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Version 0: 

Reviewer comments: 

Reviewer #1 

(Remarks to the Author) 
The authors have presented an approach to perform optical preprocessing of natural images in preparation for further
electronic neural network processing. Their approach is able to make use of additional spectral information typically lost on
conventional color camera sensors through custom manufactured color filters aligned to a CMOS sensor. They have
demonstrated two real-world applications in the form of pathology slide classification and face anti-spoofing. The concept is
interesting with potential for applications in real-time edge computing, however I have several major reservations about the
implementation presented and claims made in the manuscript. 

Major comments: 
1. The authors claim to implement optical convolution layers but their implementation uses convolutional kernels of size 1x1
and stride 1x1. This is the special degenerate case and the authors have not demonstrated spatial convolution using their
approach. It is not reasonable to make claims about analog 2D convolutions. 

2. The experimental setup as presented has major overlap with existing multispectral filter arrays (e.g. Lapray et. al. Sensors
2014) and hyper-spectral imaging in general. 

3. The computational benefits are not discussed technically. What fraction of the computation does the optical layer perform
as opposed to the electronic neural layers? What is the total computational throughput of the optical layers and how does
this compare to other approaches? What is the total reduction in data throughput? 

Minor comments: 
1. The authors claim existing optical neural networks only work on coherent input light, however Wang et al 2023 makes use
of incoherent natural input light. 
2. How would the optical convolutional layer architecture be setup to perform spatial convolution? 
3. How do the results in Figure 3 compare to a conventional camera with 3 color channels? 
4. Supp. Figure 1 labels says the convolution is 3x3 but the text claims 1x1. 
5. Could you elaborate more about the datasets used for the experiments? 

(Remarks on code availability) 

Reviewer #2 

(Remarks to the Author) 
I co-reviewed this manuscript with one of the reviewers who provided the listed reports. This is part of the Nature
Communications initiative to facilitate training in peer review and to provide appropriate recognition for Early Career
Researchers who co-review manuscripts. 

(Remarks on code availability) 



Reviewer #3 

(Remarks to the Author) 
Summary: This paper proposes a free-space optical dot-product engine for analog image pre-processing, combined with
later digital CNN; it can realize high accuracy in 2 selected classification tasks. Experimental demonstration has shown its
usage in image classification tasks. 

Comments 
1. The novelty and intellectual contribution are limited from the circuit/architecture/algorithm design sides. The engineering
efforts in building such a demo are appreciated. Extensive designs and experimental demonstrations have been conducted
on free-space optical dot-product engines, convolution engines, diffractive neural networks, etc. Some of them are even
multi-layer, nonlinear, reconfigurable, and working with visible light, and can handle phase/polarization. A thorough
comparison to prior free-space optics and integrated photonic accelerator designs is needed, especially on cost, efficiency,
speed, throughput, size, reconfigurability, reliability, robustness, expressivity, etc. 
2. The demonstrated optical convolution unit is equivalent to a Conv2d(in_channels=1, out_channels=9, kernel_size=1,
stride=1, bias=False) or Conv2d(in_channels=1, out_channels=1, kernel_size=3, stride=3, bias=False) with fixed,
quantized, noisy, positive-value weights. The expressivity of such a CONV layer is a concern, given that advanced real-
world CV tasks require much more complicated DNN models. By replacing the first CONV of a DNN with this optical CONV,
what are the overall impacts and system-level benefits? 
3. The reconfigurability is big concern, how to enable reconfigurable weights? And what are the underlying trade-offs? 
4. The claimed reconfigurable kernel size sacrifices the efficiency by electronically summing the dot-product results, which
might not be very efficient. 
5. What is the robustness of such a system? Quantization, resolution, fabrication variation, thermal sensitivity, alignment
sensitivity, signal-to-noise ratio, etc. 
6. The output feature map is 400x533x9, which is a large feature map. What is the data movement cost, bandwidth
requirement, and system throughput? 
7. How does that compare to standard CNN taking the RGB image as inputs? 
8. If the main advantage is from the MPCF in processing multiple spectrums of the image, how does it compare to
metasurface-based DONN that can sense and process other dimensions, e.g., polarization and phase? 
9. By checking the code provided, the images are preprocessed and stored as 9-channel input features, and pass through a
very deep CNN and ResNet, which makes the initial optical CONV almost meaningless. Why not just input the raw features
from the sensor to the used large digital full-precision CNN running on GPU? The claim that it is very efficient on edge
devices without the need of GPU is not very justified. 

(Remarks on code availability) 
The code is a standard Keras-based CNN example for image classification. 

Reviewer #4 

(Remarks to the Author) 
The authors in this work proposed an integrated spectral convolutional neural network (SCNN) framework with in-sensor
computing capability to detect visual information in broadband natural incoherent light. Thus, the computing speed can be
improved and the energy efficiency is enhanced. The results are interesting. The authors are suggested to address my
concerns before the manuscript being published. 

(1) What is the computing speed and power consumption of the proposed SCNN chip, is it ahead of existing architectures? 
(2) The authors noted that CNNs require significant computational resources. Is SCNN more lightweight? Please provide a
quantitative analysis. 
(3) In Figure 3, how is Acc calculated? Are there other more diverse evaluation metrics available? If so, please provide an
analysis. 
(4) In the tasks of Histological Section Diagnosis and Face Anti-spoofing, how do existing methods perform? What are the
advantages of the method proposed by the authors compared to existing methods? Please provide a detailed explanation. 
(5) In this manuscript, a neural network chip with photoelectric hybrid architecture is proposed, a comparison table including
key parameters with existing on-chip neural network should be provided. 
(6) If available, please provide both quantitative and qualitative comparisons with existing methods. 

(Remarks on code availability) 

Version 1: 

Reviewer comments: 

Reviewer #1 



(Remarks to the Author) 
Thank you to the authors for responding to the review comments and concerns. Thank you for the effort made to address all
the comments; however, the authors’ rebuttal does not adequately resolve two remaining points. The argument in the
revised manuscript has the following problems, especially 1 questions the validity of the claims: 

1) The calculation of the number of operations performed is suspect. First, the authors should first demonstrate that the
described compression rate of 4.16% results in no loss performance for the implemented tasks. Second, the throughput of
2NC/T does not use an appropriate sampling time. The camera sensor as detailed is the CS235MU with a maximum full
frame-rate of 165.5fps. From this readout, it is inappropriate to use T=0.027ms, and instead T = 6ms is more appropriate. The
comparison to a high-speed PD array for a throughput of 107 TOPS is also inappropriate as the corresponding data rate
would be 40000TB/S, and that doesn’t even include a host of other problems with light intensity and electronics constraints. 

2) In the text, the kernel sizes are written: “its kernel size � and number of kernels � = �2 can be reconfigured as well as � ∙ �
is fixed to the size of the OCU,” along with “Therefore, OCL has �� convolutional kernels of size � × � and stride � × �.” While
this is an accurate description of the system, it obfuscates the point that the sensor size is fixed and the input light is filtered
by the SCNN without the possibility for additional spatial mixing, as would be expected for a convolutional layer. As the
primary successful implementation of the SCNN in the manuscript was using nine designed spectral filters, I believe an
emphasis of the SCNN as primarily a high-speed customizable hyper-spectral imaging method would only serve to
strengthen the manuscript. 

(Remarks on code availability) 

Reviewer #2 

(Remarks to the Author) 
I co-reviewed this manuscript with one of the reviewers who provided the listed reports. This is part of the Nature
Communications initiative to facilitate training in peer review and to provide appropriate recognition for Early Career
Researchers who co-review manuscripts. 

(Remarks on code availability) 

Reviewer #3 

(Remarks to the Author) 
1. For each hyperspectral image, the number of operations saved is 569.3M operations, which is only the operations for a
standard 3x3 Conv2d in a DNN. Compared to the rest of the network layers, it is not a significant computation reduction. 
2. The claimed 10^7 TOPS using PD arrays is not valid, as no data movement solutions can support such a data readout
rate. 
3. The reconfigurability concerns of this fixed processor are not addressed. A technological solution to enable
reconfiguration is required. It has nothing to do with training, just for other functionality to use this device. Otherwise, fixed
functionality” should be put in the title. 
4. The authors claimed the weights are not quantized and noisy, which is not true. The fixed weights are from fabrication, it
has to have certain precision and process variation. 

(Remarks on code availability) 
The codes do not contain much photonic analog part. It is a pure digital CNN training code. 

Reviewer #4 

(Remarks to the Author) 
This manuscript has been completely revised based on the recommendations made. I recommend accepting it. 

(Remarks on code availability) 

Version 2: 

Reviewer comments: 

Reviewer #1 

(Remarks to the Author) 
Thank you to the authors for the revisions in response to the previous round of reviews. One concern is that the paper makes



claims that overstate what has actually been shown and the text needs to be toned down. This also seems to have been
reflected in another review report. The authors have made changes to remedy some of these statements, but further changes
are needed: Specifically, it is necessary for the authors to display the actual demonstrated performance of the experimental
device (17.2 GOPS) and corresponding compute density in Table 1. The current number displays a potential performance
(21.0 TOPS) that cannot be realized with the hardware used in the manuscript. This is misleading. Please update Table 1,
as described above, to reflect what you actually show in the paper. 

