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Supplementary Notes  

Supplementary Note 1 

The definitions of decomposition enthalpy and energy above the hull 

In this study, the decomposition energy (𝛥𝐻𝑑) is defined as the total energy difference 

between a given compound and competing compounds in a specific chemical space. It 

represents the magnitude of (in)stability with respect to phase separation1.  

𝛥𝐻𝑑 differs from the commonly used “energy above the hull”. To obtain the 𝛥𝐻𝑑 of 

a compound, the compound needed to be excluded when constructing the energy hull 

of the system in which it resides. 𝛥𝐻𝑑 refers to the distance from the energy of the 

compound to the hull. As demonstrated in Supplementary Fig. 1, 𝛥𝐻𝑑  of 𝐴4𝐵  is 

calculated as the distance from the convex hull to 𝐴4𝐵. If a compound is above the 

energy hull，the value of 𝛥𝐻𝑑  is larger than zero, corresponding to the commonly 

reported "energy above the hull". However, if the compound, such as 𝐴𝐵3, is on the 

energy convex hull, the 𝛥𝐻𝑑  of 𝐴𝐵3  represents the distance between 𝐴𝐵3  and a 

hypothetical convex hull constructed without 𝐴𝐵3 (indicated by the dashed line). In 

this case, the value of 𝛥𝐻𝑑 is negative, which quantifies the stability of the material 

and provides useful information for the uncertainty of stability assessment and the 

rationality of synthesis1, 2.  



Supplementary Note 2 

Discussion about the complementarity of different base-level models. 

To ensure complementarity we have selected domain knowledge from different 

scales: interatomic interactions, atomic properties, and EC. Models based on these 

kinds of domain knowledge each have their own advantages. More specifically, the 

input of Magpie is the statistics of various element properties, Roost considers the 

interaction between atoms through the attention mechanism, and ECCNN goes a step 

further to the level of the electron configuration of atoms. We validated this through 

error correlation analysis and entropy distribution of each model. The error correlation 

matrix is a common tool to measure the correlation between the prediction errors of 

multiple models on the same data set. The smaller the correlation, the stronger the 

complementarity. The entropy distribution is also used to analyze the difference in 

uncertainty of the models in prediction. If one model has high uncertainty on some 

samples and the other model does not, it indicates that they are complementary, as 

shown in Supplementary Fig. 3. 

From Supplementary Fig. 3(a), the three models do not have a strong correlation in 

error correlation with Pearson coefficient ranging from 0.37 to 0.49. From the sample 

entropy distribution of the models in Supplementary Fig. 3(b), there are obvious 

differences in the entropy distribution of each model. Roost is more distributed in the 

low entropy area, Magpie is more distributed in the high entropy area, and ECCNN is 

more evenly distributed. In summary, it can be concluded that the three models are 

complementary.   



Supplementary Note 3 

Discussion about integrating extra models and heterogeneous data. 

The proposed combination method, Stacked Generalization (SG), is highly flexible 

because it allows the inclusion of various types of base models. This flexibility 

enables the seamless integration of new models designed to handle different data 

types, such as numerical data, spectral data, and image data. 

When new base models are introduced, the meta-level model dynamically adjusts 

the weights for all base models during training. For example, the original ECSG 

model combines predictions from three base models (ECCNN, Roost, and Magpie), 

with the meta-level model calculating the weighted prediction: �̂� = 𝜔1�̂�1 + 𝜔2�̂�2 +

𝜔3�̂�3 + 𝜀, where �̂�1 , �̂�2 , �̂�3  are predictions from the initial models, 𝜔1, 𝜔2 , 𝜔3  are 

their corresponding weights, and 𝜀 is the interception. To incorporate additional data 

types, such as spectral data, we can introduce a new base model, K_dos_fea3, which 

extracts features from spectra using one-dimensional convolution. This model 

generates a new prediction �̂�4. Upon adding the spectral model, the meta-level model 

updates the weighted combination as follows: �̂� = 𝜔1
′
�̂�1 + 𝜔2

′
�̂�2 + 𝜔3

′
�̂�3 + 𝜔4

′
�̂�4 + 𝜀′. 

