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Version 0: 

Reviewer comments: 

Reviewer #1 

(Remarks to the Author) 
The authors present in detail and with many interesting results a novel method for complex-valued convolutional
acceleration in a photonic scheme based on MRR combs and a new type of modulation. The idea relies on a previous work
for real-valued convolutional processing (ref. 30 of the manuscript) and extends the concept by splitting wavelengths and
assigning real and imaginary weights to them and by introducing the CVEOM modulator for applying the input signal in an
unconventional manner. Although the concept is impressive and the results support adequately the operation capabilities, I
believe that the authors should address the following issues 

1. The authors claim that their scheme is practical as it avoids issues related to phase instabilities. On the other hand, they
double the number of required resources as they do not exploit the complex nature of light. Why a scheme where each
wavelength could carry a complex weight and the data X are also applied in a complex manner through a high speed
commercially available I/Q modulator is not possible? Since the wavelengths of the comb are mutually locked, phase
instabilities should be minimal. Have the authors considered such a possibility? 
2. The authors do not explain adequately how they imprint negative weights and separate them from the positive ones. They
should be a little bit more specific probably in the supplementary material about the resources (wavelengths, photodetectors)
required in order to support both positive and negative weights. 
3. In CNN processing there is always the parameter of stride. Do the authors apply proper pre-processing of the data when
they flatten, in order to take into account the stride parameter? How could this pre-processing increase the complexity of the
process? They also write that “Notably, while the strides of the convolution window were inhomogeneous due to the matrix
flattening process, they did not hinder the performance of our approach (serving as a subsampling function for pooling) and
can be tailored as generic homogeneous strides when necessary.” I think this is a very strong statement. They should
become more specific and explain that, at least in the supplementary part. 
4. The authors claim that using a CNN and a fully connected in simulations in the MNIST task, leads to an accuracy of 92%
approximately. According to my experience and the literature (https://spj.science.org/doi/full/10.34133/icomputing.0032), a
simple fully connected layer can provide almost 92% of accuracy in MNIST task and the addition of a CNN as a front-end
dimensionality reduction module can further boost the performance. They should try to explain why the CNN they have
considered does not contribute to the improvement of the accuracy compared to a FCL (784->10). 
5. The authors do not explain how they implemented the CVEOM and its tunable optical delay. Is it a fiber-based device
based on discrete components? Is it an integrated device? Moreover, it is not clear how they apply j*X in one of the two
modulators. Do they set the bias at a point which provides a phase shift of π/2? Is this easy to keep constant for all
wavelengths in the comb ? 
6. The authors did not compare their computation efficiency with that referred in ref. 40 where a FWM-based complex
convolutional engine is presented. This is important as ref. 40 claims similar TOPs performance to that of the present work. 

Reviewer #2 

(Remarks to the Author) 
This paper reports a complex-valued optical convolution accelerator (CVOCA). The authors utilize a microresonator
frequency comb to perform computational processing of complex-valued data. The complex data is mapped onto the comb
lines using electro-optic modulation in their CVOCA. 



It is mentioned that a wave shaper is used to equalize the amplitude of the frequency comb lines. Is a spectrum of this
available in the manuscript? The supplementary information only shows the raw generated soliton crystal state but not the
spectrum after the wave shapers. 

Complex-valued weights are needed for the convolution operation. The authors utilize two comb lines for this purpose. If the
power in the comb lines fluctuate, for example if the microcomb state fluctuates, what would be the impact on the CVOCA
operation? Or is the power maintained using the wave shaper? Supplementary information describes their selection process
for the comb lines, but was there a specific reason why the two adjacent lines selected were picked? Was there a
wavelength/power or other requirement? 

The CVOCA is used in the first convolutional layer of CVCNNs to accelerate the operation. The work in this section of the
manuscript is quite interesting. Please define SAR at the first instance it appears in the text. The accuracy of the
classification operations done was good with a large sample size. Can the authors can comment on how they can improve
the accuracy, or what were some factors which caused the accuracy to be lower than in silico. 

The authors discuss integration of the CVOCA improving the performance by polarization multiplexing. The soliton crystal is
generated with a specific polarization. Please comment on how the output of the microresonator may be controlled to create
the polarization states needed for polarization multiplexing, especially if integration is the final goal. 

I recommend publishing after the above points are addressed. 

Reviewer #3 

(Remarks to the Author) 
Dear editor, 

In this manuscript, the authors present a complex-valued optical convolutional system capable of 2 TOPS of computational
speed for data processing. The system leverages a microcomb for wavelength generation/multiplexing as well as a
weighted and time-delayed signal mechanism to realize complex-valued convolution operations. Processing of SAR images
and handwritten digit recognition are demonstrated with the system shown, with accuracies similar to those obtained with
conventional electronic neural networks. 

