5 × 104 𝟐𝟐.𝟏𝟏𝟏𝟏 × 𝟏𝟏𝟏𝟏𝟓𝟓 

Frames per second (fps) <0.1 >10 

FAS accuracy (%) ~95% ~99% 

Spectrum reconstruction √ × 

Pixel-level real-time sensing × √ 

 

SCNN aims at designing an application-oriented chip for real-world computer 

vision tasks based on optical neural network (ONN). It provides an in-sensor computing 

and non-reconstruction spectral imaging method for the final target of the downstream 

task. SCNN can use minimal metasurface units by just extracting the spectral features 

for specific applications. This provides an ONN-based approach for hyperspectral 

sensing tasks, effectively avoiding the need for as many metasurface units as possible 

for high precision spectral reconstruction. Further, fewer kernels enable higher feature 

compression capability, higher spatial resolution, and extremely lower computing costs 
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for ENLs for the ONN with an optoelectronic framework. Generally, SSI systems need 

massive computing resources to complete the reconstruction procedure. Powered by 

modern artificial neural network technics and high-performance computing devices 

such as GPU, SSI systems are barely to achieve video-rate3,4. However, SCNN can 

reach video-rate easily even on a common laptop CPU, which empowers edge 

computing for terminal devices with limited computing capabilities. 

 

  



4 

 

Supplementary Note 2. Computing speed of optical convolutional layer. 

The speed of analog computing cannot be simply quantified by operations per 

second (OPS). However, for a comparison with digital computing, we provide a method 

for calculating the equivalent OPS of our analog OCL based on the properties of our 

device. Notably, the computing speed is mainly limited by the pixels and the exposure 

time of the CMOS image sensor (CIS).  

Considering a convolutional kernel of shape 𝑛𝑛 × 𝑛𝑛 × 𝐶𝐶, at each spatial location, 

the kernel will perform 𝑛𝑛2 dot-product operations and 𝑛𝑛2 summing operations. Each 

dot-product operation requires 𝐶𝐶 multiplications and 𝐶𝐶 − 1 summing operations. In 

all, we need 𝑛𝑛2(2𝐶𝐶 − 1) + 𝑛𝑛2 = 2𝑛𝑛2𝐶𝐶  operations. The final summing of the dot-

product results only accounts for 𝑛𝑛2

2𝑛𝑛2𝐶𝐶
= 1

2𝐶𝐶
 of the computing burden. As 𝐶𝐶 is usually 

a large number, the computing burden of the summing of the dot-product results can be 

neglected. Moreover, this summing operation can also be completed by binning during 

the readout process of the image sensor. Therefore, we only take operations performed 

by optical computing into account. 

For each pixel combined with spectral filter, assuming that the number of spectral 

sampling points is 𝐶𝐶, exposure time is 𝑇𝑇, then it can perform 𝐶𝐶 multiply operations 

and 𝐶𝐶 − 1 additive operations, resulting in the computing speed of (𝐶𝐶 + 𝐶𝐶 − 1)/𝑇𝑇 ≈

2𝐶𝐶/𝑇𝑇. For an OCL with a spatial resolution of 𝑁𝑁 pixels, the computational speed of 

the entire OCL can be calculated as follows: 

𝑠𝑠 = 𝑁𝑁 ∙
2𝐶𝐶
𝑇𝑇

=
2𝑁𝑁𝐶𝐶
𝑇𝑇

 

In previous works, hyperspectral sensing with 601 sampling points (from 

450~750nm at 0.5nm intervals) is realized using only 25 spectral filters1,5. That is, the 

compression rate (CR) is about 4.16%. Other works, such as Ref. 4 (CR=5%) and Ref. 

11 (CR=1%~10%) have also illustrated that similar compression rates can effectively 

reserve the spatial and spectral features. To further study the impact of CR in 

experiments, we test the liveness detection performance under different CRs using a 

snapshot hyperspectral camera with spectral filters of as many as 400, which is 
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developed in our previous works (Ref. 1). The camera is deployed to capture spectral 

pixels of live human skin and spoof masks. We adjust the CR by changing the number 

of spectral filters valid in one spectral pixel. Then, we utilize the support vector machine 

(SVM) algorithm to perform classification. The classification accuracy is reported in 

Supplementary Fig. 1. Under the CR of 4.16%, we can still realize a single-pixel 

classification accuracy of 91.2% by SVM. The accuracy of 91.2% is close to the 

accuracy of 96.2% shown in Fig. 2e of our manuscript, we consider that this little 

difference lies in that our previous camera is not specially optimized for liveness 

detection and the performance of a single-layer SVM is not as good as that of a multi-

layer DNN demonstrated in Fig. 2c. 