Similarly, new base models using CNNs can be introduced to handle image data, with 

the meta-model dynamically adjusting the weights for all sub-models. This modular 

approach ensures that ECSG can efficiently integrate diverse data sources, assigning 

appropriate weights to each type for accurate predictions. 



Each base-level model processes only its respective data type, and the training of 

these models remains independent. Since the inputs are not fused or converted, data 

integrity is maintained throughout the process, avoiding potential information loss.  



Supplementary Figures  
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Supplementary Fig. 1 Illustration of the definition of ΔHd by constructing a convex 

hull. 
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 Supplementary Fig. 2 Confusion matrices of ECSG and other composition-based 

models trained on MP. 



(a) (b)

 Supplementary Fig. 3 Complementarity of different base-level models. (a) Error 

correlation matrix of three base-level models. (b) Entropy Distribution of three base-

level models. 

 

 

  



Supplementary Tables  

Supplementary Table 1 The performance comparison of our proposed ECSG and other 

models trained on MP.  The best results are shown in bold, while the second results are 

underlined.  

No. Model ACC Precision Recall F1 NPV AUC AUPR 

1 ECSG 0.807 0.778 0.728 0.752 0.824 0.886 0.834 

2 Roost4 0.741 0.712 0.603 0.652 0.758 0.820 0.740 

3 CrabNet5 0.755 0.646 0.838 0.729 0.869 0.852 0.781 

4 RF 0.785 0.752 0.696 0.723 0.805 0.862 0.803 

5 Adaboost 0.689 0.637 0.531 0.579 0.716 0.747 0.649 

6 Magpie6 0.702 0.662 0.532 0.590 0.721 0.766 0.670 

7 Meredig7 0.695 0.652 0.522 0.579 0.716 0.758 0.649 

8 ElemNet8 0.726 0.653 0.684 0.667 0.780 0.719 0.732 

9 ATCNN9 0.72 0.658 0.637 0.647 0.760 0.707 0.720 

10 ECCNN 0.766 0.727 0.669 0.697 0.788 0.842 0.770 

 

 

 

Supplementary Table 2 The performance comparison of classifiers with 𝛥𝐻𝑑 threshold = 25 

meV/atom on MP.  

No. Model ACC Precision Recall F1 NPV AUC AUPR 

1 ECSG 0.837 0.843 0.889 0.865 0.827 0.908 0.921 

2 Roost 0.711 0.595 0.875 0.708 0.878 0.813 0.852 

3 CrabNet 0.816 0.789 0.935 0.856 0.878 0.892 0.903 

4 RF 0.819 0.825 0.877 0.850 0.808 0.891 0.912 

5 Adaboost 0.714 0.727 0.821 0.771 0.687 0.772 0.814 

6 Magpie 0.795 0.802 0.865 0.832 0.782 0.866 0.891 

7 Meredig 0.787 0.791 0.868 0.828 0.780 0.857 0.880 

8 ElemNet 0.782 0.799 0.841 0.820 0.754 0.842 0.865 

9 ATCNN 0.785 0.803 0.843 0.822 0.757 0.850 0.875 

10 ECCNN 0.763 0.785 0.821 0.803 0.726 0.830 0.862 

 

 

Supplementary Table 3 The performance comparison of classifiers with 𝛥𝐻𝑑 threshold = 40 

meV/atom on MP. 