(Remarks on code availability) 

Reviewer #2 

(Remarks to the Author) 
I co-reviewed this manuscript with one of the reviewers who provided the listed reports. This is part of the Nature
Communications initiative to facilitate training in peer review and to provide appropriate recognition for Early Career
Researchers who co-review manuscripts. 

(Remarks on code availability) 

Reviewer #3 

(Remarks to the Author) 
Thanks for the response from the authors. 
I agree with Review 1 that the proposed SCNN is a customized (in the sense of fixed function after fab) spectral
imaging/preprocessing method to collect information from multiple spectrums. It is not questionable and is better than
collecting only RGB channels. However, selling this chip (3x3/1x1 conv) as an edge NN accelerator that speeds up the
whole NN system will have a lot of problems in speed, data movement, reconfigurability, etc. 
No further follow-on questions. 

(Remarks on code availability) 

Open Access This Peer Review File is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were
made.
In cases where reviewers are anonymous, credit should be given to 'Anonymous Referee' and the source.
The images or other third party material in this Peer Review File are included in the article’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons
license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.



To view a copy of this license, visit https://creativecommons.org/licenses/by/4.0/



Responses to Reviewer #1: 
 
Comments: The authors have presented an approach to perform optical preprocessing of natural 
images in preparation for further electronic neural network processing. Their approach is able to 
make use of additional spectral information typically lost on conventional color camera sensors 
through custom manufactured color filters aligned to a CMOS sensor. They have demonstrated two 
real-world applications in the form of pathology slide classification and face anti-spoofing. The 
concept is interesting with potential for applications in real-time edge computing, however I have 
several major reservations about the implementation presented and claims made in the manuscript. 

 
Response: We appreciate the referee's thorough review, accurate summary, and valuable concerns 
on our work. Your comments are very helpful for our improvement, and we have already added 
additional theoretical analysis and experimental results to demonstrate the implementation and 
claims of this work. Below, we address each of the raised concerns in detail. 
 
Major comment 1: The authors claim to implement optical convolution layers but their 
implementation uses convolutional kernels of size 1x1 and stride 1x1. This is the special degenerate 
case and the authors have not demonstrated spatial convolution using their approach. It is not 
reasonable to make claims about analog 2D convolutions. 
 
Response: We appreciate the referee’s comments. We have illustrated in the manuscript (page 7 
lines 153-158) that “kernel size 𝑛𝑛 and number of kernels 𝐾𝐾 = 𝑘𝑘2 can be reconfigured as well as 
𝑘𝑘 ∙ 𝑛𝑛  is fixed to the size of the optical convolutional unit (OCU). A larger 𝑛𝑛  leads to better 
capabilities of extracting spatial features and a larger 𝑘𝑘 means more powerful spectral sensing 
abilities. Therefore, there is a trade-off between spatial and spectral features. We can choose the 
optimal value for 𝑘𝑘 and 𝑛𝑛 based on the actual needs of a specific task.” The kernel size is not 
limited to be 1×1. In our implementation, we designed 9 different spatial filters. As is claimed in 
the manuscript (page 8 lines 195-202) the OCL can be regarded to have 9 kernels of size 1×1 or 1 
kernel of size 3×3. It depends on how we sum the pixel values of the image sensor.  

As is described on page 6 lines 128-132 in the Results/SCNN Architecture Section, 2D 
convolution requires sliding the kernel to the different spatial locations. In the OCL, the kernels are 
realized by spectral filters that cannot be moved. Therefore, we put the same kernel at different 
spatial locations (that is, the 2D OCU array) to replace the sliding operation. In this way, the same 
kernel can also be applied to different spatial locations. Therefore, it can fully take advantage of 
space division multiplexing and achieve large-scale integration, which leads to the high spatial 
resolution (also discussed on page 16 line 375). However, the stride of the kernel needs to be equal 
to the size of the kernel. In all, we can implement the OCL with 𝐾𝐾 = 𝑘𝑘2 kernels, 𝑛𝑛 × 𝑛𝑛 size and 
𝑛𝑛 × 𝑛𝑛 stride.  

 
Major comment 2: The experimental setup as presented has major overlap with existing 
multispectral filter arrays (e.g. Lapray et. al. Sensors 2014) and hyper-spectral imaging in general. 
 
Response: We appreciate the referee's comments. It’s our negligence that we didn’t state the 
difference between our work and hyperspectral imaging clearly. The detailed comparison between 



SCNN and hyperspectral imaging is added on page 3 lines 80-91 of the revised manuscript and 
Supplementary Note 1. Although both this work and previous spectral imaging works utilize spectral 
filters and image sensors, they have different architecture and designing concept to achieve different 
capabilities. Previous hyperspectral imaging works adopted spectral filters as the sensing matrix and 
got the compressively sensed hyperspectral images. “After capturing, the hyperspectral images 
require post-processing of spectral reconstruction and further spectral analysis. In these systems, the 
spectral filters are designed to achieve high spectral resolution and the post-processing of the 
captured data requires huge computational cost, which is incapable of applying on edge computing. 
In this work, the spectral filters are designed to be the first layer of the neural network. Their 
transmission responses work as weights of the layer rather than the sensing matrix. Therefore, we 
only need very few tailored spectral filters to achieve real-world applications at high efficiency 
because accurate spectral reconstruction is not required thus achieving edge computing. In this work, 
only 9 different spectral filters are designed for the SCNN.” 

From the perspective of practical capabilities, we can compare this work with our previous work 
on the hyperspectral imaging for face anti-spoofing task (Shijie et al, Optica, 2022). Empowered by 
the new SCNN framework, this work is completely beyond the previous work at the spatial 
resolution, system simplicity, running efficiency, and anti-spoofing performance The comparison 
table between hyperspectral imaging and SCNN is listed below. Detailed analysis has been added 
in Supplementary Note 1.  

 
Hyperspectral 
imaging  

SCNN 

Number of different metasurfaces 49~400 9  
Spatial resolution (pixels) 5 × 104 𝟐𝟐.𝟏𝟏𝟏𝟏 × 𝟏𝟏𝟏𝟏𝟓𝟓 
Frames per second (fps) <0.1 >10 
FAS accuracy (%) ~95% ~99% 
Spectrum reconstruction √ × 
Pixel-level real-time sensing × √ 
Edge computing × √ 

 
Major comment 3: The computational benefits are not discussed technically. What fraction of the 
computation does the optical layer perform as opposed to the electronic neural layers? What is the 
total computational throughput of the optical layers and how does this compare to other approaches? 
What is the total reduction in data throughput? 

 
Response: Thanks for your suggestions and questions. We have realized the lack of quantitative 
analysis and comparisons with other works. The quantitative analysis of the computing speed and 
fully comparation with existing works are added in Supplementary Note 2 and Table 1 in the revised 
manuscript of pages 16-17, as is shown below.  

 If we replace the OCL with a digital convolutional layer, then the digital layer has to process 
the multi-channel and high-resolution hyperspectral images, which is computationally expensive 
and brings great difficulties to edge computing. The OCL can reduce about 569.3M operations for 
processing. It is in-sensor computing that provides a computing speed as high as 21.0 TOPS, so that 
the computational load of the electrical backend can be significantly reduced (see detail in 
Supplementary Note 2 and Table 1). Moreover, the exposure time of the CIS is relatively low 



(sampling rate is about 37 kHz) compared with high-speed photodetector (sampling rate can exceed 
100 GHz). If we replace the CIS with PD array, the computing speed can be further improved to 
over 107 TOPS.  And the OCL can reduce hyperspectral images into 9-channel feature maps, which 
is a 96% reduction in data throughput required for transferring hyperspectral images. In addition, to 
acquire such hyperspectral images, an extra hyperspectral camera is needed and high-performance 
electronic computing platforms, such as graphic process units (GPU) are inevitable. Therefore, the 
quantitative analysis indicates that our OCL can significantly reduce the computational burden and 
data throughput for processing hyperspectral images, thus realize the in-sensor edge computing 
abilities which is impossible for previous hyperspectral imaging task. 

Compared with other optical computing approaches, our OCL does not rely on coherent light 
sources, fiber coupling, or waveguide delay, but it provides the sensing and processing capabilities 
of hyperspectral images at high spatial resolution. We can adopt the proposed OCL on complex real-
world tasks far beyond handwritten digit recognition. 

 

Table 1 Comparison with existing on-chip ONN works 

Publication Pixels 

Comp

uting 

speed 

Computing 

density 

In-

sensor 

Incoherent 

light 
MMI Application 

X., X. et al27 

Nature, 2021 
500×500 

1.785  

TOPS 
- × × × 

handwritten digits 

recognition 

(HDR)/image 

processing 

F., J. et al26 

Nature, 2021 
128×128 

4  

TOPS 

1.2  

TOPS/mm2 
× × × HDR/edge detection 

A., F. et al11 

Nature, 2022 
5×6 

0.27  

TOPS 

3.5  

TOPS/mm2 
× × × 

low-resolution image 

classification 

F., T. et al24 

Nat. Commun., 

2023 

28×28 
13.8  

POPS 
- × × × HDR 

M., X. et al31 

Nat. Commun., 

2023 

28×28 
0.27  

TOPS 

25.48  

TOPS/mm2 
× × × HDR 

B., B. et al32 

Nat. Commun., 

2023 

250×250 - 
1.04  

TOPS/mm2 
× × × HDR/edge detection 

D., B. et al33 

Nature, 2024 
28×28 

0.108  

TOPS 
- × × × HDR 

Ours 400×533 
21.0  

TOPS 

5.3  

TOPS/mm2 
√ √ √ 

complex tasks in the 

real world: face anti-

spoofing and disease 

diagnosis 

MMI: Matter Meta-Imaging 
 

Minor comment 1: The authors claim existing optical neural networks only work on coherent input 



light, however Wang et al 2023 makes use of incoherent natural input light. 
 