 

Supplementary Fig. 1. The liveness detection accuracy under different CRs.  
 

Under this compression rate, using 9 spectral filters, the sampling points in the 

spectral dimension is about 216 ( 𝐶𝐶 = 216 ). In our implementation, the optical 

convolutional layer (OCL) has nine convolutional kernels of size 1 and stride 1. For the 

metasurface-based SCNN, the 3D raw data cube of the natural images has 160×122 

superpixels (480 × 366 pixels). The CIS used in our experiment was a Thorlabs 

CS235MU equipped with a Sony IMX249 sensor. The proposed OCL will complete the 

computing once the CIS has completed the exposure. The computing itself is completed 

before the data readout. Thus, the computing speed of OCL is only determined by the 
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exposure time. The minimum exposure time is 0.034 𝑚𝑚 . Therefore, 𝑁𝑁 = 480 ×

366,𝐶𝐶 = 216,𝑇𝑇 = 0.034𝑚𝑚𝑠𝑠, then the theoretical maximum computing speed of the 

OCL is about 2.2 TOPS. However, from the perspective of the whole system we have 

implemented, the cost of data readout and transfer should be considered. For practical 

applications of real-world vision tasks, it usually does not require a particularly high 

frame rate at the whole system level. Thus, the OCL has an adaptive computing speed 

based on the imaging speed of the CIS. Accordingly, the maximum full-pixel (480×366) 

frame rate achieved on our laptop computer (Thinkpad X1) is 116.8 frames per second 

(FPS). In this way, 𝑇𝑇 = 8.65𝑚𝑚𝑠𝑠 and the computing speed of OCL is reduced to be 8.7 

GOPS. It is worth noting that the computing speed of OCL only depends on the imaging 

speed of the CIS because the OCL performs in-sensor computing. The OCL is designed 

for real-world vision tasks and the bottleneck stays in the vision sensor itself. No matter 

how fast the imaging speed is, the OCL can ensure that the computing is completed 

once an image is captured. In other words, the faster the camera captures, the faster the 

OCL computes, so that the OCL can always meet the computing requirements of real-

world tasks. Moreover, in our implemented system, the frame rate of 116.8 FPS is 

already sufficient to complete most real-world computer vision tasks and provide 

spectral sensing abilities for edge devices.  

For the pigment-based SCNN, it has much higher integration and more spatial 

pixels. The 3D raw data cube of the natural images has 400×533 superpixels. If we 

process the raw hyperspectral image of 400×533×216 on electrical computing platform, 

we need about 176MB storage (stored in 32-bit floating point). The minimum exposure 

time is 0.027𝑚𝑚𝑠𝑠 . Therefore, 𝑁𝑁 = 1200 × 1098,𝐶𝐶 = 216,𝑇𝑇 = 0.027𝑚𝑚𝑠𝑠 , then the 

theoretical maximum computing speed of the OCL is about 21.0 TOPS and the OCL 

can reduce the storage requirement to 7.3MB. Similarly, limited by the sensor readout 

time and USB 3.0 transmission speed, the maximum full-pixel (1200×1098) frame rate 

achieved on our laptop computer (Thinkpad X1) is 30.2 FPS and the average computing 

speed of OCL is calculated to be 17.2 GOPS. The SCNN provides a simple but highly 
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effective way to sense and process hyperspectral images for various portable terminals. 

Notably, the pixel size of pigment-based SCNN is only 1.75 × 1.75𝜇𝜇𝑚𝑚, resulting in 

the computing density of about 5.3 TOPS/mm2. Moreover, the exposure time of the CIS 

is relatively low (sampling rate is about 37 kHz) compared with high-speed 

photodetector (sampling rate can even exceed 100 GHz). If we replace the CIS with 

high-speed PD array, there is still great potential for improvement in computing speed. 
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Supplementary Note 3. Gradient-based metasurface topology optimization 

(GMTO) algorithm. 

