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Supplementary Note 1: Details of experiments

In this work the used optical frequency comb is a soliton crystal microcomb, which arises from
the optical parametric oscillation in a single integrated micro-ring resonator (MRR). The specific
process of generating the microcomb lines is slowly tuning the wavelength of the pump laser to
approach the optimal position, until achieving the desired soliton crystal oscillation state. The used
integrated MRR has a free spectral range (FSR) spacing of ~50.2 GHz and generates a soliton
crystal with a ~0.4 nm spacing. The generated soliton crystal microcomb with a pump wavelength
at 1570.62 nm offers over 90 channels within ~40 nm. The optical spectrum of experimentally
generated optical frequency comb is given in Supplementary Figure 1(a). The generated Kerr
microcomb operates in a stable soliton crystal oscillation state, and that the power of the comb
remains constant over a certain period. In our previous work, we have measured the microcomb
power stability over 66 hours, with the optical spectrum captured every 15 minutes. The extracted
relative standard deviation was -14 dB over 66 hours, indicating that the microcomb source’s
stability can well support our convolution accelerator.

From the generated microcomb lines, we choose the half of microcomb lines inside the selected
optical bands as the synaptic weights via picking one of the two adjacent lines, which are shown
as Supplementary Figure 1(c) and Supplementary Figurel(d). As for the selected microcomb lines
in Supplementary Figure 1(d), the same operated method to take the half of optical wavelengths
as the real-part weights is conducted, and the other is used for mapping the imaginary parts of the
complex-valued kernel, jointly achieving the mapping of the complex-valued kernel in HH-
channel. The process can be illustrated in Supplementary Figure 1(d) and Figure 1(e). In parallel,
the remaining half of microcomb lines in Supplementary Figure 1(b) will be utilized to map the
complex-valued kernel in the HV-channel in the same manner.

As is shown in Supplementary Figure 1(f), the operation of selecting, shaping and de-multiplexing
the microcomb lines for implementing mapping the real and imaginary parts of multiple spatially
parallel complex-valued convolutional kernels are actually performed by a 1x4 waveshaper
(Waveshaper 4000A), where different selected microcomb sub-bands for mapping one set of
synaptic weights can be output at multiple output ports. As a result, the wavelength spacing
between the adjacent wavelength channels inside real-part or imaginary part optical sub-bands is
equal to the four times of wavelength spacing of the generated soliton crystal microcomb (see
Supplementary Figure2(e) and Figure2(f)). At the same sequence position, the wavelength
differences between two optical sub-bands are always the double of wavelength spacing of the
microcomb. The novel method to select the microcomb lines for mapping the weights makes the
available optical bandwidth inside the single wavelength channel significantly improved without
sacrificing any microcomb line and computing parallelism. More importantly, the needed
dispersive delay induced by the transmitted optical fibre obtains considerable reduction, thereby
leading to effectively weakening effects of the power fading arising from the fibre dispersion.
Specifically, in the designed photonic neuromorphic hardware, the occupied bandwidth of the
transmitted processed signals in the single wavelength channel is about 28 GHz, inside which there
is no power fading induced by the optical fibre dispersion.

As for the optical power of the microcomb and the optical losses encountered within the system,
we use the optical input with the power of ~30.5dBm into the micro-ring to generate the
microcomb in this work, and the total optical output power of the 18 comb lines used in the
CVEOM scheme is ~20 dBm. The measured optical spectrum of the microcomb after 20dB
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attenuation is shown in Supplementary Figure 1(a), and the microcomb generation system is shown
in Supplementary Figure 1(b). We used an erbium-doped amplifiers (EDFA) in the CVEOM
scheme, which have a total power consumption of ~200 mW, to compensate for the optical losses
of the comb shaping and modulators so that the total optical input power of the photodetectors was
at ~7 dBm, corresponding to a root-mean-square voltage of ~100 mVrms for the received
electronic signal (with a responsivity of ~0.4 A/W and 50 Q impedance).