While the results are promising, there are two major areas that would benefit from further analysis and explanations. First of
all, the motivation behind the selection of the specific method presented for handling complex-valued data should be
justified. Comparisons should be made between the current implementation and a more traditional approach where the real
and imaginary parts of the complex number are treated as two separate real numbers, as this more traditional approach
would allow the authors to directly use their previous demonstrations [R1]. Secondly, a more detailed discussion of power
use, energy efficiency metrics, and system implementation/scaling cost should be provided to place the presented results in
better context of the state-of-the-art currently available. I have provided detailed comments regarding these two issues and
some other relevant points below: 

1. The statement in the abstract regarding processing of complex valued data is subjective and can potentially be interpreted
as an exaggeration. 

a. While there are some challenges, most of them can be dealt with separating the real and imaginary parts of the complex
numbers and processing them simultaneously/separately as two independent real numbers. This naturally requires
additional memory; however, that typically does not present insurmountable challenges in traditional electronic neural
networks. Existing literature includes many such examples. I suggest the authors reword their phrasing in the abstract. 

b. I also believe the introduction would benefit from a discussion of existing methods of processing complex valued data in
fully in-silico networks. This would also help place the presented work in better context of existing electronic solutions (not
just optical/physical-domain solutions), and better highlight the claimed advantages. 

2. The presented idea is primarily based on delayed and weighted signal replicas measured through incoherent detection,
as was shown previously by the authors. This allows signals encoded onto multiple different wavelengths to “interfere” with
one another, therefore creating the ability to extract spatial information from the provided data. While the idea is now well
established, there are still some drawbacks that need to be discussed in detail. 

a. In delay-weight-sum type of networks, aspects regarding the symbol overlap and delay timing impose limitations on the
system’s information processing bandwidth. Currently, is this bandwidth primarily limited by data modulation and detection
speeds? If so, are there any other fundamental limitations on the optical system’s capability of processing information at
higher speeds? 

b. The high implementation cost (high speed modulators, waveshapers for realizing convolution kernels, requirements of
balanced photodetection for negative weights, multiple amplifiers necessary etc.) can present critical challenges for the
adoption of such systems. These additional requirements also indicate a substantial power budget for the system presented.
Can the authors discuss these implementation aspects in more detail? Other than the modulators and the detectors, are
there any other components that can be replaced with on-chip equivalents, to reduce power and footprint requirements? 



3. The demonstrated system deals with complex valued data as two separate data streams being fed into a pair of MZIs
modulating spectrally adjacent wavelengths of light, that are then subsequently delayed according to the symbol rate. While
this implementation provides a way to process data coming in as real-and-imaginary pairs, it is similar to how one would
deal with two separate streams of data, or even a single stream of data that is separated onto two distinct channels. In that
case, would it be possible to use the authors’ demonstration from their earlier results, with a fully real-valued approach to
mimic processing of complex valued data? This is an important point that needs to be clarified, especially to properly
distinguish this 

4. Similar to my comment above, a complex valued multiply-and-accumulate (MAC) operation is not fundamentally different
from a set of real valued MAC operations. There are several fundamental and implementation-related perspectives that need
to be addressed regarding this aspect: 

a. Firstly, this fact is already explicitly stated by the equation in line 76 of the paper, where the real and imaginary parts of the
result (which are separately real-valued) are simply a collection of the MAC operation results between the real and
imaginary parts (which are also separately real-valued) of W and X. From this perspective, by separating the real and
imaginary parts, one can execute complex MAC using only real-valued operations. This indicates that while hardware
demands may increase slightly due to the extra multiplications necessary, the actual system (electrical or optical) is not
fundamentally different from one that performs real-valued MACs. This is an important aspect that needs more detailed and
clear explanations in the manuscript. 

b. Secondly, the use of a pair of wavelengths (named odd and even) indicates that the operation being performed is quite
similar to (likely the same as) separating the complex data into two streams of real numbers, and processing them in the
same way as demonstrated before in [R1]. This should be investigated in detail, and the comparison of these two
approaches should be provided in the manuscript. Currently, the reader is left questioning the efficacy of the presented
approach. 

[R1] Xu, X. et al. 11 TOPS photonic convolutional accelerator for optical neural networks. Nature 589, 44–51 (2021) 

5. Is it possible to implement a similar processing architecture using IQ modulation? In the current implementation, the
delayed overlaps of different wavelengths is what enables feature extraction. At the same time, the system requires
synthesis, weighing, and dispersion control of twice as many wavelengths. Naturally, it would be advantageous to explore
the possibility of using a single wavelength for each data, but incorporate other orthogonal modalities such as IQ modulation.

6. An important of optical networks like the one presented here is their inherent capability to handle theoretically unlimited
precision, whereas their electronic counterparts are typically limited to double-precision arithmetic. Similarly, while
increased precision incurs computational overhead in electronics, the detector in an optical system practically does not care
about the input precision, given that it receives sufficient power. Can this advantage potentially be leveraged to perform
operations that require computationally prohibitive precision levels in electronics, in an optical manner through this weighed-
and-delayed processing method? Even if that is not currently demonstrated, the authors should discuss the possibility of
other potential tasks that require more intensive electronic computations, but can be performed in fewer optical layers using
a system such as the one demonstrated here. 