 

We first adopted freeform-shaped meta-atom metasurfaces5 to generate millions 

of different metasurface units and arranged all the metasurfaces into a 2D array. Thus, 

each metasurface unit can be uniquely represented by a pair of coordinates (𝑝𝑝, 𝑞𝑞). To 

design 𝑁𝑁  metasurfaces, the objective can be considered a function of 2𝑁𝑁 

independent variables: 𝐿𝐿(𝑝𝑝1, 𝑞𝑞1, … , 𝑝𝑝𝑁𝑁, 𝑞𝑞𝑁𝑁). 

Each metasurface can be described by its period 𝑝𝑝 ∈ [350,550] and shape index 

𝑞𝑞 ∈ [1,10000]. Every index 𝑞𝑞 can be mapped to a unique shape 𝑆𝑆(𝑞𝑞) ∈ 𝑅𝑅128×128. 

Considering 𝑁𝑁 metasurfaces 𝐴𝐴𝑝𝑝𝑘𝑘,𝑞𝑞𝑘𝑘 ,𝑘𝑘 = 1,2, … ,𝑁𝑁, each 𝐴𝐴𝑝𝑝𝑘𝑘,𝑞𝑞𝑘𝑘 has the transmission 

response 𝐭𝐭𝑝𝑝𝑘𝑘,𝑞𝑞𝑘𝑘 ∈ 𝑅𝑅
𝑀𝑀×1. Then, the correlation loss 𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 can be calculated as follows: 

𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = max
𝑖𝑖,𝑗𝑗=1,2,…,𝑁𝑁

{𝐭𝐭𝑝𝑝𝑖𝑖,𝑞𝑞𝑖𝑖
𝑇𝑇 𝐭𝐭𝑝𝑝𝑗𝑗,𝑞𝑞𝑗𝑗} 

In addition, we employed a commercial hyperspectral camera to capture 5000 

spectra of the positive samples 𝐗𝐗𝑙𝑙 ∈ 𝑅𝑅5000×𝑀𝑀  and 5000 spectra of the negative 

samples 𝐗𝐗𝑠𝑠 ∈ 𝑅𝑅5000×𝑀𝑀. Specifically, positive and negative samples represent live and 

spoof faces in FAS tasks and normal and pathological tissues in the disease diagnosis 

tasks, respectively. For each 𝐴𝐴𝑝𝑝𝑘𝑘,𝑞𝑞𝑘𝑘, we utilized the inter-class variance and intra-class 

variance to quantify its anti-spoofing ability: 

𝑑𝑑𝑝𝑝𝑘𝑘,𝑞𝑞𝑘𝑘 = σ�𝐗𝐗𝑙𝑙𝐭𝐭𝑝𝑝𝑘𝑘,𝑞𝑞𝑘𝑘� + σ�𝐗𝐗𝑠𝑠𝐭𝐭𝑝𝑝𝑘𝑘,𝑞𝑞𝑘𝑘� − [𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛�𝐗𝐗𝑙𝑙𝐭𝐭𝑝𝑝𝑘𝑘,𝑞𝑞𝑘𝑘� − 𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛�𝐗𝐗𝑠𝑠𝐭𝐭𝑝𝑝𝑘𝑘,𝑞𝑞𝑘𝑘�]2 

where σ denotes the variance and 𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛 denotes the mean value. Then, the FAS loss 

can be expressed as follows: 

𝐿𝐿𝑓𝑓𝑓𝑓𝑠𝑠 = 𝑑𝑑𝑝𝑝,𝑞𝑞����� =
1
𝑁𝑁
�𝑑𝑑𝑝𝑝𝑘𝑘,𝑞𝑞𝑘𝑘

𝑁𝑁

𝑘𝑘=1

 

Because the fabrication precision of metasurface nanostructures is limited, we 

prefer to avoid fabricating two metasurfaces with similar shapes or periods. Although 

the simulated transmission responses of these two metasurfaces may have a low 
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correlation, the fabrication error may result in a high similarity between the two actually 

fabricated metasurfaces. Therefore, we also introduce the fabrication loss into the final 

loss function to avoid designing similar metasurfaces. The similarity between the two 

metasurfaces is calculated as follows: 