No. Model ACC Precision Recall F1 NPV AUC AUPR 

1 ECSG 0.848 0.857 0.919 0.887 0.827 0.911 0.953 

2 Roost 0.668 0.552 0.914 0.688 0.898 0.794 0.837 

3 CrabNet 0.830 0.819 0.948 0.879 0.864 0.897 0.929 

4 RF 0.830 0.841 0.909 0.874 0.803 0.894 0.933 

5 Adaboost 0.731 0.750 0.877 0.809 0.671 0.772 0.851 

6 Magpie 0.809 0.820 0.905 0.860 0.782 0.869 0.893 

7 Meredig 0.800 0.808 0.907 0.855 0.778 0.858 0.876 

8 ElemNet 0.801 0.823 0.882 0.852 0.749 0.846 0.863 

9 ATCNN 0.798 0.822 0.880 0.850 0.745 0.851 0.874 

10 ECCNN 0.768 0.801 0.855 0.827 0.694 0.823 0.852 



Supplementary Table 4 The performance comparison of regressors for 𝛥𝐻𝑑 on MP. 

No. Model MAE/eV per atom 

1 ECSG 0.064±0.001 

2 Roost 0.067±0.006 

3 CrabNet 0.070±0.004 

4 RF 0.078±0.001 

5 Adaboost 0.506±0.008 

6 Magpie 0.086±0.001 

7 Meredig 0.086±0.002 

8 ElemNet 0.073±0.009 

9 ATCNN 0.071±0.005 

10 ECCNN 0.086±0.001 

Note: The best results are shown in bold, while the second results are underlined. 

 

Supplementary Table 5 The performance comparison of our proposed ECSG and other 

models trained on OQMD.  

No. Model ACC Precision Recall F1 NPV AUC AUPRC 

1 ECSG 0.940 0.806 0.601 0.688 0.952 0.967 0.804 

2 Roost 0.928 0.722 0.614 0.640 0.954 0.958 0.756 

3 CrabNet 0.914 0.643 0.499 0.558 0.940 0.929 0.637 

4 RF 0.927 0.766 0.485 0.594 0.939 0.948 0.721 

5 Adaboost 0.890 0.490 0.059 0.106 0.895 0.808 0.313 

6 Magpie 0.912 0.708 0.331 0.451 0.923 0.923 0.604 

7 Meredig 0.905 0.721 0.223 0.341 0.912 0.904 0.552 

8 ElemNet 0.907 0.618 0.424 0.499 0.932 0.923 0.584 

9 ATCNN 0.904 0.616 0.349 0.441 0.924 0.908 0.543 

10 ECCNN 0.902 0.604 0.328 0.423 0.922 0.895 0.520 

Note: The best results are shown in bold, while the second results are underlined. 

 

Supplementary Table 6 The performance comparison of our proposed ECSG and other 

models trained on JARVIS.  

No. Model ACC Precision Recall F1 NPV AUC AUPRC 

1 ECSG 0.970 0.825 0.813 0.819 0.983 0.988 0.914 

2 Roost 0.957 0.730 0.797 0.757 0.981 0.984 0.853 

3 CrabNet 0.954 0.708 0.768 0.735 0.979 0.981 0.824 

4 RF 0.954 0.767 0.645 0.701 0.968 0.973 0.767 

5 Adaboost 0.940 0.680 0.543 0.604 0.959 0.967 0.704 

6 Magpie 0.939 0.675 0.527 0.592 0.957 0.966 0.700 

7 Meredig 0.950 0.746 0.606 0.669 0.964 0.979 0.798 

8 ElemNet 0.944 0.636 0.806 0.705 0.982 0.972 0.629 

9 ATCNN 0.945 0.673 0.681 0.675 0.971 0.973 0.748 

10 ECCNN 0.944 0.719 0.553 0.624 0.960 0.969 0.721 

 

 



Supplementary Table 7 The performance of integrating the three base models using 

different combination methods. 

