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1. Potential cancer driver genes

Table S1.: Potential cancer driver genes

1 TP53BP1 2 EEF1A1 3 MEIS1 4 MDC1 5 PRKCA 6 UBE2I 7 ARRB1 8 PRKCZ 9 HIST1H3F 10 BMP4

11 VCAM1 12 SOS1 13 HSPA1B 14 CALM2 15 PPARGC1A 16 PLCG2 17 TNFRSF1A 18 UBB 19 CUBN 20 CHEK1

21 TERF1 22 COL11A1 23 PRPF8 24 HIST1H3D 25 PPP2R1B 26 GNB1 27 DYNC1H1 28 KDM5B 29 TGFB2 30 MYLK

31 SMARCC2 32 FANCM 33 TF 34 PAXIP1 35 ACTN2 36 RELB 37 PIK3CG 38 RPS27A 39 VCP 40 ACTB

41 APP 42 RELN 43 LRP1 44 FGF9 45 TAB2 46 NCOA6 47 IGF2R 48 PIK3CD 49 YAP1 50 CDH2

51 RARB 52 PPP1CA 53 MAP3K5 54 TRIM28 55 NFKB1 56 HDAC1 57 DSP 58 PTPRJ 59 TCF4 60 ZBTB7A

61 DNM1 62 LYN 63 EGLN3 64 NR2F2 65 NGF 66 TOP2A 67 RIMS2 68 HIST1H3H 69 WNT2 70 NEB

71 WNT5A 72 ANXA1 73 PXN 74 ZNF263 75 NOS1 76 FLG 77 HDAC2 78 RFX5 79 HUWE1 80 SHC1

81 TBP 82 IRF1 83 AHR 84 DLG1 85 HDAC6 86 HIPK2 87 IRS1 88 PAK2 89 SDC2 90 ID2

91 LAMB1 92 GRB2 93 RUNX2 94 MAP3K3 95 IL16 96 F2 97 COPS5 98 SIRT1 99 TLN1 100 LRP2

101 PRKCE 102 FZD4 103 SMARCA2 104 EPHA2 105 REST 106 GSN 107 GNAL 108 NALCN 109 GNGT1 110 RYR1

111 NEDD4 112 IKBKG 113 RASA1 114 ACAN 115 TTN 116 ITGB1 117 APOB 118 PPP2CA 119 WNT1 120 PIK3R2

121 NFKBIA 122 LRP6 123 PTK2B 124 CSNK2A1 125 PDPK1 126 ANK2 127 RYK 128 CDK1 129 CEBPB 130 ATF2

131 SOD1 132 SIN3A 133 MAPT 134 MAPK3 135 CFTR 136 RXRA 137 RELA 138 ATXN1 139 BTRC 140 HCK

141 KHDRBS1 142 ITGA1 143 GAPDH 144 GABPA 145 LRRK2 146 MAFF 147 OBSCN 148 CALM3 149 INS 150 YY1

151 ACTL6A 152 COL4A1 153 EFTUD2 154 MAFK 155 ABCA1 156 SIX5 157 RYR3 158 TRAF6 159 EXO1 160 PLK1

161 HIST1H3J 162 NAV3 163 IRAK1 164 UCHL5 165 HDAC5 166 ZNF143 167 PRKACB 168 SETDB1 169 CSF2RA 170 HSPA1A

171 CAT 172 SUMO1 173 HDAC3 174 UNC79 175 PPP2R5C 176 DNAH5 177 ANK3 178 NR3C1 179 HIST1H3E 180 PLG

181 RYR2 182 HSPB1 183 UBQLN4 184 KAT5 185 TNFSF10 186 NR2C2 187 JAG1 188 PRKCQ 189 UBC 190 JUND

191 NR4A1 192 TGFBR1 193 COL1A2 194 HSPG2 195 CUL1 196 CTBP2 197 FBN1 198 GSK3B 199 E2F4 200 CDK2

201 PBX3 202 MAPK14 203 YES1 204 IL2RG 205 HSPA4 206 BUB1 207 YWHAZ 208 CEBPD 209 IKBKE 210 VCAN

211 SOCS3 212 HSPA5 213 ITGB3 214 USF1 215 PLEC 216 ATF3 217 LEP 218 RPS6KA2 219 DST 220 SPTBN1

221 CTNNA1 222 HIST1H3I 223 MED1 224 STAT5A 225 SPTAN1 226 CHUK 227 HIST1H3G 228 VCL 229 TAF1 230 TFAP2C

231 IGF2 232 ACTA1 233 ALB 234 NFATC1 235 FOXA2 236 SPI1 237 U2AF2 238 FREM2 239 SREBF2 240 SMARCC1

241 PAX6 242 PIK3R3 243 TFAP2A 244 FOS 245 PTK2 246 UBA52 247 IFNG 248 ISG15 249 NOTCH3 250 BATF

251 NGFR 252 SP1 253 SPTA1 254 PTPN1 255 HNF4G 256 GTF2B 257 TP73 258 TJP1 259 BMP7 260 TYK2

261 BAG3 262 ITPR1 263 ICAM1 264 SMAD7 265 ZAP70 266 HIST1H3C 267 NFYB 268 CSMD1 269 GAB2 270 POLR2A

271 STAT1 272 SMC3 273 USH2A 274 PRKDC 275 ACTA2 276 HDAC4 277 MEF2C 278 IQGAP1 279 BMP2 280 GLI3