The electrical signal-to-noise ratio (ESNR) of our experimental system was mainly subject to our
external equipment rather than the CVOCA itself: the arbitrary waveform generator (Keysight
8196, Effective Number of Bits = 5.4) has an effective ESNR of 5.4x6=32.4 dB for the computing
system; the oscilloscope (Lecory 830, vertical noise floor = 2.90 mVrms) has an effective ESNR
of 20-1og10(100/2.90) = 30.75 dB for the computing system. Due to limited experimental
capabilities for accurate ESNR characterization, we used experimentally measured waveforms to
roughly estimate the ESNR of the computing system as 36.57 dB (with <10 dB ESNR
enhancement using averaging), close to the upper limit of the external equipment, thus indicating
that the CVOCA would have a similar, if not higher, ESNR.

Supplementary Note 2: Network training

For the MINIST handwritten digit recognition task, data points in the top half of each image are
assigned to the real part and points in the bottom half are assigned to the imaginary part. We note
that here the MNIST task served as a benchmark to verify the performance of the CVOCA in
convolving complex-valued data, and the real-to-complex conversion method [58] does not
guarantee a better performance than real-valued operators. Further optimization of this method or
alternative Fourier transform-based methods are necessary to reveal complex-valued operators’
advantages for real-valued data. The training set consists of 60,000 images, and the testing set
contains 10,000 images. The network includes a convolutional layer (2 kernels), a ReLU activation
function, and a fully connected layer. The convolutional kernel size is 3x3, and the fully connected
layer comprises 208 nodes. The convolution layer has a vertical stride of 3. We trained the network
using Cross-Entropy loss for 20 epochs, employing the backpropagation algorithm with Stochastic
Gradient Descent. The momentum was set to 0.9, the batch size to 64, and the learning rate to 0.01.
The entire network performs 32,032 operations per image, with the convolutional layer accounting
for 14,976 operations, which is 45% of the total operations needed. The in-silico recognition
accuracy of the experimentally test 500 dataset is 92.8%. We note that, although the recognition
accuracy did not show significant improvement, in contrast to a network with a single fully
connected layer (10 neurons, each with 784 synaptic weights, 784x10=7840 real-valued synaptic
weights in total) [s1], the parametric complexity can be significantly reduced (208x10=2080
complex-valued synaptic weights in the fully connected layer, 3x3x2=18 complex-valued synaptic
weights in the convolutional layer).

For the SAR image recognition task, we shuffled the data in the SISLC_CVDL dataset and then
divided it into training, testing, and validation sets, with respective proportions of 80%, 10%, and
10%. Following the network structure outlined in [55], we sequentially stacked convolutional
layers with batch normalization, and ReLU to construct the network structure shown in the
Supplementary Figure 2(a). The pooling window’s size is 2%2, the convolutional kernel’s size is
3x3, and the five fully connected layers have 250, 200, 100, 50, and 7 nodes, respectively. Notably,
in order to match the photonic complex-valued convolutional accelerator, the vertical stride of the



first convolutional layer that the input image passes through is set to 3. Thus, an image with a
shape of 100x100 is transformed into a 34x100 shape when it passes through the first convolution
layer.

We trained the network for 20 epochs using the backpropagation algorithm with Stochastic
Gradient Descent, setting the momentum at 0.9, batch size at 256, and learning rate at 0.005. Cross-
Entropy loss was employed, and we also clipped the norm of the gradients to 0.1. Supplementary
Fig 2(b) depicts the training and validation loss curves over the course of neural network training.
It can be observed that the losses for both the training and validation sets decrease as the number
of epochs increases. The similar trajectories of the two curves indicate that the training can
significantly optimize the performance of the neural network. Our model achieved an image
recognition accuracy of 85.2% on the entire test set. For experimental testing, we randomly
selected 500 images from the test set, with an accuracy of 85.4%.

We note that, the full neural network costs ~35.6 million operations for each testing sample, in
which convolution costs ~32.9 million operations — >90% of the network's total needed
operations, verifying the heavy computing power cost of convolution operations and thus the
necessity to accelerate them.