Methods ACC Precision Recall F1 NPV AUC AUPR 

SG 0.807 0.778 0.728 0.752 0.824 0.886 0.834 

Averaging 0.788 0.772 0.673 0.719 0.797 0.865 0.804 

Voting 0.763 0.726 0.663 0.693 0.785 0.747 0.762 

 

 

Supplementary Table 8 Performance of ECSG after integrating CGCNN on the MP-

structure database. ECSG+C represents the model after integrating CGCNN into ECSG, and 

ACC_M represents the accuracy of correctly distinguishing polymorphs. 

 Accuracy Precision Recall F1 NPV AUC AUPR ACC_M 

ECSG 0.826 0.719 0.557 0.628 0.853 0.879 0.721 0 

CGCNN 0.835 0.738 0.578 0.648 0.860 0.899 0.746 0.193 

ECSG+C 0.844 0.753 0.607 0.672 0.869 0.905 0.769 0.121 

 

Supplementary Table 9 The performance comparison in predicting perovskite halides in 

unknown space. 

No. Model ACC F1 AUC AUPRC 

1 ECSG 0.790 0.373 0.758 0.474 

2 Roost 0.654 0.408 0.730 0.375 

3 CrabNet 0.488 0.307 0.513 0.234 

4 RF 0.750 0.285 0.702 0.390 

5 AdaBoost 0.571 0.352 0.593 0.337 

6 Magpie 0.788 0.326 0.708 0.429 

7 Meredig 0.752 0.248 0.733 0.371 

8 ElemNet 0.718 0.337 0.701 0.353 

9 ATCNN 0.675 0.404 0.691 0.345 

10 ECCNN 0.337 0.327 0.451 0.207 

 

 

 

Supplementary Table 10 The performance comparison in predicting Li-containing oxides in 

unknown space. 

No. Model ACC F1 AUC AUPRC 

1 ECSG 0.891 0.495 0.848 0.510 

2 Roost 0.813 0.408 0.802 0.417 

3 CrabNet 0.778 0.403 0.779 0.407 

4 RF 0.886 0.457 0.792 0.450 

5 AdaBoost 0.877 0.239 0.754 0.340 

6 Magpie 0.880 0.449 0.799 0.438 

7 Meredig 0.880 0.302 0.789 0.385 

8 ElemNet 0.802 0.219 0.736 0.385 

9 ATCNN 0.863 0.315 0.741 0.346 

10 ECCNN 0.880 0.063 0.749 0.314 

 



Supplementary Table 11 The performance comparison in predicting transition metal oxides 

in unknown space. 

No. Model ACC F1 AUC AUPRC 

1 ECSG 0.843 0.202 0.819 0.507 

2 Roost 0.841 0.219 0.799 0.464 

3 CrabNet 0.836 0.294 0.792 0.440 

4 RF 0.833 0.150 0.779 0.427 

5 AdaBoost 0.828 0.058 0.736 0.358 

6 Magpie 0.841 0.224 0.792 0.459 

7 Meredig 0.843 0.304 0.808 0.470 

8 ElemNet 0.830 0.006 0.522 0.474 

9 ATCNN 0.830 0.238 0.753 0.390 

10 ECCNN 0.831 0.013 0.741 0.358 

 

Supplementary Table 12 The performance of ECSG and comparison models testing in the 

2DMatpeida. 

No. Model ACC Precision Recall F1 NPV AUC AUPR 

1 ECSG 0.737 0.763 0.775 0.769 0.701 0.790 0.786 

2 Roost 0.687 0.730 0.71 4 0.718 0.644 0.752 0.769 

3 CrabNet 0.691 0.671 0.892 0.766 0.755 0.752 0.768 

4 RF 0.711 0.760 0.714 0.737 0.655 0.778 0.807 

5 Adaboost 0.703 0.730 0.755 0.742 0.666 0.759 0.760 

6 Magpie 0.706 0.750 0.721 0.735 0.654 0.777 0.790 

7 Meredig 0.705 0.735 0.748 0.741 0.665 0.763 0.770 

8 ElemNet 0.649 0.716 0.639 0.664 0.604 0.719 0.718 

9 ATCNN 0.664 0.724 0.655 0.686 0.604 0.733 0.744 

10 ECCNN 0.606 0.678 0.578 0.623 0.540 0.649 0.696 

 

  



Supplementary Table 13 VASP calculation results for stable perovskite oxides recommended 

by ECSG. The unit of total energy is eV per unit cell, and the unit of formation energy is eV 

per atom. 