𝑠𝑠𝑠𝑠𝑚𝑚 �𝐴𝐴𝑝𝑝𝑖𝑖,𝑞𝑞𝑖𝑖 ,𝐴𝐴𝑝𝑝𝑗𝑗,𝑞𝑞𝑗𝑗� = 𝑠𝑠(𝑞𝑞𝑖𝑖)𝑇𝑇𝑠𝑠�𝑞𝑞𝑗𝑗� − 𝑙𝑙𝑙𝑙𝑙𝑙 �1 + 0.005 × 𝑚𝑚𝑎𝑎𝑠𝑠�𝑝𝑝𝑖𝑖 − 𝑝𝑝𝑗𝑗�� 

where 𝑠𝑠(𝑞𝑞) ∈ 𝑅𝑅16384×1   represents the flattened value of 𝑆𝑆(𝑞𝑞) ∈ 𝑅𝑅128×128 , 𝑙𝑙𝑙𝑙𝑙𝑙 

represents a logarithm with a base of 10, and 𝑚𝑚𝑎𝑎𝑠𝑠 represents the absolute value. The 

fabrication loss can be calculated as follows: 

𝐿𝐿𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑚𝑚𝑚𝑚𝑚𝑚
𝑖𝑖,𝑗𝑗=1,2,…,𝑁𝑁

{ 𝑠𝑠𝑠𝑠𝑚𝑚 �𝐴𝐴𝑝𝑝𝑖𝑖,𝑞𝑞𝑖𝑖 ,𝐴𝐴𝑝𝑝𝑗𝑗,𝑞𝑞𝑗𝑗�} 

Finally, the total loss was calculated and minimized to obtain an optimized 

metasurface design. 

𝐿𝐿𝑡𝑡𝑐𝑐𝑡𝑡𝑓𝑓𝑙𝑙 = α𝐿𝐿𝑓𝑓𝑓𝑓𝑠𝑠 + β𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + γ𝐿𝐿𝑓𝑓𝑓𝑓𝑓𝑓 

{𝑝𝑝𝑘𝑘,𝑞𝑞𝑘𝑘} = 𝑚𝑚𝑎𝑎𝑙𝑙 𝑚𝑚𝑠𝑠𝑛𝑛
{𝑝𝑝𝑘𝑘,𝑞𝑞𝑘𝑘}

𝐿𝐿𝑡𝑡𝑐𝑐𝑡𝑡𝑓𝑓𝑙𝑙 
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Supplementary Note 4. Test results for FAS. 

 

Supplementary Fig. 2. Real world test results for pixel-level anti-spoofing liveness 

detection. a, A test scene consists of a live human hand and several presentation attacks, 

including paper mask, screen display, and silicone mask. b, Predicted results of the test 

scene by spectral convolutional neural network (SCNN), where the green points 

represent the live human skin area. c-d, Predicted results of other real world scenes. 

 

Supplementary Fig. 3. SCNN for image-level FAS on four testing samples. a, b. 



11 

 

The test results of two live faces. c, Test result of a face displayed on a screen. d, Test 

results of a printed face. 

By calculating the liveness area ratio (the proportion of liveness pixels in the 

detected face bounding box), SCNN can perform reliable image-level FAS. In our 

experiment results, the ratio of live face image is generally greater than 15% and the 

ratio of spoof face image is generally less than 1.5%. Therefore, by further processing 

the pixel-level liveness detection results, this difference in order of magnitude enables 

the 100% accuracy of FAS. Moreover, by changing and retraining the ENLs, the SCNN 

can directly achieve 100% accuracy of image-level anti-spoofing. 
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Supplementary Note 5. Design of ENLs for anti-spoofing face recognition. 

 
Supplementary Fig. 4. Network architecture of the proposed SCNN for face 

recognition. The OCL layer sensors and simultaneously calculates the convolution 

results of the hyperspectral facial image. Then ResNet346 is adopted to further extract 

spatial and spectral features from the outputs of OCL layer. Finally, the hyperspectral 

facial image is embedded into a latent vector 𝐟𝐟 ∈ 𝑅𝑅1×256. We pretrained the network 

using Arcface7 loss and stochastic gradient descent optimizer on MS1M8 dataset. Then 

we fine-tuned the SCNN on the dataset captured by our own sensor. 