281 GRIP1 282 TRAF2 283 ITCH 284 HGS 285 FN1 286 HSPD1 287 ELF1 288 CHD3 289 HTT 290 JUP

291 INSR 292 SYNE1 293 IRS2 294 COL5A1 295 CALM1 296 LAMA1 297 HSPA8 298 SLC2A1 299 MACF1 300 ITGB4

301 GNAI1 302 IL2RB 303 CACNA1A 304 MCL1 305 FLNC 306 PRKCD 307 DLG4 308 NCAM1 309 HNF4A 310 SNCA

311 FYN 312 DMD 313 CDC42 314 SRF 315 MEF2A

We use SGCD to train and predict on six PPIs. Then, by taking the union of the
top 100 predicted cancer driver genes from each PPIs, a list of 315 potential cancer
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driver genes is obtained, as shown in Table. S1. To further analyze these potential
cancer genes, we compare them with two lists of candidate cancer driver genes derived
from literature-based sources The first source is the CancerMine [1], a text-mined and
regularly updated resource which catalogs drivers, oncogenes and tumor suppressor
genes (TSGs) across various cancer types. The second source is a high-confidence gene
set collected from the Candidate Cancer Gene Database (CCGD) [2], which includes
all published data from transposon-based forward genetic screens for cancer. Overall,
approximately 91% (287/315) of the potential driver genes have evidences supporting
their association with cancer. Furthermore, among these evidence-supported genes,
over 88% (253/287) are supported by CancerMine, over 76% (220/287) are supported
by CCGD and over 64% (186/287) are supported by both CancerMine and CCGD.
These experimental results further substantiate the strong reliability of the cancer
driver genes identified by SGCD.

2. The homophily ratio of PPIs

To assess the level of heterophily in PPIs, we introduce the homophily ratio to de-
termine whether a network exhibits homophilic or heterophilic characteristics [3]. The
homophily ratio is calculated as the proportion of neighboring nodes belonging to the
same class relative to the total number of neighboring nodes in the graph, and can be
defined as follows:

h =
1

|V|
∑
vi∈V

|{vj |vj ∈ Ni, Yj = Yi}|
|Ni|

(1)

where V is the set of nodes, Ni is the neighbor set of node vi, Yi is label of node vi.
Graphs that exhibit strong homophily are characterized by a high homophily ratio
approaching 1, whereas graphs with heterophily (i.e., low or weak homophily) have an
edge homophily ratio that tends toward 0 [4].

The homophily ratios of PPIs are shown in Table S2. The results show that PPIs
from different databases all exhibit low homophily ratios, indicating that there are a
small number of similar nodes among the neighbors of driver genes. This also suggests
that there are too many inter-class edges in the PPIs, which leads to the confusion
of features between different types of nodes after aggregation, making them indistin-
guishable and thus affecting the performance of GCNs.