No. Compounds Total energy Formation energy Stability on Stability on Stability on 

    MP OQMD JARVIS 

1 Na2WNiO6 -65.853 -2.299 TRUE TRUE TRUE 

2 Na2MnTbO6 -62.898 -2.498 TRUE TRUE TRUE 

3 Ba2SmWO6 -79.120 -3.611 TRUE TRUE TRUE 

4 YbPrMnNiO6 -72.760 -3.000 TRUE TRUE TRUE 

5 PrGdV2O6 -84.592 -2.607 FALSE FALSE FALSE 

6 TmInMn2O6 -73.733 -2.668 TRUE TRUE TRUE 

7 LuPmCo2O6 -73.406 -2.842 TRUE TRUE TRUE 

8 LaGdNi2O6 -71.186 -1.912 FALSE FALSE TRUE 

9 YPdWCrO6 -82.612 -2.686 TRUE TRUE TRUE 

10 YBaNbCoO6 -79.564 -3.247 TRUE TRUE TRUE 

11 CuNdVCoO6 -71.906 -2.535 TRUE TRUE TRUE 

12 NaGeFeCoO6 -59.822 -1.682 FALSE TRUE TRUE 

13 NaMnWAlO6 -77.405 -2.873 TRUE TRUE TRUE 

14 ZrLiWVO6 -82.252 -2.826 TRUE TRUE TRUE 

15 HoMgMnMoO6 -75.066 -2.738 FALSE FALSE TRUE 

16 DyRbYMoO6 -77.132 -3.273 TRUE TRUE TRUE 

17 KScWSrO6 -72.552 -2.896 FALSE FALSE FALSE 

18 HoPrMnCoO6 -78.255 -3.112 TRUE TRUE TRUE 

19 HoMnMgMoO6 -75.956 -2.827 TRUE TRUE TRUE 

20 HoYbCrTiO6 -82.337 -3.717 TRUE TRUE TRUE 

21 LiDyYbMoO6 -71.594 -3.119 TRUE TRUE TRUE 

22 LiYbMoDyO6 -73.111 -3.271 TRUE TRUE TRUE 

23 YRbMoDyO6 -77.251 -3.285 TRUE TRUE TRUE 

24 CrGdWNbO6 -86.851 -2.770 FALSE FALSE TRUE 

25 NaTlFeMnO6 -60.931 -1.813 TRUE TRUE TRUE 

26 WGdCrNbO6 -82.945 -1.466 FALSE FALSE FALSE 

27 SrKWScO6 -79.139 -3.555 TRUE TRUE TRUE 

28 SrYbFeBiO6 -63.481 -2.640 TRUE TRUE TRUE 

29 LuAgFeMnO6 -70.250 -2.377 TRUE TRUE TRUE 

30 KScMnTiO6 -77.666 -2.872 FALSE TRUE TRUE 

31 KGdCuVO6 -67.731 -1.786 FALSE FALSE TRUE 

32 KGdWMgO6 -75.396 -2.415 FALSE FALSE TRUE 

33 MoSrWCrO6 -81.562 -2.491 TRUE FALSE TRUE 

34 NdCsCrZnO6 -64.256 -2.618 TRUE TRUE TRUE 

35 ScCaMnVO6 -80.052 -3.198 TRUE TRUE TRUE 



Supplementary Table 14 VASP calculation results for stable perovskite oxides recommended 

by Tala.10. The unit of total energy is eV per unit cell, and the unit of formation energy is eV 

per atom. 