Supplementary Note 3: Additional results

Supplementary Figures 3 and 4 show additional experimental results of input data X, and Xp,,
respectively. Supplementary Figures 5 and 6 show experimentally yielded feature maps of
handwritten digit images and Supplementary Figure 7 shows the confusion matrices.
Supplementary Figures 8-9 show the tested 500 SAR images, where each input contains two
100x100 complex-valued images from HH-channel and HV-channel, respectively. Supplementary
Figures 10-13 show experimentally yielded feature maps of SAR images. The presented images
were normalized for clear visualization. Supplementary Figure 14 show the experimentally yielded
additional shaped comb spectra of the SAR image recognition task

Supplementary Note 4: Potentials of performance scaling

Monolithic Integration. Although discrete components, other than the microcomb source, were
used in the proof-of-concept demonstration, all components comprising of the CVOCA can be
readily integrated. The microcomb itself is an integrated circuit that arises from a CMOS-
compatible platform [51]. Integrated electro-optic interfaces, including modulators and
photodetectors, readily support data bandwidths over 260 GHz [59-60, s2] and dual polarization
modulation [s3]. The rest components of the CVOCA, including the optical spectral shaper,
dispersive media, and de-multiplexer, have all been achieved based on integrated platforms [s4-
s7, 62-64]. With all components integrated, the power consumption of the CVOCA mainly comes
from the light source (can reach as low as 98 mW [s8]); other active devices, including modulators
(thin film Lithium Niobate [s9]), photodetectors (InP [s10]), and phase shifters (thin film Lithium
Niobate [s11] or doped SOI [s12]) in the optical spectral shaper, only need bias voltages and
consume negligible power.

Signal bandwidth. We note that the potential analog bandwidth of input signal is subject to: a)
the bandwidth of modulators and photodetectors, which can be readily achieved up to over 260
GHz [59-60, s2]; b) the Nyquist bandwidth, or half of the microcomb’s free spectral range/spacing
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(50 GHz for a 100GHz spaced comb source). While the more closely spaced wavelengths are
utilized for implementing multiple parallel computing channels, the Nyquist bandwidth of input
signal can keep enough through utilizing wavelength interleaving method. Specifically, all used
wavelengths with more closely spaced can be divided into 9 groups in sequence, the single parallel
computing channel can be designed by selecting one wavelength at the same position from every
group to make up the weights of one 3 X3 kernel. As such, in the scaled CVOCA, if a microcomb
with a smaller FSR is used, stronger parallelization can be achieved without sacrificing Nyquist
bandwidth via utilizing the proposed wavelength interleaving technique.

Scaling. Although the demonstrated CVOCA readily achieve high performances among complex-
valued optical hardware accelerators, its parallelism and thus computing performance can be
further boosted using photonic multiplexing methods and state-of-art techniques. Specifically, as
shown in Supplementary Figure 15, the number of wavelength channels can be significantly
increased by using broader bandwidths of microcombs, for example, over 200 wavelength
channels (at a 100 GHz spacing) can be obtained when exploring the S, C and L bands (~20-THz).
Two such MRRs with 50-GHz spacing difference in center pump wavelengths are interleaved and
combined through a 2x1 optical coupler to produce a light source with 400 wavelengths (at a 50
GHz spacing), then split into four parallel channels via a 1x4 optical coupler. Each channel is
further split by a 1x2 optical coupler and mapped to the real and imaginary weight components
through the dual-polarization multiplexing, wherein the real and imaginary weights can be encoded
onto the same wavelength sets via dual-polarization modulation. This can be achieved by splitting
the microcomb (linearly polarized) in power into two paths (both with the same wavelengths), and
separately shaped (according to desired weights Wr and Wi) and modulated (with inputs of X and
it’s Hilbert transform j- X, respectively), then one arm’s polarization state is rotated to the other
orthogonal polarization axis (i.e., from TE to TM) and combined together with the other arm (i.e.,
TE). Such architectures, using additional polarization rotators and combiners to support the
polarization division multiplexing, can be readily achieved in integrated forms as demonstrated in
[s3]. After spectral shaping and demultiplexing, 10 spatial parallel channels are generated, with
each channel supporting four 3x3 complex-valued convolutional kernels. As such, four parallel
channels include 40 spatial parallel channels in total, thereby supporting 40 3x3 kernels. For the
single spatial parallel channel, the Nyquist bandwidth of input signal is over 100 GHz ( can reach
500 GHz in theory) and enough for an input data rate of 100 GBaud. Therefore, the computing
speed would be 100G (2x4%9+2) = 7.4 Tops per kernel, and thus 7.4 Topsx4x10x4 = 1.184 Peta-
OPs in the entire scaled CVOCA.