Response: We appreciate your concern regarding the work on coherent input light. The comment 
guided us to revise the description in the manuscript more rigorously: “existing on-chip OCNNs 
hardly accept broadband incoherent natural light” (page 2 line 58 of the revised manuscript). In fact, 
we are the first to achieve integrated optical computing utilizing natural light to the best of our 
knowledge. The comparison with these integrated OCNN works is also shown in Table 1 of the 
revised manuscript. . Although some previous optical neural networks such as Wang et al 2023 do 
not rely on coherent light, their optical computings are performed on spatial light rather than 
integrated architectures. Moreover, these works regard the incident light as monochrome images 
and the spatial resolution is limited. That is, they do not have the capabilities of sensing incoherent 
natural light.  

 
Minor comment 2: How would the optical convolutional layer architecture be setup to perform 
spatial convolution? 

 
Response: Thanks for the question. As mentioned in Response 1, the spatial convolution is achieved 
by the 2D OCU array, which is equivalent to moving the convolution kernel to different spatial 
locations. Therefore, it can fully take advantage of space division multiplexing and achieve large-
scale integration, which leads to the high spatial resolution (also discussed on page 16 line 375) 

 
Minor comment 3: How do the results in Figure 3 compare to a conventional camera with 3 color 
channels? 

 
Response: We have added related descriptions in our revised manuscript (page 12 lines 272-274) 
RGB sensor cannot provide spectral sensing capabilities. In the RGB color space, the live and spoof 
faces (or sections of tissues with different diseases) are not distinguishable. Therefore, common 
RGB sensors cannot achieve such tasks. 

 
Minor comment 4: Supp. Figure 1 labels says the convolution is 3x3 but the text claims 1x1. 

 
Response: We apologize for the confusion caused by the mistakes in the figures. The Suppl. Figure 
1 is mistaken. We have corrected it. 

 
Minor comment5: Could you elaborate more about the datasets used for the experiments? 

 
Response: Thank you for the detailed suggestion. We have added these information to 
Supplementary Note 7. “For face anti-spoofing, we collected more than 200 samples of live subjects 
(from 5 different people) and spoof subjects (from 15 different masks). Then the dataset was split 
into training set and testing set at a ratio of 4:1 according to the subject identities. For disease 
diagnosis, we collected about 500 samples from 100 different sections. 80 sections were employed 
as training set and the remaining 20 sections were testing set.”   



To reviewer #2: 
 
Comments: I co-reviewed this manuscript with one of the reviewers who provided the listed reports. 
This is part of the Nature Communications initiative to facilitate training in peer review and to 
provide appropriate recognition for Early Career Researchers who co-review manuscripts. 
 
Response: Thanks for the time and patience in reviewing our manuscript. We have made major 
revisions to our manuscript and supplementary material, which includes: 

 
1. Add new experimental results about metasurface-based OCL. We present the design, 

fabrication, and performance of the metasurface-based OCL (Fig. 2 and Fig. 3) to further clarify the 
advances of the proposed SCNN: 

 
Fig. 1 Metasurface based SCNN chip can be used for multiple vision tasks related to face 

recognition. a, The GMTO algorithm is achieved by finding the minimum point of the designed 
loss function. b, Spectral feature extraction results of the OCL visualized by PCA. Live skin and 
three spoof materials are separated. c, The optical convolutional layer (OCL) has 9 kernels with size 



1 × 1. By changing the electrical network layers (ENLs), the same SCNN chip can be trained to 
complete face anti-spoofing, face detection and face recognition tasks. d, Our SCNN chip can 
combine spectral features with spatial features and perform reliable anti-spoofing face recognition. 
e, Confusion matrix for the pixel-level and image-level liveness detection results. 

 

 
Fig. 2. Experimental results of thyroid histological section diagnosis by the Metasurface 

based SCNN. a, We exploit our SCNN to sense the raw datacube of thyroid histological section 
through a microscope. After the data are processed by the optical convolutional layer (OCL) and 
electrical network layers (ENLs), thyroid disease is automatically determined via image-level 
prediction. After the data are processed further by additional ENLs, the potential pathological areas 
are labeled in different colors via pixel-level prediction. b, Without OCL, the classification accuracy 
based on the same monochromatic sensor decreases considerably for both image- and pixel-level 
predictions. c, The spectral features from OCL can be visualized by PCA. Normal and pathological 
tissues are separated. d, Confusion matrix of the image-level thyroid pathology classification results 
of the SCNN chip on the test set. Our SCNN chip achieves 96.4% accuracy. e, Confusion matrix of 
the pixel-level results. Our SCNN chip achieves 82.0% accuracy.  

 



2. Add quantitative analyses of the proposed OCL. We describe the computing capabilities of 
the OCL in detail, and fully compare it with existing works in the revised manuscript of Table 1: 

Table 2 Comparison with existing on-chip ONN works 

Publication Pixels 

Comp

uting 

speed 

Computing 

density 

In-

sensor 

Incoherent 

light 
MMI Application 

X., X. et al27 

Nature, 2021 
500×500 

1.785  

TOPS 
- × × × 

handwritten digits 

recognition 

(HDR)/image 

processing 

F., J. et al26 

Nature, 2021 
128×128 

4  

TOPS 

1.2  

TOPS/mm2 
× × × HDR/edge detection 

A., F. et al11 

Nature, 2022 
5×6 

0.27  

TOPS 

3.5  

TOPS/mm2 
× × × 

low-resolution image 

classification 

F., T. et al24 

Nat. Commun., 

2023 

28×28 
13.8  

POPS 
- × × × HDR 

M., X. et al31 

Nat. Commun., 

2023 

28×28 
0.27  

TOPS 

25.48  

TOPS/mm2 
× × × HDR 

B., B. et al32 

Nat. Commun., 

2023 

250×250 - 
1.04  

TOPS/mm2 
× × × HDR/edge detection 

D., B. et al33 

Nature, 2024 
28×28 

0.108  

TOPS 
- × × × HDR 

Ours 400×533 
21.0  

TOPS 

5.3  

TOPS/mm2 
√ √ √ 

complex tasks in the 

real world: face anti-

spoofing and disease 

diagnosis 

MMI: Matter Meta-Imaging 
 
We expect that the revised manuscript can provide more in-depth explanations and bring an 

additional perspective for the advantages of the proposed Spectral Convolutional Neural Network. 
  



To reviewer #3: 
 
Comments: Summary: This paper proposes a free-space optical dot-product engine for analog 
image pre-processing, combined with later digital CNN; it can realize high accuracy in 2 selected 
classification tasks. Experimental demonstration has shown its usage in image classification tasks. 
 
Response: Thanks for the time and patience in reviewing our manuscript. The comments are 
valuable for us to improve our work. We have realized that our work lacks some essential 
quantitative analysis and comparisons with other works. This may cause some misunderstanding or 
a misjudgment about our work. We have made major revisions to our manuscript and supplementary 
material, and the responses to the comments are listed below: 
 
Comment 1: The novelty and intellectual contribution are limited from the 
circuit/architecture/algorithm design sides. The engineering efforts in building such a demo are 
appreciated. Extensive designs and experimental demonstrations have been conducted on free-
space optical dot-product engines, convolution engines, diffractive neural networks, etc. Some of 
them are even multi-layer, nonlinear, reconfigurable, and working with visible light, and can handle 
phase/polarization. A thorough comparison to prior free-space optics and integrated photonic 
accelerator designs is needed, especially on cost, efficiency, speed, throughput, size, 
reconfigurability, reliability, robustness, expressivity, etc. 
 
Response: Thank you for your insightful concern and guidance, which remind us that the device 
architecture and working principle are not descripted clearly enough. We have addressed the 
contributions and advances of the proposed spectral convolutional neural network (SCNN) more 
clearly in our revised manuscript and supplementary material. Besides, we added the comparison 
with prior integrated photonic accelerator designs in Table 1, which is also presented below. 

Actually, to the best of our knowledge, we are the first to achieve on-chip optical computing 
utilizing natural light with in-sensor edge-computing capability. Our work is integrated optics as the 
device is totally on-chip rather than free-space optics. On-chip sensing and computing of natural 
broadband spectral images are the most important features of the proposed OCL. Indeed, some of 
the existing works have achieved multi-layer and nonlinear optical neural networks using free-space 
optics. However, these works based on free-space optics are incapable of edge-computing for 
portable terminals. Compared with free-space optics, our chip is very compact but it can still achieve 
very high computing density (about 5.3 TOPS/mm2) and can be applied to edge devices. On the 
other hand, compared with on-chip integrated optics, our work does not rely on a coherent light 
source or fiber coupling. Moreover, our chip is integrated on the image sensor, thus empowering in-
sensor computing capabilities. As most of the existing works can only perform simple tasks such as 
edge detection and handwritten digits recognition, while the proposed SCNN realize complex real-
world tasks far beyond handwritten digits recognition. Last but not least, we have achieved mass 
production of the SCNN on a 12-inch wafer. We believe that the proposed SCNN could open a new 
practical in-sensor computing platform for complex vision tasks with matter meta-imaging (MMI) 
functions in the real world. 
 