Here, we demonstrate the way to use the SCNN to perform complex vision tasks 

other than image classification, considering face detection and recognition as examples. 

In the face recognition task, the OCL inputs were 96 × 96 × C data cubes. Here 𝐶𝐶 

denotes the number of spectral channels and the ENL inputs were 96 × 96 × 9 data 

cubes. In the face-detection task, the OCL and ENL input sizes were 96 × 128 × C 

and 96 × 128 × 9, respectively. 

 

Supplementary Fig. 5. Network architecture of the proposed SCNN for 

hyperspectral face detection. The function of OCL layer and ResNet34 are the same 

as described in Supplementary Fig. 4. However, on the outputted feature maps of 

ResNet34, 2 convolution kernels of size 3 × 3 are used to calculate the confidence 
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(Conf.) of predicted label. Another four convolution kernels of size 3 × 3 are used to 

predict the location (Loc.) of bounding boxes. SSD9 loss was adopted to train the 

network. The network was first trained on Wider Face10 dataset and then fine-tuned on 

the dataset captured by our sensor. These works show that by simply changing the 

network layers implemented on CPU/GPU, SCNN can perform various advance 

computer vision tasks on hyperspectral image.  
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Supplementary Note 6. Design and training details of the ENLs for 

metafurface-based SCNN. 

 
Supplementary Fig. 6. Network architecture of our SCNN for pixel-level disease 

detection and liveness detection.  

 

The inputs of SCNN are the 3D raw data cube of natural images. The OCL layer 

sensors and calculates the results of convolution at the same time. It has nine 

convolutional kernels of size three and stride nine. The feature maps outputted by OCL 

are further processed by the following electrical layers on CPU. The final outputs of 

122 × 160 × 1 represents the pixel-level detection results. 

To train the ENLs for disease detection, we employed our SCNN chip to capture 

2990 samples of thyroid histological sections through a microscope and randomly 

selected 250 samples to serve as the test set, using the rest as the training set. To train 

the ENLs for FAS, we employed our SCNN chip to capture more than 200 samples of 

live skin and spoof material in the real world. We then obtained pixel-level annotations 

of the feature cubes by manual labeling. Pixels located on live human skin were labeled 

positive, whereas non-live pixels on various materials, including environmental objects 

and spoof materials such as silicone masks, latex masks, and resin masks, were labeled 

negative. Finally, ENLs were trained on the labeled dataset. Then we employed our 

SCNN chip to capture images, obtained a test set containing 108 test samples from 31 

individuals, and evaluated the performance of the SCNN framework. 
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Supplementary Fig. 7. Network architecture of our SCNN for image-level disease 

diagnosis and FAS.  

 

The inputs of SCNN are 3D raw data cube of natural images with size 

96 × 96 × 𝐶𝐶, where 𝐶𝐶 denotes the number of spectral channels. The OCL has nine 

convolutional kernels of size three and stride nine. Therefore, the feature maps 

outputted by OCL has the size 96 × 96 × 9. In the ENLs, each convolutional block 

contains two convolutional layers with 16 kernels of size three, two BatchNorm layers, 

and two ReLU layers. The strides of the two convolutional layers are one and two. The 

final outputs of 1 × 1 × 𝐾𝐾  represents the pixel-level detection results. Here, 𝐾𝐾 

represents the number of classes, which is five in thyroid disease diagnosis task and 

two in FAS task. 
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Supplementary Note 7. Experimental results of pigment-based SCNN chip. 

 

Supplementary Fig. 8 Experimental results of thyroid histological section 

diagnosis by the SCNN. a, Our SCNN achieves an accuracy of 96.46% on the thyroid 

disease diagnosis task. b, The classification accuracy is only 47.09% without the OCL. 