No. Compounds Total energy Formation energy Stability on Stability on Stability on 

    MP OQMD JARVIS 

1 TeRbReSrO6 -62.108 -1.959 FALSE FALSE TRUE 

2 NdTaReSrO6 -77.074 -2.206 FALSE FALSE FALSE 

3 FeAuReSrO6 -63.617 -1.574 FALSE FALSE FALSE 

4 PbIrReSrO6 -65.133 -1.419 FALSE FALSE FALSE 

5 NbLaReSrO6 -74.556 -2.113 FALSE FALSE FALSE 

6 NbLaBaReO6 -72.698 -1.904 FALSE FALSE FALSE 

7 NdNbReCdO6 -73.250 -2.077 FALSE FALSE FALSE 

8 PrTaMgReO6 -78.822 -2.388 FALSE FALSE FALSE 

9 TcAuReSrO6 -64.868 -1.284 FALSE FALSE FALSE 

10 PrNbMgReO6 -78.459 -2.528 FALSE FALSE FALSE 

11 MoSmReSrO6 -73.192 -2.244 FALSE FALSE FALSE 

12 NaTeReSrO6 -61.902 -1.905 FALSE FALSE FALSE 

13 WNdReSrO6 -76.940 -2.526 FALSE FALSE FALSE 

14 WPdReSrO6 -67.101 -1.501 FALSE FALSE FALSE 

15 HfNdMgReO6 -81.463 -2.844 FALSE FALSE FALSE 

16 ZrNdReSrO6 -77.656 -2.595 FALSE FALSE FALSE 

17 CrNdReSrO6 -77.741 -2.693 TRUE FALSE TRUE 

18 NbLaMgReO6 -77.058 -2.372 FALSE FALSE FALSE 

19 BeAuReSrO6 -58.267 -1.286 FALSE FALSE FALSE 

20 NiTlReSrO6 -62.661 -1.867 FALSE FALSE TRUE 

21 NdNbReSrO6 -76.274 -2.301 FALSE FALSE FALSE 

22 RhPrReCdO6 -68.668 -1.894 FALSE FALSE TRUE 

23 TeFeReSrO6 -64.136 -1.639 FALSE FALSE FALSE 

24 RuHgReSrO6 -61.543 -1.357 FALSE FALSE FALSE 

25 PrNbReSrO6 -75.041 -2.177 FALSE FALSE FALSE 

26 NdTaMnTiO6 -85.703 -2.943 FALSE FALSE FALSE 

27 TaTiReSrO6 -70.910 -1.277 FALSE FALSE FALSE 

28 CsNiReSrO6 -62.788 -2.026 FALSE FALSE TRUE 

29 RhVReSrO6 -67.798 -1.468 FALSE FALSE FALSE 

30 RhLaReSrO6 -71.547 -2.088 FALSE FALSE FALSE 

31 RhPrReSrO6 -72.595 -2.208 FALSE FALSE FALSE 

32 NbLaReCdO6 -70.940 -1.829 FALSE FALSE FALSE 

33 TaLaMgReO6 -77.546 -2.245 FALSE FALSE FALSE 

34 MoPmReSrO6 -78.511 -2.772 TRUE TRUE TRUE 

35 CrPdReSrO6 -67.525 -1.630 FALSE FALSE FALSE 

 

 

 

 

 

 

 



Supplementary Table 15 The Names and the number of data-points of databases in this 

study. 

 

  

Database Total number Number of positive Number of negative 

  samples samples 

MP 85,014 33,998 51,016 

OQMD 503,514 56,939 446,575 

JARVIS 54,592 4,434 50,158 

Li-containing oxides 6,168 750 5,418 

Transition-metal oxides 7,137 1,211 5,926  

Perovskite oxides 3,469 1,514 1,955 

MP-structure 125,45, 33,001 92,450 

C2DB 13,408 7,441 5,967 

2DMatpeida 4,743 2,682 2061 
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