Table 3 Comparison with existing on-chip ONN works 

Publication Pixels 

Comp

uting 

speed 

Computing 

density 

In-

sensor 

Incoherent 

light 
MMI Application 

X., X. et al27 

Nature, 2021 
500×500 

1.785  

TOPS 
- × × × 

handwritten digits 

recognition 

(HDR)/image 

processing 

F., J. et al26 

Nature, 2021 
128×128 

4  

TOPS 

1.2  

TOPS/mm2 
× × × HDR/edge detection 

A., F. et al11 

Nature, 2022 
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0.27  

TOPS 
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× × × 
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F., T. et al24 

Nat. Commun., 

2023 
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- × × × HDR 
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Nat. Commun., 

2023 
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2023 
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TOPS 
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TOPS/mm2 
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MMI: Matter Meta-Imaging 
 

Comment 2: The demonstrated optical convolution unit is equivalent to a Conv2d(in_channels=1, 
out_channels=9, kernel_size=1, stride=1, bias=False) or Conv2d(in_channels=1, out_channels=1, 
kernel_size=3, stride=3, bias=False) with fixed, quantized, noisy, positive-value weights. The 
expressivity of such a CONV layer is a concern, given that advanced real-world CV tasks require 
much more complicated DNN models. By replacing the first CONV of a DNN with this optical CONV, 
what are the overall impacts and system-level benefits? 

 
Response: Thank you for your detail comments, and we apologize for any confusion caused by our 
description. What we intended to claim is that, the input channel number of the demonstrated OCL 
is 𝐶𝐶 rather than 1 (where 𝐶𝐶 represents the spectral channels). We made revisions to the manuscript 
(page 6 lines 145-148) to describe the function of OCL more clearly. For the proposed spectral 
convolutional neural network, the OCL accepts 3D datacube (𝐶𝐶 -channel images) of two spatial 
dimensions and one spectral dimension as inputs rather than single-channel images. Accordingly, 
the OCL performs computing in the spectral domain, and the spectral sensing capability is one of 
the most important features of the proposed OCL. In our implementation, 𝐶𝐶  is related to the 



spectral bands. The quantitative analysis of 𝐶𝐶  and computing speed have been added in 
Supplementary Note 2.  

On the other hand, the weights of our OCL are not quantized and noisy. The OCL performs analog 
computing rather than digital computing. Moreover, for edge computing applications, our OCL is 
not designed to perform in-situ training. The fixed and positive-valued weights have show 
accuracies as high as 96.4% and 100% for pathological diagnosis and real-time face anti-spoofing 
at video-rate on such complex real-world tasks. These results indicate the fixed and positive values 
performs well even for complex real-word edge-computing applications. Besides, our ablation study 
demonstrated in the manuscript has further shown that the performance of the whole network will 
drop dramatically without the OCL. Taking the results of metasurface-based SCNN as example, 
“After repeating the same ENLs training procedure, the image-level prediction accuracy decreased 
from 96.4% to 93.6%, and the pixel-level prediction accuracy decreased from 82.0% to 60.6%” 
(page 12 lines 268-270).  

Finally, we also give a quantitative analysis (Supplementary Note 2) which indicates that our 
OCL can significantly reduce the computational burden of processing hyperspectral images, thus 
realize the in-sensor edge computing abilities which is impossible for previous hyperspectral 
imaging task. If we replace the OCL with a digital convolutional layer, then the digital layer has to 
process the multi-channel and high-resolution hyperspectral images, which is computationally 
expensive and brings great difficulties to edge computing. The OCL can reduce about 569.3M 
operations for processing a single hyperspectral image. It is in-sensor computing that provides a 
computing speed as high as 21.0 TOPS and a substantial reduction of 96% in data throughput, so 
that the computational load of the electrical backend can be significantly reduced. (see detail in 
Supplementary Note 2 and Table 1. Moreover, the exposure time of the CIS is relatively low 
(sampling rate is about 37 kHz) compared with high-speed photodetector (sampling rate can exceed 
100 GHz). If we replace the CIS with PD array, the computing speed can be further improved to 
over 107 TOPS. In addition, to acquire such hyperspectral images, an extra hyperspectral camera is 
needed and high-performance electronic computing platforms, such as graphic process units (GPU) 
are inevitable for conventional strategies.  

 
Comment 3: The reconfigurability is big concern, how to enable reconfigurable weights? And what 
are the underlying trade-offs? 

 
Response: Thanks for your valuable questions and we have addressed this concern in our revised 
manuscript: “For the OCL, it is designed to perform inferencing for spectral sensing and computing 
in edge devices rather than in-situ training. Therefore, for a specific application, the weights can be 
fixed. It is a tailored chip for a specific task for edge computing applications.” (page 15 lines 353-
355) The reconfigurable weights will significantly increase the system complexity and result in 
much lower integration. Especially, electrical computing provides much stronger training 
capabilities than existing optical neural networks. Therefore, the best way is to train and design the 
network by electrical computing, and we can utilize optical computing to greatly reduce the 
computing burden at inference. Moreover, the optical computing is performed in-sensor. The highly 
parallel vector inner-product is driven by the energy of input natural light and completed during the 
light field sensing process. In-sensor computing can greatly reduce the computing and storage 
burden of the downstream algorithms. 



 
 

Comment 4: The claimed reconfigurable kernel size sacrifices the efficiency by electronically 
summing the dot-product results, which might not be very efficient. 

 
Response: Thanks for the suggestions and a quantitative analysis is added to Supplementary Note7. 
We found that the computing burden of this electrical summing has little effect on the overall 
efficiency, and the detail analysis is as follows. Considering a convolutional kernel of shape 
𝑛𝑛 × 𝑛𝑛 × 𝐶𝐶 , at each spatial location, the kernel will perform 𝑛𝑛2  dot-product operations and 𝑛𝑛2 
summing operations. Each dot-product operation requires 𝐶𝐶 multiplications and 𝐶𝐶 − 1 summing 
operations. In all, we need 𝑛𝑛2(2𝐶𝐶 − 1) + 𝑛𝑛2 = 2𝑛𝑛2𝐶𝐶 operations. The final summing of the dot-

product results only accounts for 𝑛𝑛2

2𝑛𝑛2𝐶𝐶
= 1

2𝐶𝐶
  of the computing burden. As 𝐶𝐶  is usually a large 

number (For example, 216 as illustrated in Supplementary Note 2), the computing burden of the 
summing of the dot-product results can be neglected. Moreover, this summing operation can also 
be completed by binning during the readout process of the image sensor. Therefore, summing of the 
dot-product results shows little impact on the overall efficiency. 

 
Comment 5: What is the robustness of such a system? Quantization, resolution, fabrication variation, 
thermal sensitivity, alignment sensitivity, signal-to-noise ratio, etc. 

 
Response: Thanks for the synthetical comments. As our device is an integrated architecture, it has 
relatively high robustness. Based on the advantages of this integrated framework, we have achieved 
mass production by lithography in a standard semiconductor foundry on a 12-inch wafer. Therefore, 
it can be roughly predicted that the fabrication variation, thermal sensitivity, alignment sensitivity, 
and signal-to-noise ratio are very similar to a common commercial monochrome or RGB camera. 
Lastly, the OCL performs analog computing, the spatial resolution realized in this work is as high 
as 400×533 , since the SCNN provides the strategy of utilizing every single pixel to perform optical 
computing via CIS to achieve high computing density (Supplementary Note 2).  

 
Comment 6: The output feature map is 400×533×9, which is a large feature map. What is the data 
movement cost, bandwidth requirement, and system throughput? 

 
Response: Thanks for the valuable question and an analysis is added to Supplementary Note 2. 
Firstly, the OCL can reduce about 569.3M operations for processing a single hyperspectral image. 
It is in-sensor computing that provides a computing speed as high as 21.0 TOPS and a substantial 
reduction of 96% in data throughput, so that the computational load of the electrical backend can be 
significantly reduced. Secondly, the OCL can reduce hyperspectral images into 9-channel feature 
maps, which is a 96% reduction in data movement cost, bandwidth requirement, and system 
throughput for transferring hyperspectral images. These computing and data compression 
capabilities are exactly the advantages of the proposed OCL. Finally, as illustrated in the manuscript, 
our whole chip is integrated on a monochrome image sensor. The data movement cost, bandwidth 
requirement, and system throughput are all similar to a common monochrome or RGB camera, 
which can be applied to edge computing. 



 
Comment 7: How does that compare to standard CNN taking the RGB image as inputs? 

 
Response: We have added related descriptions in our revised manuscript (page 12 line 273). RGB 
sensor cannot provide spectral sensing capabilities. In the RGB color space, the live and spoof faces 
(or sections of tissues with different diseases) are not distinguishable. Therefore, common RGB 
sensor cannot achieve such tasks. 

 
Comment 8: If the main advantage is from the MPCF in processing multiple spectrums of the image, 
how does it compare to metasurface-based DONN that can sense and process other dimensions, 
e.g., polarization and phase? 