 

For FAS, we collected more than 200 samples of live subjects (from 5 different 

people) and spoof subjects (from 15 different masks). Then the dataset was split into 

training set and testing set at a ratio of 4:1 according to the subject identities. The 

confusion matrix of the classification results on the testing dataset is shown in 

Supplementary Fig. 8a. Note that all of the misclassified samples are between the four 

diseases, which indicates that the four thyroid diseases are not completely independent 

and that there may be complicating pathologies. Moreover, if we distinguish only 

normal samples from diseased samples, the accuracy on the testing dataset is 100%. 

Furthermore, we conducted another experiment by replacing OCL with CIS without 

pigment-based filters to study the role of OCL. After repeating the same data collection 

and ENL training procedure, the classification accuracy decreased from 96.46% to 

47.09%. This indicates that spectral information is vital to diagnosis. Our OCL enables 

powerful spectral sensing capabilities, and the features acquired by OCL are effective 

for the precise diagnosis of pathological sections. Moreover, the diagnosis process does 

not require a microscope. 
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Supplementary Fig. 9 SCNN chip can be used for pixel-level anti-spoofing liveness 

detection. a, Our SCNN chip can combine spectral features with spatial features and 

perform reliable anti-spoofing face recognition. b, Confusion matrix for the pixel-level 

liveness detection results with and without OCL under sunlight and white LED light. c, 

Video-rate liveness detection based on the SCNN chip can detect high-fidelity lifelike 

masks effectively. The detected pixels of live skin are marked in green. More results 

can be found in the Supplementary Video 1. 

 

In addition to histological section diagnosis, we employed the proposed SCNN for 

FAS to further study its capability for computer vision tasks. Nearly all of the current 

face recognition systems can be deceived by high-fidelity (HiFi) silicone masks, posing 

a great risk to privacy and security. However, discriminative features can be extracted 

to detect HiFi masks when powered by our MMI. The broadband incoherent natural 

light that includes two spatial dimensions and one spectral dimension that are first 

captured and processed by the OCL. The size of the feature maps output by OCL is 
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400 × 533 × 9. Then, the feature maps are further processed by several ENLs, and we 

can obtain the anti-spoofing pixel-level liveness detection results. Our SCNN chip can 

combine spectral features with spatial features and perform reliable anti-spoofing face 

recognition (Supplementary Fig. 9a). To test its real-world performance, we collect data 

samples in both outdoor scene and indoor scene. Supplementary Fig. 9b shows the 

confusion matrix for the test samples. The SCNN achieves accuracies of 93.59% and 

81.92% in outdoor and indoor scenes, respectively. In the outdoor scene, the ambient 

light source is sunlight. Because sunlight covers a wider spectral band, it also has a high 

intensity in the near-infrared band, which is useful for anti-spoofing and leads to better 

results. The indoor scene is mainly illuminated by artificial light sources such as LED. 

They usually have weak intensity in the near-infrared band. To improve the 

performance in the indoor scene, we can adopt a wide-band lamp as the fill light. And 

we will also further optimize the hardware design specifically for indoor scenes. If we 

remove the OCL, the accuracies decrease to 68.31% and 65.03%, respectively, which 

demonstrates that the spectral information obtained by OCL is of vital importance.  

Furthermore, we can conduct image-level FAS based on the pixel-level liveness 

detection results. By applying an additional face detection procedure, we can get the 

bounding boxes of the faces and then calculate the averaged value of the pixel-level 

liveness detection results for each bounding box. As for the live and spoof faces shown 

in Fig. 4g, the averaged values are 0.6052 and 0.0016 respectively. In this way, we can 

get almost 100% image-level anti-spoofing accuracy. To show the real-world FAS 

capabilities, we employed the designed SCNN chip to perform real-time anti-spoofing 

pixel-level liveness detection at different video frames (Supplementary Fig. 9c). The 

frame rate of the results is almost only limited by the CIS exposure time. The HiFi 

masks can be easily detected at the pixel level (more results can be found in the 

Supplementary Video 1). Thus, the proposed SCNN framework is expected to be 

widely used in real-world MMI applications. The results indicate that by simply 

redesigning and retraining the ENLs according to the needs of specific tasks, the 

function of the SCNN can be customized as the disease diagnosis task and the liveness 
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detection task performing at image and pixel levels. The final output of the SCNN is 

highly customizable. The SCNN can flexibly adapt to various advanced CV tasks at 

video rates by simply changing and retraining the ENLs. It can combine the advantages 

of optical and electrical computing. 