Here we also highlight possibilities of using other approaches to demonstrate complex-valued
convolutions, such as using optical four-wave mixing [40], which achieved a computing speed of
0.15 TOPS (up to 111x30 G = 3.33 TOPS when taking into consideration of all involved
computing regions). We note that this scheme cannot support fully functional complex-valued
convolutions in its current form, and further investigations such as complex-valued data input and
output are necessary.

Energy Efficiency. It is a challenge to directly reflect the ultimate potential of our scheme due to
the fact that the CVOCA in this work was validated with discrete devices. Therefore, we have
evaluated the energy efficiency of a fully integrated CVOCA, which has the same architecture as
the scaled CVOCA. As shown in Supplementary Figure 15, the scaled scheme requires about 47
erbium-doped amplifiers based on integrated circuits, with each amplifier's power consumption



not exceeding 200 mW [61]. As such, the energy per operation of the scaled CVOCA can be
roughly given as (98 X 2 + 47 x 200)mW/1.184 POPs = 0.008 p]/operation —exceeding
electronics (0.5pJ/operation [s15]). Supplementary Table.1 compares the power consumption of this
work with existing state-of-the-art electronic or optical systems. Such performances will reach the
same level of (if not exceed) state-of-art electronics [s13-s15], capable of serving as an efficient
computing unit of an electro-optic hybrid computing hardware, which leverages the broad
bandwidths of optics and the flexibility of electronics, ultimately achieving unparalleled
performances for artificial intelligence applications.

Supplementary Table.1 The energy efficiency of the potential scaled CVOCA compared with state-of-the-
art electronic or optical systems.

Reference Power Consumption (pJ/operation )
Nature (2021) [30] 0.8
Nature (2021) [22] 2.5
NVIDIA A100 [s16] 0.641
Google TPU-v4 [s17] 0.699
This work (the potential scaled 0.008
CVOCA)

Precision. Further, we note that the input data’s precision of analog optical computing hardware
can be potentially much larger than their digital electronic counterparts. In contrast to the bit
resolution of digital electronics that is determined by the architecture/memory width and scales
with the electrical signal-to-noise ratio (ESNR) at one bit per 6dB of ESNR, optical computing
hardware can potentially process data with much higher precision/bit-resolution, since: a) optical
signals are less susceptible to electromagnetic interference compared to electronic signals. This
can lead to clearer signal transmission and higher fidelity in data representation; b) optical
computing typically generates less heat than electronic circuits, allowing for more efficient
operation and the possibility of more complex systems without thermal throttling; ¢) optical
systems can exploit principles of quantum mechanics, such as superposition and entanglement, to
perform complex computations that traditional electronic systems cannot easily achieve. These
advantages position optical computing hardware, including our CVOCA or more complicated
optical computing hardware such as Ising machines [s18], as a promising candidate for directly
processing real-world analog information (such as waves) without losing precisions due to the
sampling process of digital electronics.

Other potentials. In parallel with accelerating classic operations widely achieved in digital
electronics (such as the convolutions or matrix multiplication), optical computing systems’
inherent physical natures (such as complex nonlinear dynamics) can be further explored to achieve
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dramatically increased computing performances (trillions of physical parameters can be involved
within computations in several nanoseconds), albeit with tradeoffs in terms of compatibility (such
as network fan-in/-out, data formats, and universality) with existing digital electronics. We note
that, while the demonstrated CVOCA performs linear operations (formed by multiplication and
accumulation), it involves much more complicated nonlinear dynamics that can be further
investigated and potentially harnessed to achieve dramatically different computing regimes. For
example, the used microcombs arose from parametric oscillation inside a micro-ring resonator that
has: a long photon life time (Q factor > 1.2 million), supporting data storage and accumulation;
high nonlinearity that supports high-dimension nonlinear mapping and interference via four-wave
mixing; tailored dispersion and mode-crossing that enables manipulation of the signal’s linear
transmission process and wavelength-dependent characteristics. Moreover, the generated soliton
crystal state itself represents a mathematical solution of the Lugiato-Lefever equation, indicating
that complicated physical systems can be used in turn to dramatically accelerate computing
operations—if appropriate data mapping/encoding can be addressed.