 
Response: We really appreciate the reviewer’s suggestion of using metasurface-based modulators. 
We have adopted this suggestion and conducted several experiments on the metasurface-based 
spectral filters according to your comments. The results are presented in the revised manuscript, 
which helped us to further enrich the experiments and greatly improve the manuscript. Two new 
figures (Fig. 2 and Fig. 3) are added to demonstrate the metasurface-based SCNN results, which is 
also shown below. The comparison between metasurface-based and pigment-based SCNN is 
describe on page 15 lines 333-343 of the revised manuscript. Compared with metasurface-based 
SCNN, pigment-based SCNN achieved mass production by lithography, thus obtaining high 
integration and high spatial resolution. However, the metasurfaces can provide more powerful light 
field modulation capabilities and greater design freedom, resulting in higher spectral resolution and 
more space for customization. Based on the concept of the SCNN, the metasurface-based 
architecture also has further potential in sensing and processing other light dimensions, e.g., 
polarization and phase (Refs 43-45). Besides, metasurfaces also have the potential to achieve mass 
production via standard semiconductor lithography process. Therefore, in practical, we can choose 
and design the optimal SCNN chip depending on the specific requirements of the application. In 
conclusion, it can be predicted that SCNN chips have great potential in various specific terminal 
applications.  



 
Fig. 3 Metasurface based SCNN chip can be used for multiple vision tasks related to face 
recognition. a, The GMTO algorithm is achieved by finding the minimum point of the designed 
loss function. b, Spectral feature extraction results of the OCL visualized by PCA. Live skin 
and three spoof materials are separated. c, The optical convolutional layer (OCL) has 9 kernels 
with size 1 × 1. By changing the electrical network layers (ENLs), the same SCNN chip can 
be trained to complete face anti-spoofing, face detection and face recognition tasks. d, Our 
SCNN chip can combine spectral features with spatial features and perform reliable anti-
spoofing face recognition. e, Confusion matrix for the pixel-level and image-level liveness 
detection results. 



 
Fig. 4. Experimental results of thyroid histological section diagnosis by the Metasurface based 
SCNN. a, We exploit our SCNN to sense the raw datacube of thyroid histological section through 
a microscope. After the data are processed by the optical convolutional layer (OCL) and electrical 
network layers (ENLs), thyroid disease is automatically determined via image-level prediction. 
After the data are processed further by additional ENLs, the potential pathological areas are labeled 
in different colors via pixel-level prediction. b, Without OCL, the classification accuracy based on 
the same monochromatic sensor decreases considerably for both image- and pixel-level predictions. 
c, The spectral features from OCL can be visualized by PCA. Normal and pathological tissues are 
separated. d, Confusion matrix of the image-level thyroid pathology classification results of the 
SCNN chip on the test set. Our SCNN chip achieves 96.4% accuracy. e, Confusion matrix of the 
pixel-level results. Our SCNN chip achieves 82.0% accuracy.  

 
Comment 9: By checking the code provided, the images are preprocessed and stored as 9-channel 
input features, and pass through a very deep CNN and ResNet, which makes the initial optical CONV 
almost meaningless. Why not just input the raw features from the sensor to the used large digital 
full-precision CNN running on GPU? The claim that it is very efficient on edge devices without the 
need of GPU is not very justified. 

 
Response: Thanks for your important feedback, which remind us that the advantages and 
significance of the proposed device are not demonstrated enough. We have added related content in 
the revised manuscript (page 16 lines 358-365). The 9-channel feature maps are exactly the raw 



features from the sensor, i.e., the outputs of the OCL. Here, the OCL performs in-sensor computing, 
which capturing and transferring the natural hyperspectral images into feature maps of 400×533×

9. This is exactly the advantage of the proposed OCL. If we remove the OCL, we can only get 
grayscale images from a common monochrome camera which does not contain any spectral features. 
Furthermore, our supplementary video has demonstrated the capabilities of our SCNN without GPU. 
Specifically, the SCNN performs in-sensor computing, which can reduce about 569.3M operations 
for processing a single hyperspectral image. The OCL is in-sensor computing that provides a 
computing speed as high as 21.0 TOPS and a substantial reduction of 96% in data throughput, so 
that the computational load of the electrical backend can be significantly reduced. (Detailed analysis 
has been added in Supplementary Note 2). Thus, the proposed SCNN opens a new practical in-
sensor computing platform for complex vision tasks in the real world. 

Indeed, a very deep CNN can also process hyperspectral images on GPU, but we cannot integrate 
it on edge devices. As is described in the revised manuscript: “To achieve hyperspectral imaging 
and sensing, we can also adopt a conventional hyperspectral camera to scan hyperspectral images, 
and then process the images on GPU. However, such a system cannot be integrated on edge devices 
because GPU has large size, high energy consumption, and high cost that cannot meet the 
requirements of edge devices with limited computing capabilities. Besides, the conventional 
hyperspectral camera is also bulky, expensive, and not capable of real-time imaging. Our OCL is 
in-sensor computing that provides a computing speed as high as 21.0 TOPS and a substantial 
reduction of 96% in data throughput (Supplementary Note 2). Therefore, the SCNN makes it 
possible to process hyperspectral images using only a few extra digital neural network layers on 
edge devices. It can empower edge devices with both sensing and computing capabilities for various 
real-world complex vision tasks.” (page 16 lines 358-368) 
  



To reviewer 4: 
 
Comments: The authors in this work proposed an integrated spectral convolutional neural network 
(SCNN) framework with in-sensor computing capability to detect visual information in broadband 
natural incoherent light. Thus, the computing speed can be improved and the energy efficiency is 
enhanced. The results are interesting. The authors are suggested to address my concerns before the 
manuscript being published. 
 
We appreciate the referee's thorough review, accurate summary, and supportive feedback on our 
work. The comments are essential for us to improve the manuscript. We have realized the lack of 
quantitative analysis and comparisons about the proposed optical convolutional layer (OCL). We 
have added these comparisons in the revised manuscript and Supplementary Material. Below, we 
address each of the raised concerns in detail. 

 
Comment 1: What is the computing speed and power consumption of the proposed SCNN chip, is it 
ahead of existing architectures? 

 
Response: Thanks for your question, which helped us to realize the lack of quantitative analysis in 
our manuscript. We have added the analysis and discussion in the revised manuscript (page 16 line 
364) and Supplementary Note 2. The computing speed of the proposed OCL is about 21.0 TOPS 
and the computing density is about 5.3 TOPS/mm2. It can exceed most of the existing architectures 
while providing sensing capabilities. The detailed comparison can be found in Table 1, which is also 
presented below. “For the OCL, the computing speed and power consumption depends only on the 
exposure time and the power of the CIS, empowering ultrafast optical computing at high energy 
efficiency.” “Although CIS is relatively slow (sampling rate is about 37 kHz) compared with the 
commonly used high-speed photodetector (sampling rate can exceed 100 GHz), we still achieve 
considerable computing speed and density compared with existing photodetector-based works 
because CIS has high integration and can take full advantages of space division multiplexing. If we 
replace the CIS with PD array, the computing speed can be further improved to over 107 TOPS. 
Actually, as CIS is the most integrated optoelectronic device, we can have hundreds of millions of 
pixels at a very low cost. The SCNN provides the strategy of utilizing every single pixel to perform 
optical computing via CIS to achieve high computing density and reduce the number of 
photoelectronic conversions. Based on the above advantages of SCNN architecture, we have 
achieved mass production on a 12-inch wafer of the pigment-based SCNN, which still has the 
computing speed of over 1013 OPS (see Supplementary Note 2 for details). Thus, the proposed 
SCNN opens a new practical in-sensor computing platform for complex vision tasks with MMI 
functions in the real world.” 
 

Table 4 Comparison with existing on-chip ONN works 
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× × × HDR/edge detection 

A., F. et al11 

Nature, 2022 
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Nat. Commun., 
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Comment 2: The authors noted that CNNs require significant computational resources. Is SCNN 
more lightweight? Please provide a quantitative analysis. 

 
Response: Thanks for the important suggestion, which remind us that the quantitative analysis of 
the proposed device are not demonstrated enough. Detailed analysis has been added in 
Supplementary Note 2. Our SCNN performs in-sensor computing, which can reduce about 569.3M 
operations for processing a single hyperspectral image. It is in-sensor computing that provides a 
computing speed as high as 21.0 TOPS, so that the computational load of the electrical backend can 
be significantly reduced Thus, the proposed SCNN opens a new practical in-sensor computing 
platform for complex vision tasks in the real world. 

 
Comment 3:  In Figure 3, how is Acc calculated? Are there other more diverse evaluation metrics 
available? If so, please provide an analysis. 