7. From a more general standpoint, many authors in modern physical (or physically-inspired) machine learning literature
discuss the benefits and drawbacks of two information processing regimes: In the first regime, the physical networks
constructed (like the one shown in this paper) exactly replicate the operations that would otherwise be done in electronic
circuits through completely artificial neural networks. In the second regime, the physical nature (including complex system
dynamics, memory, nonlinearity etc.) of the constructed system directly performs various inference tasks, with potential
added pre- or post-processing through electronic layers. While there may not be clear winner between these two regimes, it
is quite important to discuss the capabilities of the presented system in the context of these two approaches. Especially
since the presented demonstration mimics an operation that can already be performed by existing electronics, it is critical to
provide broader application perspectives in the second regime aforementioned. For instance, can a system like the one
demonstrated here be leveraged for other operations that are currently not possible through conventional electronics? In the
presented work, are there any system dynamics (optical nonlinearity, memory, inter-modal coupling etc.) that could be taken
advantage of in the future? 

8. The hand-written digit recognition has become a staple in demonstration of many physical machine learning models, as
also shown in Fig 5. Looking at the details shown here, it appears that the original data starts as a real-valued image, and is
then converted into a complex-valued image through a slicing operation. This method of converting real data into complex
data is quite interesting, but I am not aware of any physical or mathematical motivation for this choice of operation. It would
make a lot more sense (and be commensurate with well-known approaches in image processing) to perform FFT on these
images, and retrieve the amplitudes and phases of the transforms to use as complex-valued data in such a problem. In that
case, it is also possible that the underlying feature maps obtained carry physically relevant information regarding both the
geometrical structures in the original image and their specific locations. In fact, it is well-established that the phase of the
transform carries more information that is relevant to human perception than the amplitude. Since it is done electronically, is
there a reason that the authors did not opt for a more conventional real-to-complex data conversion method here? Is it
possible that the authors present capabilities of the network (at least in simulation), using instead a spectral transform such
as FFT? 



9. Fig 7’s comparison to in-silico metrics for the SAR images is mainly focused on the prediction accuracy of 83.8% to
demonstrated electronic accuracy of 85.4%. However, even before constructing the optical system, one expects these
metrics to be similar as the optical system exactly mimics the mathematical operations performed by its electronic
counterpart. One also does not expect the optical system to significantly outperform its electronic counterpart on accuracy
alone, due to the same reason above, since the fundamental computations are identical. These points highlight that a more
detailed comparison including other aspects is necessary. Energy efficiency is presented as one of the most important
advantages of the demonstrated system. As such, it is critical to include quantitative comparisons regarding the amount of
energy per operation (or per image, per bit, etc.) used in the demonstrated system, and place it in context of existing state-of-
the-art electronic or optical systems in the literature. 

10. On a related point, while the discussion of power is currently missing from the manuscript; and the power characteristics
of the microcomb are also not reported. Can the authors please report the total optical input power and/or power per comb
line? Understanding these metrics is important for evaluating the energy efficiency and scalability of the system. Then, the
authors should discuss if any steps can be taken to further reduce the optical power necessary, relevant optical losses in the
system, and other factors contributing to the overall power budget for the image processing capabilities presented. Finally, at
least the obtained SNR at the detectors should be reported, in order to fully convey the technical details necessary. 

11. Even though the authors discuss the potential for scaling up to Peta-OPS performance, aren’t there potential bottlenecks
regarding inter-modal crosstalk? Also, couldn’t more closely spaced wavelengths be used for stronger parallelization? Does
the reduced spectral spacing between channels pose any restrictions for this purpose? 

12. The numbering of references in the main text should be revised to reflect their order of appearance. 

Version 1: 

Reviewer comments: 

Reviewer #1 

(Remarks to the Author) 
The authors have in depth discussed and answered in all my comments. The paper now is by far improved and convincing
in terms of the principle and the results. I recommend the acceptance of the paper in Nature Communications. 

Reviewer #2 

(Remarks to the Author) 
The authors have addressed my comments. I recommend publishing the manuscript. 

Reviewer #3 

(Remarks to the Author) 
I thank the authors for the changes they implemented in the manuscript, as they have addressed all of my comments (and
the other reviewers' comments) in detail. I appreciate the discussion of IQ modulation possibility, the clarification of real-to-
complex data conversion details, and potential pathways for monolithic integration. It is now more clear what advantages the
provided system can have by processing complex-valued data as is, using complex-valued kernels. I believe the article and
the supporting material are now appropriate for publication at Nature Communications. 
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Detailed response to comments from reviewers 

Manuscript ID: Nature Communications manuscript NCOMMS-24-38220 

We thank the reviewers for their thoughtful suggestions and positive comments that we 
believe have significantly helped us improve the manuscript. We address their comments 
in detail here and have marked the changes in red in the revised manuscript accordingly.  