 

 
Supplementary Fig. 10. Network architecture of our SCNN for image-level disease 

diagnosis.  

 

The inputs of SCNN are 3D raw data cube of natural images with size 

256 × 256 × 𝐶𝐶, where 𝐶𝐶 denotes the number of spectral channels. The OCL has 9 

convolutional kernels of size 1 × 1 and stride 1. Therefore, the feature maps outputted 

by OCL has the size 256 × 256 × 9. In the electrical network layers (ENLs), each 

convolutional block contains two convolutional layers. Each convolutional layer is 

followed by a BatchNorm layer and a ReLU layers. The first convolutional layer has 

16 kernels of size 3 × 3 and stride 1. The second convolutional layer has 32 kernels 

of size 3 × 3 and stride 2 to perform downsampling. The final outputs of 1 × 1 × 5 

represents the 5-class classification results.  

We utilize 100 histological sections from 100 different patients to collect the 

dataset. The 100 sections contain 5 categories (normal, simple goiter, toxic goiter, 

thyroid adenoma, and thyroid carcinoma), each with 20 sections. We collected about 

500 samples from these 100 different sections. 80 sections were employed as training 

set and the remaining 20 sections were testing set. Then we employ our SCNN sensor 
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to capture the 9-channel feature maps of these sections and build the training and testing 

set. Each section has been sampled several times. The raw outputs of the SCNN sensor 

have the size of 400 × 533 × 9 . We randomly crop the raw outputs to the size of 

256 × 256 × 9 to perform data augmentation. Finally, the ENLs are trained using the 

collected dataset. The Adam optimizer and cross-entropy loss are adopted to train the 

network and the learning rate is 0.001. 

 

 
Supplementary Fig. 11. Network architecture of our SCNN for pixel-level liveness 

detection.  

 

The feature maps outputted by OCL are further processed by the following 

electrical layers on CPU/GPU. After several convolutional layers, the final outputs have 

size 400 × 532 × 1  and represent the pixel-level anti-spoofing liveness detection 

results. To train the ENLs for FAS, we employ our SCNN sensor to capture more than 

200 samples of live skin and spoof material in the real world. The spoofing materials 

include silicone masks, paper masks, resin masks, and screen display. We then obtain 

pixel-level annotations of the feature cubes by manual labeling. Pixels located on live 

human skin are labeled as positives, whereas non-live pixels on various materials, 

including environmental objects and spoof materials are labeled as negatives. Finally, 

ENLs are trained on the labeled dataset. The ENLs can achieve a processing speed of 

about 14 frames per second (fps) at a batch size of 1, or about 20 fps at a batch size of 

8, on an Intel Core i7-11700 @2.5GHz CPU. As the computing of OCL and ENLs can 
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be asynchronous. That is, while the ENLs are processing the current frame, the OCL is 

capturing the next frame. In this way, the real-world performance of SCNN can achieve 

video rate. 
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Supplementary Note 8. Additional analysis on disease diagnosis application 

of the pigment-based SCNN. 

The disease diagnosis is a 5-class classification task. Assuming that the confusion 

matrix 𝐌𝐌 = �𝑚𝑚𝑖𝑖𝑗𝑗� ∈ 𝑅𝑅5×5, each row of 𝐌𝐌 represents a true label and each column of 

𝐌𝐌 represents a predicted label. 𝑚𝑚𝑖𝑖𝑗𝑗 represents the number of testing samples that have 

true label 𝑠𝑠 and are predicted to be 𝑗𝑗. Therefore, the diagonal elements indicate the 

number of samples that were correctly categorized. The Acc (accuracy) metric is 

calculated as tr(𝐌𝐌)
sum(𝐌𝐌)

 , which indicates the overall classification accuracy. For the 

classification task, the other commonly used evaluation metrics besides accuracy are 

precision (calculated as 𝑚𝑚𝑘𝑘𝑘𝑘
∑ 𝑚𝑚𝑖𝑖𝑘𝑘
5
𝑖𝑖=1

) and recall (calculated as 𝑚𝑚𝑘𝑘𝑘𝑘
∑ 𝑚𝑚𝑘𝑘𝑗𝑗
5
𝑗𝑗=1

 ) for each class 𝑘𝑘. 