 
Response: Thanks for the valuable feedback. Fig. 3 provides the confusion matrix of the SCNN on 
disease diagnosis applications. The disease diagnosis is a 5-class classification task. Assuming that 
the confusion matrix 𝑀𝑀 = �𝑚𝑚𝑖𝑖𝑖𝑖� ∈ 𝑅𝑅5×5, each row of 𝑀𝑀 represents a true label and each column 
of 𝑀𝑀 represents a predicted label. 𝑚𝑚𝑖𝑖𝑖𝑖 represents the number of testing samples that have true 
label 𝑖𝑖 and are predicted to be 𝑗𝑗. Therefore, the diagonal elements indicate the number of samples 

that were correctly categorized. The Acc (accuracy) metric is calculated as 𝑡𝑡𝑡𝑡(𝑀𝑀)
𝑠𝑠𝑠𝑠𝑠𝑠(𝑀𝑀)

, which indicates 



the overall classification accuracy. For the classification task, the other commonly used evaluation 

metrics besides accuracy are precision (calculated as 𝑠𝑠𝑘𝑘𝑘𝑘
∑ 𝑠𝑠𝑖𝑖𝑘𝑘
5
𝑖𝑖=1

) and recall (calculated as 𝑠𝑠𝑘𝑘𝑘𝑘
∑ 𝑠𝑠𝑘𝑘𝑘𝑘
5
𝑘𝑘=1

 ) 

for each class 𝑘𝑘. Here we provide the precision and recall for each class in the table below, and we 
have added these additional analysis to Supplementary Note 8. 
 

 Normal Simple 
goiter 

Toxic goiter Thyroid 
adenoma 

Thyroid 
carcinoma 

Precision 100% 88.89% 98.63% 98.77% 96.25% 
Recall 100% 96.00% 90.00% 100% 96.25% 

 
 
Comment 4:  In the tasks of Histological Section Diagnosis and Face Anti-spoofing, how do 
existing methods perform? What are the advantages of the method proposed by the authors 
compared to existing methods? Please provide a detailed explanation. 

 
Response: Thanks for the constructive suggestions. As is described on page 15 lines 346-351, the 
main advantages of our proposed OCL are capturing and feature extracting of natural hyperspectral 
images. If we do not use the OCL, i.e., capturing images using a common monochrome camera and 
following the regular neural network training process, the results are shown in Fig. 3 and Fig.4 as 
“Without OCL”. The performance is much worse than using the OCL because OCL provides 
spectral sensing capabilities. Taking the results of metasurface-based SCNN as example, “After 
repeating the same ENLs training procedure, the image-level prediction accuracy decreased from 
96.4% to 93.6%, and the pixel-level prediction accuracy decreased from 82.0% to 60.6%” (page 12 
lines 268-270).  

On the other hand, if we complete the whole process by capturing data using a hyperspectral 
camera and implementing all neural network layers on the electrical computing platform of GPU, 
then we can get similar results compared with SCNN. However, the hyperspectral cameras usually 
have a very high cost and need time to scan a hyperspectral image. It is not practical in real-time 
applications. And as demonstrated above, the storing and processing cost of a hyperspectral image 
on an electrical computing platform require high-performance GPU, which cannot be integrated on 
edge devices. This is because that GPU as the high-performance electronic computing platforms 
with large size, high energy consumed, and high cost cannot meet the requirements of edge devices 
with limited computing capabilities.  

Different from the conventional strategies, our OCL is in-sensor computing providing a 
computing speed as high as about 21.0 TOPS, which makes it possible to process hyperspectral 
images using only a few extra digital neural network layers of edge devices as experimentally 
demonstrated in the manuscript, which empowers edge devices with both sensing and computing 
capabilities for various real-world complex vision tasks. 

 
 

Comment 5: In this manuscript, a neural network chip with photoelectric hybrid architecture is 
proposed, a comparison table including key parameters with existing on-chip neural network should 
be provided. 



 
Response: Thank you very much for the suggestion, which is valuable for us to improve the 
manuscript. The comparison with existing on-chip methods is listed above (Table 1). The table is 
also added to the manuscript. 

 
Comment 5: If available, please provide both quantitative and qualitative comparisons with existing 
methods. 

 
Response: Thanks for the valuable suggestion. As is mentioned above, abundant revisions have 
been made to the manuscript. The comparison with existing on-chip methods is listed as Table 1 in 
the revised manuscript and related analysis is also added in Supplementary Note 2. 

 



To reviewer #1: 

 

Comment: Thank you to the authors for responding to the review comments and concerns. Thank 

you for the effort made to address all the comments; however, the authors’ rebuttal does not 

adequately resolve two remaining points. The argument in the revised manuscript has the following 

problems, especially 1 question the validity of the claims 

 

Response: We sincerely thank you for your patience and time in reviewing our revised manuscript 

and giving further valuable questions. Your comments are helpful for us to further improve the 

manuscript. Below, we also address each of the raised concerns in detail. 

 

Comment 1: The calculation of the number of operations performed is suspect. First, the authors 

should first demonstrate that the described compression rate of 4.16% results in no loss 

performance for the implemented tasks. Second, the throughput of 2NC/T does not use an 

appropriate sampling time. The camera sensor as detailed is the CS235MU with a maximum full 

frame-rate of 165.5fps. From this readout, it is inappropriate to use T=0.027ms, and instead T = 

6ms is more appropriate. The comparison to a high-speed PD array for a throughput of 107 TOPS 

is also inappropriate as the corresponding data rate would be 40000TB/S, and that doesn’t even 

include a host of other problems with light intensity and electronics constraints. 

 

Response: We sincerely appreciate the question. We realized that some descriptions in the article 

lack further explanations and support. Therefore, we have added additional explanations, references, 

and experiments. We have also revised the description of the manuscript to demonstrate our claims 

more rigorously.  

For the compression rate of 4.16%, we have added experimental results to explain that such a 

compression rate is attainable for the implemented tasks, such as face anti-spoofing. These results 

are added to Supplementary Note 2: “In previous works, hyperspectral sensing with 601 sampling 

points (from 450~750nm at 0.5nm intervals) is realized using only 25 spectral filters1,5. That is, the 

compression rate (CR) is about 4.16%. Other works, such as Ref. 4 (CR=5%) and Ref. 11 

(CR=1%~10%) have also illustrated that similar compression rates can effectively reserve the 

spatial and spectral features. To further study the impact of CR in experiments, we test the liveness 

detection performance under different CRs using a snapshot hyperspectral camera with spectral 

filters of as many as 400, which is developed in our previous works (Ref. 38). The camera is 

deployed to capture spectral pixels of live human skin and spoof masks. We adjust the CR by 

changing the number of spectral filters valid in one spectral pixel. Then, we utilize the support vector 

machine (SVM) algorithm to perform classification. The classification accuracy is reported in 

Supplementary Fig. 1. Under the CR of 4.16%, we can still realize a single-pixel classification 

accuracy of 91.2% by SVM. The accuracy of 91.2% is close to the accuracy of 96.2% shown in Fig. 

2e of our manuscript, we consider that this little difference lies in that our previous camera is not 

specially optimized for liveness detection and the performance of a single-layer SVM is not as good 

as that of a multi-layer DNN demonstrated in Fig. 2c.” 



 
Supplementary Fig. 1. The liveness detection accuracy under different CRs. 

 

For the sampling time, we have also added a more rigorous description in Supplementary Note 

2. For the metasurface-based sensor, “The CIS used in our experiment was a Thorlabs CS235MU 

equipped with a Sony IMX249 sensor. The minimum exposure time is 0.034 𝑚𝑠. When the sensor 

completes the exposure, the computation of OCL is also complete. Therefore, 𝑁 ൌ 480 ൈ 366,𝐶 ൌ

216,𝑇 ൌ 0.034𝑚𝑠, then the theoretical maximum computing speed of the OCL is about 2.2 TOPS. 

However, from the perspective of the overall system we have implemented, the maximum full-pixel 

(480×366) frame rate achieved on our laptop computer (Thinkpad X1) is 116.8 frames per second 

(FPS). In this way, 𝑇 ൌ 8.65𝑚𝑠 and the average computing speed of OCL is calculated to be 8.7 

GOPS. It is worth noting that the computing speed of OCL only depends on the imaging speed of 

the CIS because the OCL performs in-sensor computing. The OCL is designed for real-world vision 

tasks and the bottleneck stays in the vision sensor itself. No matter how fast the imaging speed is, the 

OCL can ensure that the computing is completed once an image is captured. In other words, the 

faster the camera captures, the faster the OCL computes, so that the OCL can always meet the 

computing requirements of real-world tasks. Moreover, in our implemented system, the frame rate 

of 116.8 FPS is already sufficient to complete most real-world computer vision tasks and provide 

spectral sensing abilities for edge devices. By further increasing the system’s transmission 

bandwidth (for example, use PCIe instead of USB for data transfer), the actual average computing 

speed of OCL can be pushed to the theoretical maximum computing speed.” For the pigment-based 

sensor, “The minimum exposure time is 0.027𝑚𝑠 . Therefore, 𝑁 ൌ 1200 ൈ 1098,𝐶 ൌ 216,𝑇 ൌ

0.027𝑚𝑠, then the theoretical maximum computing speed of the OCL is about 21.0 TOPS and the 

OCL can reduce the storage requirement to 7.3MB. Similarly, limited by the sensor readout time 

and USB 3.0 transmission speed, the maximum full-pixel (1200×1098) frame rate achieved on our 

laptop computer (Thinkpad X1) is 30.2 FPS and the average computing speed of OCL is calculated 

to be 17.2 GOPS.” We have also added some qualifications to the description of the computation 

speed in the manuscript on lines 332-336, making it more accurate: “the computing speed of OCL 

only depends on the imaging speed of the CIS. The faster the CIS captures, the faster the computing 

speed of OCL can be. Therefore, the OCL can always satisfy the computing requirements of real-

world tasks. The theoretical maximum computing speed of OCL is about 21.0 tera operations per 

second (more detailed analysis can be found in Supplementary Note 2).”  