We’ve summarized the changes that have been made to the manuscript and supplementary 
materials, as the following table shows: 

Major 
concerns 

Corresponding 
comments Revisions 

More 
information 
/clarificatio
ns needed 

Rev. 1, point 
2, 3, 4, 5; 

Rev. 2, point 
1, 2; 

Rev. 3, point 
9, 10; 

Implementation of negative weights added in Methods; 

Discussions on the convolution stride added in the SM; 

Discussions on the MNIST dataset added in the 
Manuscript and SM; 

Implementation of CVEOM added in the Manuscript; 

Shaped microcomb spectra added in the SM; 

Discussion regarding microcombs added in the SM; 

Discussion regarding potential integration and power 
budget added in the SM; 

More 
discussions 

needed 

Rev. 1, point 
1, 6; 

Rev. 2, point 
3 ,4; 

Rev. 3, point 
1b, 2a, 2b, 3, 
4a, 4b, 5, 6, 7, 

8, 11; 

Discussion regarding IQ modulation added in the SM; 

Discussion regarding ref. [40] added in the SM; 

Discussion regarding recognition accuracy added in the 
SM; 

Discussion regarding microcomb polarization added in 
the SM; 

Discussion regarding complex NNs added in the 
Manuscript; 

Discussion regarding advances over prior arts [30] 
added in the Manuscript; 

Discussion regarding precision added in the SM; 



Discussion regarding physical computing systems added 
in the SM; 

Discussion regarding real-to-complex conversion added 
in the SM; 

A new figure illustrating potential schemes added in the 
SM; 

Discussions regarding channel spacing added in the SM; 

Refinement 
of claims 

Rev. 3, point 
1a, 12; 

Claims in Abstract adjusted; 

Reference list updated; 

Before responding to the reviewers’ comments in detail, we recap the breakthroughs of 
this paper. We report: 

• first experimental demonstration of complex-valued optical neuromorphic 
convolution hardware accelerator; 

• fastest complex-valued photonic computing hardware at a computing speed 
exceeding 2 TOPS; 

• capable of processing 13.7 million 100-by-100 SAR images per second —over 
ten times higher than electronics (at ~1GHz clock rate); 

• first demonstration of highly complex and intricate SAR imaging datasets captured 
by the Sentinel-1 satellite.  



Reviewer #1 (Remarks to the Author): 

The authors present in detail and with many interesting results a novel method for complex-
valued convolutional acceleration in a photonic scheme based on MRR combs and a new 
type of modulation. The idea relies on a previous work for real-valued convolutional 
processing (ref. 30 of the manuscript) and extends the concept by splitting wavelengths and 
assigning real and imaginary weights to them and by introducing the CVEOM modulator 
for applying the input signal in an unconventional manner. Although the concept is 
impressive and the results support adequately the operation capabilities, I believe that the 
authors should address the following issues. 

We appreciate the reviewer’s very positive comments. 

1. The authors claim that their scheme is practical as it avoids issues related to phase 
instabilities. On the other hand, they double the number of required resources as they do 
not exploit the complex nature of light. Why a scheme where each wavelength could carry 
a complex weight and the data X are also applied in a complex manner through a high 
speed commercially available I/Q modulator is not possible? Since the wavelengths of the 
comb are mutually locked, phase instabilities should be minimal. Have the authors 
considered such a possibility? 

We appreciate the reviewer’s insightful comments. We agree that I/Q modulation would 
use less wavelength channels. We’ve added discussions in the Supplementary Materials to 
introduce potential coherent architectures for complex-valued convolution, and the 
involved tradeoffs in contrast to the employed incoherent approach. 

Supplementary Materials  

Discussions 

“Coherent architecture. We note that the complex-valued convolution can also be 
implemented via coherent architectures, which uses a single wavelength for each element 
of the complex-valued weight W, as illustrated in Fig. S15. The microcomb is first split 
into two paths, one path goes with an IQ modulator to load the complex-valued data’s real 
and imaginary components, the other path goes through a Waveshaper such that the carriers’ 
amplitudes and phases can be simultaneously manipulated to implement the complex-
valued weight W. A coherent receiver is necessary to obtain the complex-valued 
convolution results. 

The main features/differences of the I/Q modulation scheme, in contrasted to the incoherent 
approach demonstrated in this work, include: a) baseband modulation format that directly 
loads the complex-valued data X; b) coherent detection that requires an additional optical 
path to provide the LO (i.e. microcombs with complex-valued weights W).  

We note that, while the coherent architecture uses a single wavelength for each element of 
the complex-valued weight W, it’s subject to the nontrivial challenge — LO phase 
instability and noises, as commonly faced by coherent optical communications. This arose 



due to the fluctuations/noises of relative optical phases between the signal and LO paths, 
and requires either optical phase locked loops or/and post-DSP (for real-time phase 
retrieval and compensation) — both significantly increase the complexity and cost of the 
system, and cost nontrivial additional computing power for error/gradient calculation, 
phase retrieval and compensation etc.  