Table S2.: The overview of PPIs

Name Number of Edges Number of Nodes Number of Positive Samples Number of Negative Samples Homophily Ratio

CPDB 252,189 13,627 796 2187 0.1568

STRINGdb 336,549 13,179 783 2415 0.1889

MULTINET 109,567 14,398 790 3709 0.1002

PCNet 2,724,724 19,781 859 5483 0.1911

IRefIndex 371,568 17,013 836 4056 0.1678

IRefIndex 2015 91,809 12,129 785 1973 0.1547
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3. Acquisition of pan-cancer multiomics data

We collect cancer genomics (mutations and copy number), epigenomics (DNA methy-
lation), and transcriptomics (gene expression) from the cancer genome atlas (TCGA,
https://portal.gdc.cancer.gov/), encompassing over 29,446 samples across 16 dis-
tinct cancer types, including Bladder Urothelial Carcinoma (BLCA), Breast invasive
carcinoma (BRCA), Cholangiocarcinoma (CHOL), Colon adenocarcinoma (COAD),
Esophageal carcinoma (ESCA), Head and Neck squamous cell carcinoma (HNSC),
Kidney renal clear cell carcinoma (KIRC), Kidney renal papillary cell carcinoma
(KIRP), Liver hepatocellular carcinoma (LIHC), Lung adenocarcinoma (LUAD),
Lung squamous cell carcinoma (LUSC), Pancreatic adenocarcinoma (PAAD), Prostate
adenocarcinoma (PRAD), Rectum adenocarcinoma (READ), Thyroid carcinoma
(THCA), and Uterine Corpus Endometrial Carcinoma (UCEC). For each gene, we cal-
culate gene mutation rate, copy number aberrations (CNAs), differential DNA methy-
lation rate, and differential gene expression rate across the 16 cancer types:

• Gene mutation rate
The mutation rate of each gene in a given cancer type is defined as the number

of non-silent mutations in that gene, divided by its exonic length. To compute
gene mutation rate, we acquire exon lengths genomic annotation data obtained
from GENCODE [5]. The gene mutation rate is calculated as:

mf c
i =

1

|pc|
∑
p∈pc

Fp,i (2)

For cancer type c, Pc is the set of patients and Fp,i is the mutation frequency for
the sample from the patient p of the gene i.

• CNAs
Gene-associated CNAs are collected from TCGA data, encompassing both

amplifications and deletions, while ultramutated samples from syn1729383 are
excluded from our study. The copy number rate for each gene is defined as the
total number of times that gene is either amplified or deleted in a specific cohort.

• Differential DNA methylation rate
DNA methylation data is collected from the Illumina Human Methylation

450K BeadChip for tumor and corresponding tumor-adjacent normal tissue sam-
ples. The differential DNA methylation rate is calculated as:

dmc
i =

1

Nd

∑
p∈pc

(
βt
p,i − βn

p,i

)
(3)

where βt
p,i and βn

p,i are the DNA methylation level for the tumor sample and the
normal sample respectively from the patient p of the gene i in cancer type c.
Nd is the number of patients who have paired tumor samples and corresponding
tumor-adjacent tissue samples (normal samples).

• Differential gene expression rate
We filter out genes whose number of zero values are more than 10% of the

total number of samples to reduce the impact of noise. Subsequently, all the data
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are log2-transformed. The differential gene expression rate is calculated as:

geci =
1

Ne

∑
p∈pc

log2

(
V t
p,i

V n
p,i

)
(4)

where V t
p,i and V n

p,i are the gene expression level for the tumor sample and the
normal sample respectively from the patient p of the gene i in cancer type c.
Ne is the number of patients who have both tumor and normal samples in gene
expression data.

By concatenating these vectors across all cancer types, we obtain a 64-dimensional
feature vector for each gene. Finally, feature-wise min-max normalization is applied to
each gene.

4. Drug sensitivity analysis

Fig. S1.: Drug sensitivity analysis of SGCD.
(a) Drug sensitivity analysis on CPDB. (b) Drug sensitivity analysis on STRINGdb.
(c) Drug sensitivity analysis on PCNet. (d) Drug sensitivity analysis on IRefIndex.
(e) Drug sensitivity analysis on IRefIndex-2015.