For the claims about the PD, the state-of-the-art commercial products are capable of reaching 



100GHz (such as the BPDV412xRv released by Coherent Corp.). Besides, existing works have 

adopted relatively high-speed PD to increase computing speed (such as the 12 GHz PD adopted in 

Ref. 26 and the 50 GHz PD adopted in Ref. 27). The sampling rate of PD can be 105~106 times 

faster than CIS. As the primary factor limiting our computing speed is the sampling rate of the 

detector, if a high-speed detector such as PD is used to increase the sampling rate to 20 GHz, the 

theoretical maximum computing speed of our OCL is predicted as 107 TOPS. However, as the 

reviewer pointed out, great challenges stand in the system data throughput and PD array integration, 

this claim of the 107 TOPS computing speed is disputable. Therefore, we have deleted the 

corresponding quantitative description in the manuscript based on the reviewer and revised the claim 

on lines 346-348: “If we replace the CIS with high-speed PD array, there is still great potential for 

improvement in computing speed.” 

 

 

Comment 2: In the text, the kernel sizes are written: “its kernel size 𝑛 and number of kernels 𝐾 = 

𝑘2 can be reconfigured as well as 𝑘 · 𝑛 is fixed to the size of the OCU,” along with “Therefore, 

OCL has 𝐾𝐾 convolutional kernels of size 𝑛 × 𝑛 and stride 𝑛 × 𝑛.” While this is an accurate 

description of the system, it obfuscates the point that the sensor size is fixed and the input light is 

filtered by the SCNN without the possibility for additional spatial mixing, as would be expected for 

a convolutional layer. As the primary successful implementation of the SCNN in the manuscript was 

using nine designed spectral filters, I believe an emphasis of the SCNN as primarily a high-speed 

customizable hyper-spectral imaging method would only serve to strengthen the manuscript. 

 

Response: Thanks for the suggestion, your advice is very valuable for us. We took the suggestion 

and added several revisions to our manuscript. After fabrication, the size of the OCU is fixed. When 

the kernel size is not 1, the stride cannot be 1 either. Therefore, the proposed OCL is actually a 

strided convolutional layer. To address this point and avoid any confusion that might be caused by 

our former description, we have revised the manuscript and added additional explanations on lines 

139-146: “Therefore, OCL has 𝐾  convolutional kernels of size 𝑛 ൈ 𝑛  and stride 𝑛 ൈ 𝑛 . When 

𝑛 ൌ 1, the OCL is a special convolutional layer with size 1 ൈ 1 and stride 1 ൈ 1, which can also 

be equivalent to a fully connected layer. When 𝑛  1, the OCL is a strided convolutional layer with 

equal stride and kernel size, which can work as the combination of a convolutional layer and a 

pooling layer. Both the 1 ൈ 1 convolutions and strided convolutions are widely adopted in CNNs 

such as ResNet. Although the stride is restricted to be equal with kernel sizes, our experimental 

results have shown that our SCNN can still reach high performance for real-world tasks”. Just as 

you pointed out that the SCNN is indeed a high-speed customizable hyperspectral imaging method. 

We have also emphasized this perspective on lines 79-82: “The weights of the OCL are encoded on 

the transmission responses of the spectral filters. It should be noted that the proposed system actually 

functions as a high-speed customizable hyperspectral imaging method based on the new design 

concepts and system framework of SCNN.” 

  



To reviewer #2: 

 

Comment: I co-reviewed this manuscript with one of the reviewers who provided the listed reports. 

This is part of the Nature Communications initiative to facilitate training in peer review and to 

provide appropriate recognition for Early Career Researchers who co-review manuscripts. 

 

Response: We sincerely appreciate your time and patience in reviewing our revised manuscript. As 

listed in this response letter, we have provided a point-by-point response to every newly raised 

concern. Several revisions have been made to further support the claims in the manuscript. 

  



To reviewer #3: 

 

Comment 1: For each hyperspectral image, the number of operations saved is 569.3M operations, 

which is only the operations for a standard 3x3 Conv2d in a DNN. Compared to the rest of the 

network layers, it is not a significant computation reduction. 

 

Response: Thanks for the valuable question. The optical convolutional layer (OCL) works as the 

first layer of the whole optoelectronic neural network. For the pigment-based OCL, indeed it can be 

regarded as a Conv2d in a DNN. However, the inputs are hyperspectral images rather than common 

RGB images. As is mentioned in Supplementary Note 2, the number of input channels can be 

regarded as 216. Therefore, the input shape (channels, height, width) is (216, 400, 533) and the 

required operations for this Conv2d is 569.3M. Note that the same Conv2d for RGB images with 

input shape (3, 400, 533) only requires 7.9M operations. Therefore, the operations provided by our 

OCL are equivalent to about 72 RGB-based Conv2d layers. 

In particular, powered by the feature extraction and data compression of this OCL, the 

computational load and data throughput of the following electrical network layers (ENLs) can be 

greatly reduced, which is the main advantage of our framework for edge computing. Namely, we 

can reach a considerable performance using small-size ENLs in common cases with the help of the 

proposed OCL. For example, the disease diagnosis results demonstrated in Fig. 3e are achieved by 

small-size ENLs. The SCNN is an optoelectronic neural network, although the optical part only 

forms the first convolutional layer, it accounts for 30.60% of computing operations while the other 

69.40% of operations are completed by the reduced ENLs.  

We fully understand the reviewer’s concern that the mentioned 569.3M operations may account for 

only a small part of the entire network and we thank you again for the valuable question. To fully 

address your concern and demonstrate the role of OCL, we have added several additional 

quantitative analyses to Supplementary Note 9, which is also displayed below: 

 

 

 

Supplementary Fig. 12. The image-level classification accuracy v.s. the size of ENLs on 

metasurface-based SCNN. a, The size of ENLs is represented by MOPs. b, The size of ENLs is 

represented by the percentage of computational load in the whole SCNN. 

 

The final classification performance is related to both the OCL and ENLs. To study the influence of 



ENLs on classification performance, we change the size of ENLs and test the final accuracy of the 

metasurface-based SCNN on the disease diagnosis task. The size of ENLs is represented by both 

MOPs (Supplementary Fig. 12a) and by its percentage of computational load in the whole SCNN 

(Supplementary Fig. 12b). If we adopt the network described in Supplementary Fig. 7, the ENLs 

need 81.26 MOPs, which account for 69.40% of the whole SCNN and the other 30.60% operations 

are completed by the OCL, and the final accuracy is 96.4%. Supplementary Fig. 12a also shows that 

the classification accuracy drops sharply when the size of ENLs is less than 50 MOPs and grows 

slowly when the size of ENLs is greater than 50 MOPs. If we adjust the size of ENLs to 50.35 

MOPs, which only account for 58.42% of the whole SCNN, we can still achieve an accuracy of 

94.8%. The ENLs can have large sizes to achieve a high-performance super-resolution task, such as 

the ENLs adopted in the pixel-level liveness detection tasks, but it is unnecessary in most computer 

vision tasks. 

These results indicate that, although larger ENLs can lead to better results, we can still reach a 

considerable performance using small-size ENLs because the OCL can provide powerful in-sensor 

feature extracting capabilities. Similar results can also be achieved by the pigment-based SCNN, as 

shown in Supplementary Fig. 13. 

 

Supplementary Fig. 13. The image-level classification accuracy v.s. the size of ENLs on 

pigment-based SCNN. a, The size of ENLs is represented by MOPs. b, The size of ENLs is 

represented by the percentage of computational load in the whole SCNN. 

 

Comment 2: The claimed 10^7 TOPS using PD arrays is not valid, as no data movement solutions 

can support such a data readout rate. 

 

Response: Thanks for the suggestion. The state-of-the-art commercial products are capable of 

reaching 100GHz (such as the BPDV412xRv released by Coherent Corp.). Besides, existing works 

have adopted relatively high-speed PD to increase computing speed (such as the 12 GHz PD adopted 

in Ref. 26 and the 50 GHz PD adopted in Ref. 27). The sampling rate of PD can be 105~106 times 

faster than CIS. As the primary factor limiting our computing speed is the sampling rate of the 

detector, if a high-speed detector such as PD is used to increase the sampling rate to 20 GHz, the 

theoretical maximum computing speed of our OCL is predicted as 107 TOPS. However, as the 

reviewer pointed out, great challenges stand in the system data throughput and PD array integration, 

this claim of the 107 TOPS computing speed is disputable. Therefore, we have deleted the 



corresponding quantitative description in the manuscript based on the reviewer and revised the claim 

on lines 346-348: “If we replace the CIS with high-speed PD array, there is still great potential for 

improvement in computing speed.” 

 

 

 

Comment 3: The reconfigurability concerns of this fixed processor are not addressed. A 

technological solution to enable reconfiguration is required. It has nothing to do with training, just 

for other functionality to use this device. Otherwise, fixed functionality” should be put in the title. 

 

Response: We sincerely thank you for the advice. We also fully understand the reviewer’s concern 

that the optical part cannot be reconfigured. Therefore, we have revised the manuscript to further 

emphasize this point based on your advice on lines 317-321: “To achieve a completely new task at 

high performance, we need to re-design and re-fabricate the chip. For optical neural networks 

(ONNs) with weights encoded by non-tunable optical structures, we can adopt a similar strategy as 

Refs. 21, 22, 24, 29, which is to design the network by electrical computing and then fabricate the 

optical computing layer for specific tasks in terminal devices for edge computing”.  