The proposed incoherent approach, specifically the “synthetic wavelength” method, can 
address the issues brought about by the coherent architecture. Our incoherent approach 
constructs complex-valued weights W in a stable and incoherent manner, where the 
complex-valued data input and results output are independent from optical phases of the 
carriers (i.e., shaped microcombs), offering significantly enhanced stability, weight 
accuracy and robustness without additional phase locked loops or DSP. We also note that 
the scheme proposed in this work can also directly process waves with fast varying 
amplitudes and phases X[n] = |X[n]|·cos{ωct+φ[n]}, rather than just complex-valued 
vectors XR[n] and XI[n] supported by the baseband IQ modulation format.” 

 

Figure S15 | Example of coherent computing architecture for complex-valued convolution. 

2. The authors do not explain adequately how they imprint negative weights and separate 
them from the positive ones. They should be a little bit more specific probably in the 
supplementary material about the resources (wavelengths, photodetectors) required in 
order to support both positive and negative weights. 

We appreciate the reviewer’s comments and have added more details in the Methods 
section. 

Main Manuscript 

Methods 



“In the experiment, to achieve the designed kernel weights, the generated microcomb was 
shaped in power using two spectral shapers based on liquid crystal on silicon (Finisar 
WaveShaper 4000S and 16000A). The first was used to roughly shape and interleave the 
microcomb lines for subsequent separate modulation, while the second achieved precise 
comb power shaping and negative weights together with a balanced photodetector. 
Specifically, the second spectral shaper precisely shaped the comb lines’ power according 
to the absolute value of weights, then separated the comb lines into two groups according 
to the signs of kernel weights. The two groups of wavelengths were directed to two separate 
output ports of the Waveshaper and input into a balanced photodetector (Finisar BPDV 
2120R). The balanced photodetector detected the optical power of the negative-sign and 
positive-sign wavelength groups, and performed differentiation of the yielded 
photocurrents, effectively achieving subtraction of the two wavelength groups and thus 
negative weights.” 

3. In CNN processing there is always the parameter of stride. Do the authors apply proper 
pre-processing of the data when they flatten, in order to take into account the stride 
parameter? How could this pre-processing increase the complexity of the process? They 
also write that “Notably, while the strides of the convolution window were inhomogeneous 
due to the matrix flattening process, they did not hinder the performance of our approach 
(serving as a subsampling function for pooling) and can be tailored as generic 
homogeneous strides when necessary.” I think this is a very strong statement. They should 
become more specific and explain that, at least in the supplementary part. 

We agree with and appreciate the reviewer’s insightful comments. We’ve added 
discussions in the Supplementary Materials to clarify this point. 

Supplementary Materials  

Discussions 

“Convolution strides. In this work, the convolution accelerator we designed 
fundamentally operates on vectors; hence, for two-dimensional image processing 
applications, the input data must be flattened into vectors before processing. We utilize 
inhomogeneous strides, where the horizontal stride within the receptive field is set to 1, 
ensuring that all horizontal features from the original data are extracted; the vertical stride 
is equal to the height of the convolution kernel, reducing the overlap when reading the 
input data and partially achieving the function of pooling. Similar schemes can be referred 
to in the relevant sections of [30] and [s19].  

Specifically, in the preprocessing stage, based on the heterogeneous strides of the receptive 
field, we first horizontally partition the original input matrix into multiple sub-matrices, 
each with a height equal to the height of the convolution kernel. We then flatten each sub-
matrix into a vector from top to bottom and left to right and finally concatenate these 
vectors end-to-end to form a complete picture corresponding vector, ensuring that the 
movement of the receptive field corresponds precisely with the order of data reading. 



We note that the two-dimensional data that needs to be processed during CNN processing 
is typically stored in corresponding storage devices. Thus, the required preprocessing 
merely involves reading the information from the two-dimensional data in a specific order 
without adding extra repetitive reads or increasing the complexity of the process. While 
the heterogeneous strides do not limit the performance of the convolution accelerator, as 
evidenced by the high recognition success rate of the CNN in our fully digital predictions, 
homogeneous strides can be achieved by adjusting how data is read during preprocessing 
or by increasing the number of accelerator spatial paths [30].” 

References 

[30] Xu, X. et al. 11 TOPS photonic convolutional accelerator for optical neural networks. Nature 
589, 44–51 (2021) 

[s19] Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional 
neural networks. Advances in neural information processing systems 25, 1097-1105 (2012). 

4. The authors claim that using a CNN and a fully connected in simulations in the MNIST 
task, leads to an accuracy of 92% approximately. According to my experience and the 
literature (https://spj.science.org/doi/full/10.34133/icomputing.0032), a simple fully 
connected layer can provide almost 92% of accuracy in MNIST task and the addition of a 
CNN as a front-end dimensionality reduction module can further boost the performance. 
They should try to explain why the CNN they have considered does not contribute to the 
improvement of the accuracy compared to a FCL (784->10). 