Supplementary Discussion

Coherent architecture. We note that the complex-valued convolution can also be implemented
via coherent architectures, which uses a single wavelength for each element of the complex-valued
weight W, as illustrated in Supplementary Figure 16. The microcomb is first split into two paths,
one path goes with an IQ modulator to load the complex-valued data’s real and imaginary
components, the other path goes through a Waveshaper such that the carriers’ amplitudes and
phases can be simultaneously manipulated to implement the complex-valued weight W. A
coherent receiver is necessary to obtain the complex-valued convolution results.

The main features/differences of the I/Q modulation scheme, in contrasted to the incoherent
approach demonstrated in this work, include: a) baseband modulation format that directly loads
the complex-valued data X; b) coherent detection that requires an additional optical path to provide
the LO (i.e. microcombs with complex-valued weights W).

We note that, while the coherent architecture uses a single wavelength for each element of the
complex-valued weight W, it’s subject to the nontrivial challenge — LO phase instability and
noises, as commonly faced by coherent optical communications. This arose due to the
fluctuations/noises of relative optical phases between the signal and LO paths, and requires either
optical phase locked loops or/and post-DSP (for real-time phase retrieval and compensation) —
both significantly increase the complexity and cost of the system, and cost nontrivial additional
computing power for error/gradient calculation, phase retrieval and compensation etc.

The proposed incoherent approach, specifically the “synthetic wavelength” method, can address
the issues brought about by the coherent architecture. Our incoherent approach constructs
complex-valued weights W in a stable and incoherent manner, where the complex-valued data
input and results output are independent from optical phases of the carriers (i.e., shaped
microcombs), offering significantly enhanced stability, weight accuracy and robustness without
additional phase locked loops or DSP. We also note that the scheme proposed in this work can
also directly process waves with fast varying amplitudes and phases X[n] = [X[n]|-cos{wct+o[n]},
rather than just complex-valued vectors Xr[n] and Xi[n] supported by the baseband IQ modulation
format.



Convolution strides. In this work, the convolution accelerator we designed fundamentally
operates on vectors; hence, for two-dimensional image processing applications, the input data must
be flattened into vectors before processing. We utilize inhomogeneous strides, where the
horizontal stride within the receptive field is set to 1, ensuring that all horizontal features from the
original data are extracted; the vertical stride is equal to the height of the convolution kernel,
reducing the overlap when reading the input data and partially achieving the function of pooling.
Similar schemes can be referred to in the relevant sections of [30] and [s19].

Specifically, in the preprocessing stage, based on the heterogeneous strides of the receptive field,
we first horizontally partition the original input matrix into multiple sub-matrices, each with a
height equal to the height of the convolution kernel. We then flatten each sub-matrix into a vector
from top to bottom and left to right and finally concatenate these vectors end-to-end to form a
complete picture corresponding vector, ensuring that the movement of the receptive field
corresponds precisely with the order of data reading.