We select the top 10 predicted cancer driver genes in each dataset for Cancer Ther-
apeutics Response Portal (CPTR) drug sensitivity analysis using Gene Set Cancer
Analysis (GSCA, http://bioinfo.life.hust.edu.cn/GSCA) [6, 7]. Fig. S1 shows the
drug sensitivity analysis results for different datasets including CPDB, STRING, PC-
Net, IRefIndex, and IRefIndex-2015. The results of the drug sensitivity analysis reveal
that cancer driver genes identified by SGCD provide crucial insights into potential
drug targets, enhancing both the effectiveness and precision of cancer treatments. For
example, BCL-2 family inhibitors, such as Navitoclax, have been investigated for their
potential as anti-cancer therapies. Navitoclax induces apoptosis in cancer cells by dis-
rupting the interactions of anti-apoptotic proteins[8]. Docetaxel (DTX) is recognized as
one of the most potent anticancer agents, with broad applicability across various cancer
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treatments[9]. OSI-027, an orally bioavailable compound, has demonstrated anti-cancer
activity in multiple cancer cell lines and tumor xenograft models[10]. Vorinostat has
also been evaluated in numerous clinical trials for treating a wide range of hematolog-
ical and solid tumors, including lymphoma, breast cancer, non-small cell lung cancer
(NSCLC), glioblastoma multiforme, and head and neck squamous cell carcinomas[11].

5. Gene module dissection in pan-cancer

We employ the model-agnostic approach GNNExplainer[12] to interpret the contribu-
tion factors to cancer driver genes within the multi-omics, and further identify the
cancer gene modules. After that, we compare the topological structures of cancer gene
modules and non-cancer gene modules using graphical metrics, including PageRank,
clustering coefficient, degree centrality, and betweenness centrality[13].

• PageRank

The PageRank algorithm can reflect the importance or centrality of nodes in a
network, and the PageRank centrality of a node i is calculated as follows:

CPR(i) = d

 ∑
j∈Γ−(i)

CPR(j)

|Γ+(j)|

+
1− d

n
(5)

where Γ−(j) is the set of nodes pointing to node i, Γ+(j) is the set of nodes pointed
to by node j, d is a damping factor, and n represents the number of nodes

• Clustering coefficient

Clustering coefficient measures the proportion of closed triangles within a node’s
local neighborhood. The commonly used local variant of the clustering coefficient is
computed as follows:

Cu =
|(v1, v2) ∈ E : v1, v2 ∈ N (u)|(

du

2

) . (6)

Where the numerator counts the number of edges between the neighbors of node u,
N (u) = {v ∈ V : (u, v) ∈ E} denotes the neighborhood of node u, and the denominator
calculates the total number of pairs of nodes in u’s neighborhood.

• Degree centrality

Degree centrality is a simple and effective local centrality metric that measures the
centrality of a node based on the number of links it has with its neighbors. Degree
Centrality can be defined as follows:

CD(i) =
1

n− 1

n∑
j=1

aij (7)

where aij is an element of the adjacency matrix A, indicating the connectivity between
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nodes i and j. Specifically, aij = 1 if a link exists between nodes i and j, otherwise
aij = 0.

• Betweenness centrality

Betweenness centrality quantifies a node’s centrality by calculating the ratio of the
number of shortest paths between any pair of nodes that pass through the given node
to the total number of shortest paths between that pair. It can be defined as follows:

CB(i) =
∑

i ̸=j ̸=k∈V

|SPjik|
|SPjk|

(8)

where SPjk represents the set of shortest paths between nodes j and k, while SP jik

denotes the subset of these shortest paths that pass through node i.

Fig. S2.: Graphical metrics of gene modules
(a) Topological analysis on CPDB. (b) Topological analysis on STRINGdb. (c) Topo-
logical analysis on PCNet. (d) Topological analysis on IRefIndex. (e) Topological
analysis on IRefIndex-2015.

Fig. S2 gives the results of comparison of the topological structures of cancer gene
modules and non-cancer gene modules using graphical metrics in different datasets in-
cluding CPDB, STRING, PCNet, IRefIndex, and IRefIndex-2015, and reveals a strik-
ing difference between cancer gene modules and non-cancer gene modules. Specifically,
the results indicate significant differences in the topological structures between cancer
and non-cancer gene modules. This finding is supported by a highly significant p-value
from t-test, which underscores the robustness of the observed difference.
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