Here we provide the precision and recall for each class in the table below. 

 

 Normal 
Simple 

goiter 
Toxic goiter 

Thyroid 

adenoma 

Thyroid 

carcinoma 

Precision 100% 88.89% 98.63% 98.77% 96.25% 

Recall 100% 96.00% 90.00% 100% 96.25% 
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Supplementary Note 9. The relationship between the size of ENLs and the 

performance of the whole SCNN. 

 
Supplementary Fig. 12. The image-level classification accuracy v.s. the size of 

ENLs on metasurface-based SCNN. a, The size of ENLs is represented by MOPs. b, 

The size of ENLs is represented by the percentage of computational load in the whole 

SCNN. 

 

The final classification performance is related to both the OCL and ENLs. To study 

the influence of ENLs on classification performance, we change the size of ENLs and 

test the final accuracy of the metasurface-based SCNN on the disease diagnosis task. 

The size of ENLs is represented by both MOPs (Supplementary Fig. 12a) and by its 

percentage of computational load in the whole SCNN (Supplementary Fig. 12b). If we 

adopt the network described in Supplementary Fig. 7, the ENLs need 81.26 MOPs, 

which account for 69.40% of the whole SCNN and the other 30.60% operations are 

completed by the OCL, and the final accuracy is 96.4%. Supplementary Fig. 12. 12a 

also shows that the classification accuracy drops sharply when the size of ENLs is less 

than 50 MOPs and grows slowly when the size of ENLs is greater than 50 MOPs. If we 

adjust the size of ENLs to 50.35 MOPs, which only account for 58.42% of the whole 

SCNN, we can still achieve an accuracy of 94.8%. The ENLs can have large sizes to 

achieve a high-performance super-resolution task, such as the ENLs adopted in the 

pixel-level liveness detection tasks, but it is unnecessary in most of the computer vision 

tasks. 
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These results indicate that, although larger ENLs can lead to better results, we can 

still reach a considerable performance using small-size ENLs because the OCL can 

provide powerful in-sensor feature extracting capabilities. Similar results can also be 

achieved by the pigment-based SCNN, as shown in Supplementary Fig. 13. 

 

 

Supplementary Fig. 13. The image-level classification accuracy v.s. the size of 

ENLs on pigment-based SCNN. a, The size of ENLs is represented by MOPs. b, The 

size of ENLs is represented by the percentage of computational load in the whole SCNN. 
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Supplementary Note 10. Study on the signal-to-noise (SNR) of the fabricated 

SCNN chip. 

In the proposed SCNN framework, all of the OCUs are regarded to be identical. 

However, due to the fabrication precision, readout noise, quantization error from 

analog-to-digital conversion, etc., there are certain variations between these OCUs, 

resulting in the noisy output of the OCL. The SNRs of metasurface-based and pigment-

based OCL outputs are measured to be 18.25 dB and 21.35 dB. The pigment-based OCL 

is taped out on a 12-inch wafer by a standard semiconductor lithography process and 

can reach a good consistency. Therefore, the SNR is relatively high. The metasurface-

based OCL is fabricated by electron beam lithography (EBL), the fabrication precision 

can cause certain differences between different meta-atom units, thus having relatively 

low SNR.   

 

Supplementary Fig. 14. The influence of SNR on the image-level disease diagnosis 

task. a, The accuracy-SNR curve of the metasurface-based SCNN. b, The accuracy-

SNR curve of the pigment-based SCNN. 

 

To further study the impact of OCL noise on the final performance, we add 

different levels of noise to the OCL outputs by simulation and test the final 

classification accuracy. The results are shown in Supplementary Fig. 14. The results 

indicate that the SCNN can maintain relatively high performance (over 93% accuracy) 

when SNR > 10 dB and the performance drops dramatically when SNR < 10 dB. As 

the SNRs of our OCL outputs are 18.25 dB and 21.35 dB, the SCNN can maintain 
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a relatively high performance of over 96% accuracy, which indicates the impact of 

noise for the proposed structures on the final performance is relatively limited. 
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