We appreciate the reviewer’s comments. We note that the advantages/performances of our 
approach are demonstrated mainly by the SAR image recognition task where the input data 
are inherently complex-valued. The MNIST dataset serves as a benchmark test to validate 
the reach of our approach, during which the input data are real-valued and need to be 
converted into complex-valued data—this process introduces degradation in the 
recognition accuracy [60]. As such, although the parametric complexity of the neural 
network can be reduced by the convolutional layer, the recognition accuracy did not 
outperform real-valued neural networks such as the FCL (784->10). Nonetheless, we note 
that the recognition accuracy can be further improved by optimizing the real-to-complex 
conversion process and hyperparameters such as the learning rate, activation function, loss 
function etc.—deferring to our future work. 

We’ve made revisions as follows to clarify this point. 

Main Manuscript 

Complex-Valued Convolutional Neural Network 

“We note that the MNIST dataset serves as a benchmark test to validate the reach of our 
complex-valued convolution accelerator. Due to the process of converting real-valued 
input data into complex-valued data (where the real and imaginary parts do not necessarily 
correlate with each other in practice), the recognition accuracy degraded in contrast to real-

https://spj.science.org/doi/full/10.34133/icomputing.0032


valued neural networks [60]. The method of real-to-complex conversion needs to be 
tailored and further optimized according to specific datasets (i.e., correlations of the raw 
input data) and tasks, to obtain performance improvements in contrast to real-valued neural 
networks.” 

Supplementary Materials  

Network training  

“For the MINIST handwritten digit recognition task, data points in the top half of each 
image are assigned to the real part and points in the bottom half are assigned to the 
imaginary part. The training set consists of 60,000 images, and the testing set contains 
10,000 images. The network includes a convolutional layer (2 kernels), a ReLU activation 
function, and a fully connected layer. The convolutional kernel size is 3×3, and the fully 
connected layer comprises 208 nodes. The convolution layer has a vertical stride of 3. We 
trained the network using Cross-Entropy loss for 20 epochs, employing the 
backpropagation algorithm with Stochastic Gradient Descent. The momentum was set to 
0.9, the batch size to 64, and the learning rate to 0.01. The entire network performs 32,032 
operations per image, with the convolutional layer accounting for 14,976 operations, which 
is 45% of the total operations needed. The in-silico recognition accuracy of the 
experimentally test 500 dataset is 92.8%. We note that, although the recognition accuracy 
did not show significant improvement, in contrast to a network with a single fully 
connected layer (10 neurons, each with 784 synaptic weights, 784×10=7840 real-valued 
synaptic weights in total) [s1], the parametric complexity can be significantly reduced 
(208×10=2080 complex-valued synaptic weights in the fully connected layer, 3×3×2=18 
complex-valued synaptic weights in the convolutional layer).” 

5. The authors do not explain how they implemented the CVEOM and its tunable optical 
delay. Is it a fiber-based device based on discrete components? Is it an integrated device? 
Moreover, it is not clear how they apply j*X in one of the two modulators. Do they set the 
bias at a point which provides a phase shift of π/2? Is this easy to keep constant for all 
wavelengths in the comb? 

We appreciate the reviewer's comments. As a proof of concept, the CVEOM employed in 
the experiment is a fiber-based device, assembled from discrete components including two 
Mach-Zehnder Modulators (MZMs), a 90° electrical hybrid coupler with an in-phase 
output X and a quadrature output j·X, and a tunable optical delay line to compensate for 
the delay differences between λodd and λeven (induced by subsequent dispersion). Both two 
modulators were biased at quadrature to achieve standard double-sideband modulation, 
with electrical inputs from the outputs of the 90° electrical hybrid coupler to load X and 
j·X, respectively. 

We note that, the bias of the modulators across all wavelengths may vary due to 
wavelength-dependent characteristics of the modulators, or drift due to temperature 
variations. However, on one hand, this didn’t introduce significant distortions/instabilities 
as verified by the reach of experimental demonstrations; on the other hand, the modulators 
can be readily tailored in architecture [56] to obtain optimized performance for multi-



wavelength signals, and the bias drift can be overcome via external feedback control 
circuits [57]. 

[56] Zhang, C., et al. Ultra-broadband MMI power splitter from 1.26 to 1.67 μm with photonic 
bound states in the continuum. Optics Communications 562, 130525 (2024). 

[57] Kim M., Yu B., and Choi W., A Mach-Zehnder modulator bias controller based on OMA and 
average power monitoring. IEEE Photonics Technology Letters 29, 2043-2046 (2017). 

We’ve made revisions as follows to clarify this point. 

Main Manuscript 

Principle of Operation  

“We note that the CVEOM is a non-trivial device, not only for convolution accelerators 
demonstrated in this work, but also for other neuromorphic or communications applications 
involving complex-valued data. Although we employed discrete fiber-based components 
to build the CVEOM (including two Mach-Zehnder Modulators, a 90° electrical hybrid 
coupler with an in-phase output X and a quadrature output j·X, and a tunable optical delay 
line to compensate for the delay differences), we note that it features similar components 
as classic IQ modulators such that it can be integrated and massively produced as well; 
nonetheless, the “wavelength synthesizing” technique of CVEOM enables manipulating 
the phases of optical carriers, rather than just the input signals as IQ modulators do. We 
note that the performance/consistency of the CVEOM can be further optimized for multi-
wavelength operation, with readily available techniques such as waveguide designs [56 and 
feedback bias controllers [57].” 