On the other hand, the proposed SCNN is an optoelectronic neural network. As the OCL cannot be 

reconfigured, the SCNN can be adjusted by changing the electrical part. As demonstrated in the 

manuscript on lines 26-28: “We employ the same SCNN chip for completely different real-world 

complex tasks, and achieve accuracies of over 96% for pathological diagnosis and almost 100% for 

face anti-spoofing at video rates.” Therefore, we do not put “fixed functionality” in the title. Instead, 

we further clarify the point of reconfiguration in the manuscript as mentioned above to avoid any 

misunderstandings.  

 

 

 

Comment 4: The authors claimed the weights are not quantized and noisy, which is not true. The 

fixed weights are from fabrication, it has to have certain precision and process variation. 

 

Response: We sincerely apologize for misunderstanding your previous question. We thought the 

noise you mentioned referred to the errors caused by weight quantization in digital computing. Your 

suggestion is very valuable. We have measured the noise level and further studied the influence of 

the noise according to your suggestion. The results are reported in Supplementary Note 10, which 

are also presented below: 

 

“In the proposed SCNN framework, all of the OCUs are regarded to be identical. However, due to 

the fabrication precision, readout noise, quantization error from analog-to-digital conversion, etc., 

there are certain variations between these OCUs, resulting in the noisy output of the OCL. The SNRs 

of metasurface-based and pigment-based OCL outputs are measured to be 18.25 dB and 21.35 dB. 

The pigment-based OCL is taped out on a 12-inch wafer by a standard semiconductor lithography 

process and can reach a good consistency. Therefore, the SNR is relatively high. The metasurface-

based OCL is fabricated by electron beam lithography (EBL), the fabrication precision can cause 

certain differences between different meta-atom units, thus having relatively low SNR.  



 

Supplementary Fig. 14. The influence of SNR on the image-level disease diagnosis task. a, The 

accuracy-SNR curve of the metasurface-based SCNN. b, The accuracy-SNR curve of the pigment-

based SCNN. 

 

To further study the impact of OCL noise on the final performance, we add different levels of noise 

to the OCL outputs by simulation and test the final classification accuracy. The results are shown in 

Supplementary Fig. 14. The results indicate that the SCNN can maintain relatively high performance 

(over 93% accuracy) when SNR > 10 dB and the performance drops dramatically when SNR < 10 

dB. As the SNRs of our OCL outputs are 18.25 dB and 21.35 dB, the SCNN can maintain a relatively 

high performance of over 96% accuracy, which indicates the impact of noise for the proposed 

structures on the final performance is relatively limited.” 

 

Comment: The codes do not contain much photonic analog part. It is a pure digital CNN training 

code. 

 

Response: Thanks for the comment. We have added the codes for the photonic part to the GitHub 

repository for the revised manuscript and updated the Code Availability section: “We have 

developed codes for training the ENLs. A surrogate forward prediction model is also designed to 

fast predict the transmission responses of meta-atoms. The codes and detailed information can be 

found at https://github.com/rao1140427950/scnn_mpcf. Other algorithms and methods are included 

in this published article (and its supplementary information files).” 

 

  



To reviewer #4: 

 

Comment: This manuscript has been completely revised based on the recommendations made. I 

recommend accepting it. 

 

Response: We sincerely thank you for your acknowledgment of our work. The comments and 

advice you provided earlier have been immensely helpful for us in improving the manuscript. Thank 

you again for your time and patience. 



To reviewer #1: 
 
Comment: Thank you to the authors for the revisions in response to the previous round of reviews. 
One concern is that the paper makes claims that overstate what has actually been shown and the 
text needs to be toned down. This also seems to have been reflected in another review report. The 
authors have made changes to remedy some of these statements, but further changes are needed: 
Specifically, it is necessary for the authors to display the actual demonstrated performance of the 
experimental device (17.2 GOPS) and corresponding compute density in Table 1. The current 
number displays a potential performance (21.0 TOPS) that cannot be realized with the hardware 
used in the manuscript. This is misleading. Please update Table 1, as described above, to reflect 
what you actually show in the paper. 
 
Response: We sincerely thank you for the advice and suggestions. We understand your concern that 
the cost of data readout and transfer should be considered at the whole system level. However, the 
proposed OCL will complete the computing once the CIS has completed the exposure. The 
computing itself is completed before the data readout. Thus, the computing speed of OCL is only 
determined by the exposure time. As the minimum exposure time is 0.027ms for the fabricated 
pigment-based sensor, the computing speed of OCL can indeed attain 21.0 TOPS for the physical 
implementation.  
For practical applications of real-world vision tasks, it usually does not require a particularly high 
frame rate at the whole system level. Thus, the OCL has an adaptive computing speed based on the 
imaging speed of the CIS. Accordingly, the average computing speed is reduced to 17.2 GOPS with 
a frame rate of 30.2 frames per second for practical vision tasks. It should be noted that the true 
advantage of our in-sensor OCL is that the computing speed can always satisfy the requirements of 
real-world applications. This is because the OCL can ensure that the computing is completed once 
an image is captured. The faster the image is captured, the faster the computing speed is.  
Therefore, we have further revised the manuscript to avoid disputed claims about the computing 
speed. Specifically, we deleted the quantitative description of the computing speed in the main text 
(lines 108-109, 342-344) and Table 1. Instead, we address that the SCNN has adaptive computing 
speed and can always meet the imaging speed, and revised the description on lines 107-113 to reflect 
the true feature of our OCL “In this framework, the OCL has adaptive computing speed based on 
the imaging speed of the CIS. In other words, the faster the camera captures, the faster the OCL 
computes so that the OCL can always meet the computing requirements of real-world vision tasks. 
Moreover, the reduction in data throughput after the OCL is 96%, so that the computational load of 
the electrical backend can be significantly reduced.”  
  



To reviewer #2: 
 
Comment: I co-reviewed this manuscript with one of the reviewers who provided the listed reports. 
This is part of the Nature Communications initiative to facilitate training in peer review and to 
provide appropriate recognition for Early Career Researchers who co-review manuscripts. 
 
Response: Thank you again for your time and patience in reviewing our manuscript. 
 
 
  



To reviewer #3: 
 
Comment: I agree with Review 1 that the proposed SCNN is a customized (in the sense of fixed 
function after fab) spectral imaging/preprocessing method to collect information from multiple 
spectrums. It is not questionable and is better than collecting only RGB channels. 
 
Response: We truthfully thank you for the comments and we sincerely appreciate your 
acknowledgment that our proposed SCNN is better than collecting only RGB channels. The SCNN 
is indeed a customizable hyperspectral imaging method designed and implemented from the 
perspective of a neural network. we have addressed this statement on lines 84-87: “The weights of 
the OCL are encoded on the transmission responses of the spectral filters. It should be noted that 
the proposed system actually functions as a high-speed customizable hyperspectral imaging method 
based on the new design concepts and system framework of SCNN.” 
 
 
Comment: However, selling this chip (3x3/1x1 conv) as an edge NN accelerator that speeds up the 
whole NN system will have a lot of problems in speed, data movement, reconfigurability, etc. 
 
Response: Thank you again for the valuable advice. Actually, the computing speed and data 
throughput of the proposed OCL will have little impact on the performance of the whole system. 
Because the OCL performs in-sensor computing. We have further revised and explained the 
computing and data reduction ability of the proposed OCL on lines 107-113: “In this framework, 
the in-sensor OCL has adaptive computing speed based on the imaging speed of the CIS. In other 
words, the faster the camera captures, the faster the OCL computes so that the OCL can always meet 
the computing requirements of real-world vision tasks. Moreover, the reduction in data throughput 
after the OCL is 96% so that the computational load of the electrical backend can be significantly 
reduced.” Besides, the demo videos recorded in real-world applications, which are provided as 
Supplementary Movies 1~2, have also shown that the proposed SCNN can achieve high 
performance in real-time on a notebook computer without any GPU. 
Although the OCL is fixed after fabrication, the electrical backend can be reconfigured. We have 
demonstrated this feature on lines 74-77: “Hybrid optoelectronic computing hardware with an OCL 
and a reconfigurable electrical backend is employed to leverage optical superiority without 
sacrificing the flexibility of digital electronics”. The capability of reconfigurable electrical backend 
is also shown by experiments on lines 27-30 that “we employ the same SCNN chip for completely 
different real-world complex tasks, and achieve accuracies of over 96% for pathological diagnosis 
and almost 100% for face anti-spoofing at video rates.” Besides, we have addressed the explanation 
and solution of such a fixed OCL on lines 323-330: “For the OCL, it is designed to perform 
inferencing for spectral sensing and computing in edge devices rather than in-situ training. Therefore, 
for a specific application, the weights can be fixed. To achieve a completely new task at high 
performance, we need to re-design and re-fabricate the chip. For optical neural networks (ONNs) 
with weights encoded by non-tunable optical structures, we can adopt a similar strategy as Refs. 21, 
22, 24, 29, which is to design the network by electrical computing and then fabricate the optical 
computing layer for specific tasks in terminal devices for edge computing. It is a tailored chip for a 
specific task for edge computing applications.” 
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