We note that the two-dimensional data that needs to be processed during CNN processing is
typically stored in corresponding storage devices. Thus, the required preprocessing merely
involves reading the information from the two-dimensional data in a specific order without adding
extra repetitive reads or increasing the complexity of the process. While the heterogeneous strides
do not limit the performance of the convolution accelerator, as evidenced by the high recognition
success rate of the CNN in our fully digital predictions, homogeneous strides can be achieved by
adjusting how data is read during preprocessing or by increasing the number of accelerator spatial
paths [30].
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Supplementary Figure 1 | The experimentally generated soliton crystal microcomb and the selection
approach of microcomb lines for mapping the real part and image part of the calculated convolutional
kernel. (a) The optical spectrum of the experimentally generated soliton crystal microcomb employed in the
photonic neuromorphic hardware. (b) The schematic diagram of the used approach for mapping a pair of 3x3
complex-valued kernels in the HH-channel and HV-channel. (c) The schematic diagram of selected optical band,
inside that the half of microcomb lines (red lines or blue lines) is used for mapping a 3x3 complex-valued kernel,
involving the real parts and image parts. (d) The schematic diagram of optical wavelength channels selected
from (c), (e) and (f) the specific method to select optical sub-bands from (d) for mapping the real parts and image
parts of kernel weights.
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Supplementary Figure 2 | (a) the architecture of the used complex-valued convolutional neural network for SAR
images classification. (b) the training and validation loss curves.
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Supplementary Figure 3 | Additional experimental results of CVOCA with input data X.
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Supplementary Figure 6 | Additional experimentally yielded feature maps in handwritten digits recognition.
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Supplementary Figure 7 | Confusion matrices of handwritten digits recognition.
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Supplementary Figure 8 | The experimentally recognized 500 SAR images that served as the input of the initial
convolutional layer (1-250).
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Supplementary Figure 9 | The experimentally recognized 500 SAR images that served as the input of the initial
convolutional layer.(251-500).
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Supplementary Figure 10 | The experimentally recovered feature maps of the 500 SAR i unages (1-150).
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Supplementary Figure 11 | The experimentally recovered feature maps of the 500 SAR images (151-300)

20



Image 301
Image 302
Image 303
Image 304
Image 305
Image 306
Image 307
Iimage 308
Image 309
Image 310
Image 311
Image 312
Image 313
Image 314
Image 315
Image 316
Image 317
Image 318
Image 319
Image 320
Image 321
Image 322
Image 323
Image 324
Image 325

Image 351
Image 352
Image 353
Image 354
Image 356
Image 356
Image 357
Image 358
Image 359
Image 360
Image 361
Image 362
Image 363
Image 364
Image 365
Image 366
Image 367
Image 368
Image 369
Image 370
Image 371
Image 372
Image 373
Image 374
Image 376

Image 401
Image 402
Image 403
Image 404
Image 405
Image 406
Image 407
Image 408
Image 409
Image 410
Image 411
Image 412
Image 413
Image 414
Image 415
Image 416
Image 417
Image 418
Image 419
Image 420
Image 421
Image 422
Image 423
Image 424
Image 425

HH HV
W1 W2 W3 W4 W1 w2 W3 w4

[EPRETEEN VA FREY PR R ] A e
IR BB T -0 R T
SRR T “‘*E‘f‘

BRI
-__-“-
R e R
i S B e Yome Beo B

E—%H"Hm

Image 326
Image 327
Image 328
Image 329
Image 330
Image 331
Image 332
Image 333
Image 334
Image 335
Image 336
Image 337
Image 338
Image 339
Image 340
Image 341
Image 342
Image 343
Image 344
Image 345
Image 346
Image 347
Image 348
Image 349
Image 350

Image 376
Image 377

Image 378
Image 380 Teh

Image 381 LR

Image 386 EESP R MDA 14
Image 386 m%ﬁmm
Image 387
Image 388
Image 389
Image 390 .
Image 391
Image 392
Image 393
Image 394

Image 396 [ 5
Image 397 “_“ -m
Image 398 _"——mn—“
Image 398 S e

Image 400

Image 426
Image 427
Image 428
Image 429
Image 430
Image 431
Image 432
Image 433
Image 434
Image 435
Image 436
Image 437
Image 438
Image 439
Image 440
Image 441
Image 442
Image 443
Image 444
Image 445
Image 446 .
Image 447
Image 448
Image 449
Image 450

Supplementary Figure 12 | The expenmentally recovered feature maps of the 500 SAR images (301-450).
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Supplementary Figure 13 | The expenmentally recovered feature maps of the 500 SAR images (451-500).
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Supplementary Figure 14 | The experimentally yielded additional shaped comb spectra in the SAR image
recognition task.

23



Designed Peta-OPs/s optical complex-valued convolution accelerator
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Supplementary Figure 15 | The schematic diagram of designed scaled optical complex-valued convolution
accelerator by fully using the multiple freedom degrees of light.
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Supplementary Figure 16 | Example of coherent computing architecture for complex-valued convolution.
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