6. The authors did not compare their computation efficiency with that referred in ref. 40 
where a FWM-based complex convolutional engine is presented. This is important as ref. 
40 claims similar TOPs performance to that of the present work. 

We appreciate the reviewer's comments. We’ve added relevant discussions of [40] in the 
Supplementary Materials. We note that we didn’t thoroughly discuss [40] as it didn’t fully 
achieve complex-valued convolution operations, although it’s a decent work first exploring 
FWM for convolution operations. 

The experimental architecture in ref. 40 uses photodetectors (PD) for optoelectronic 
detection, which can only receive real values (i.e., power of complex-valued optical fields). 
As mentioned in section 3.A of ref. 40, “We extract the information on the light by 
photodetector (PD), so the results are proportional to the square of the magnitude of light.” 
Therefore, only real-valued convolution results can be received when using direct detection, 
indicating that its computation engine can only output real-valued convolution results. 
Additionally, in the experiments of [40], only real-valued (rather than complex-valued) 
data inputs and weights were demonstrated. On one hand, the computational architecture 
performs convolution of real-valued data, as it used purely intensity modulation (MZM2). 
On the other hand, the authors noted “adjust the WSS to make the relative phase of each 
carrier wave in one comb to be 0”, indicating that the phases are not adjusted to achieve 



complex values for complex-valued computation but rather to ensure “the convolution 
results detected by the PD will have obvious characteristics of constructive interference”. 
Therefore, in [40], “complex-valued” refers to the intermediate four-wave mixing process, 
rather than the convolution operation. 

In terms of the computing performance, as mentioned in the Discussion section of [40], 
“The experiment results in this paper are all in region V” meaning that only the Region V 
among the five spectral regions actually performed the required convolution operation. 
Consequently, the operations in the other regions do not contribute to the computation 
efficiency of convolution operations. According to Section S6 of the supplemental 
materials in [40], the number of parallel operations in a single bit time for the experimental 
results in Section 3.A is 5. Additionally, since the experimental results in Section 3.B focus 
on image processing, only C3 represents a valid convolution result. Therefore, the number 
of parallel operations in a single bit time for Section 3.B is also 5. As a result, when 
considering only the convolution results of this experiment, the computational throughput 
of the demonstrated experiments is 5 × 25 G = 0.125 tera operations per second (TOPS) 
for the experiment in Section 3.A and 5 × 30 G = 0.15 TOPS in Section 3.B. Besides, it is 
noted that the input data are the OOK signal, the computational throughput of the 
demonstrated experiments should be expressed as 0.125 Terabits/s for the convolution 
result D of input A and weight B (as shown in Equation 11 in [40]).  

We’ve added discussions accordingly as follows:  

Supplementary Materials  

Potentials of performance scaling 

“Scaling. … Here we also highlight possibilities of using other approaches to demonstrate 
complex-valued convolutions, such as using optical four-wave mixing [40], which 
achieved a computing speed of 0.15 TOPS (up to 111×30 G = 3.33 TOPS when taking into 
consideration of all involved computing regions). We note that this scheme cannot support 
fully functional complex-valued convolutions in its current form, and further investigations 
such as complex-valued data input and output are necessary.” 
 
  



Reviewer #2 (Remarks to the Author): 

This paper reports a complex-valued optical convolution accelerator (CVOCA). The 
authors utilize a microresonator frequency comb to perform computational processing of 
complex-valued data. The complex data is mapped onto the comb lines using electro-optic 
modulation in their CVOCA. 

1. It is mentioned that a wave shaper is used to equalize the amplitude of the frequency 
comb lines. Is a spectrum of this available in the manuscript? The supplementary 
information only shows the raw generated soliton crystal state but not the spectrum after 
the wave shapers. 

We appreciate the reviewer’s thoughtful comments.  

In the experiments, we utilized a wave shaper to directly control and manipulate the 
amplitude of the frequency comb lines according to the desired values of weights. As such, 
the shaped comb spectra for specific kernels were given in the corresponding demonstrated 
tasks. Specifically, in the proof-of-concept demonstration, the shaped spectrum of kernel 
W11 was shown in the top of Fig. 3 in the main manuscript, wherein the unit of the ordinate 
in the shaped spectrum is dBm. The shaped spectra of the other kernels (W12, W21, W22) in 
the proof-of-concept demonstration were given in Fig. S3, wherein the units of the shaped 
spectra (i. e., the shaped comb weights) are transferred into mW, in order to compare with 
weight values that are linearly represented. As for the MINIST handwritten digit 
recognition task, the shaped comb spectra of both kernels with the unit of dBm were given 
in Fig. 5 in the main manuscript, wherein the real and imaginary parts were merged within 
one spectrum measured before the CVEOM. Similarly, the measured shaped comb spectra 
in the SAR image recognition were shown in the main manuscript in Fig. 6-7.  

Besides, we’ve included the experimentally yielded additional shaped comb spectra of the 
SAR image recognition task in the Supplementary Materials, as follows. 

Supplementary Materials  

Additional results 

“Figure S13 show the experimentally yielded additional shaped comb spectra of the SAR 
image recognition task.” 

 



 

Figure S13 | The experimentally yielded additional shaped comb spectra in the SAR image recognition task  

2.Complex-valued weights are needed for the convolution operation. The authors utilize 
two comb lines for this purpose. If the power in the comb lines fluctuate, for example if the 
microcomb state fluctuates, what would be the impact on the CVOCA operation? Or is the 
power maintained using the wave shaper? Supplementary information describes their 
selection process for the comb lines, but was there a specific reason why the two adjacent 
lines selected were picked? Was there a wavelength/power or other requirement? 

We appreciate the reviewer’s comments. The generated Kerr microcomb operates in a 
stable soliton crystal oscillation state, and that the power of the comb remains constant over 
a certain period. In our previous work, we have measured the microcomb power stability 
over 66 hours, with the optical spectrum captured every 15 minutes. The extracted relative 
standard deviation was -14 dB over 66 hours, indicating that the microcomb source’s 
stability can well support our convolution accelerator.  

Regarding the choice of the two adjacent comb lines, this selection was made as an optimal 
balance between the number of comb lines used in parallel and the speed of signal 
processing. The free spectral range (FSR) of the integrated micro-ring resonator (MRR) 
fundamentally determines the computing speed of the optical accelerator due to the 
constraints imposed by the available optical bandwidth. In our setup, the FSR of the 
integrated MRR is approximately 50.2 GHz, and it generates a soliton crystal with a 
wavelength spacing of ~0.4 nm. As long as the optical comb fully utilizes the available 
bandwidth and the modulation bandwidth (~25.1 GHz in our case) matches the FSR (~50.2 
GHz, thus resulting in a Nyquist bandwidth of ~25.1 GHz), the computing speed does not 
significantly vary with the number of comb lines or the FSR. 

Furthermore, the FSR also influences the length of the delay lines and can cause power 
fading due to fiber dispersion effects. To address these challenges, we propose an optical 



interleaving technique, as shown in Figure S1 of the supplementary material. By selecting 
half of the microcomb lines within the chosen optical bands as synaptic weights—by using 
one of the two adjacent lines—the wavelength spacing between adjacent channels in the 
real or imaginary optical sub-bands is equal to four times the wavelength spacing of the 
generated soliton crystal microcomb. The proposed wavelength interleaving technique 
significantly enhances the optical bandwidth of each wavelength channel, reduces the 
dispersive delay induced by optical fibers, and eliminates the power fading caused by 
optical dispersion. 

We’ve added discussions accordingly as follows:  

Supplementary Materials  

Details of experiments 

“The generated soliton crystal microcomb with a pump wavelength at 1570.62 nm offers 
over 90 channels within ~40 nm. The optical spectrum of experimentally generated optical 
frequency comb is given in Fig. S1(a). The generated Kerr microcomb operates in a stable 
soliton crystal oscillation state, and that the power of the comb remains constant over a 
certain period. In our previous work, we have measured the microcomb power stability 
over 66 hours, with the optical spectrum captured every 15 minutes. The extracted relative 
standard deviation was -14 dB over 66 hours, indicating that the microcomb source’s 
stability can well support our convolution accelerator.  

As is shown in Fig. S1(f), the operation of selecting, shaping and de-multiplexing the 
microcomb lines for implementing mapping the real and imaginary parts of multiple 
spatially parallel complex-valued convolutional kernels are actually performed by a 1×4 
waveshaper (Waveshaper 4000A), where different selected microcomb sub-bands for 
mapping one set of synaptic weights can be output at multiple output ports. As a result, the 
wavelength spacing between the adjacent wavelength channels inside real-part or 
imaginary part optical sub-bands is equal to the four times of wavelength spacing of the 
generated soliton crystal microcomb (see Fig. S2(d) and S2(e)). At the same sequence 
position, the wavelength differences between two optical sub-bands are always the double 
of wavelength spacing of the microcomb. The novel method to select the microcomb lines 
for mapping the weights makes the available optical bandwidth inside the single 
wavelength channel significantly improved without sacrificing any microcomb line and 
computing parallelism. More importantly, the needed dispersive delay induced by the 
transmitted optical fibre obtains considerable reduction, thereby leading to effectively 
weakening effects of the power fading arising from the fibre dispersion.”  

3. The CVOCA is used in the first convolutional layer of CVCNNs to accelerate the 
operation. The work in this section of the manuscript is quite interesting. Please define SAR 
at the first instance it appears in the text. The accuracy of the classification operations 
done was good with a large sample size. Can the authors can comment on how they can 
improve the accuracy, or what were some factors which caused the accuracy to be lower 
than in silico. 



We appreciate the reviewer’s positive and insightful comments. We’ve made revisions 
accordingly to the manuscript as follows: 

Main manuscript  

Introduction 

“Applications where complex-valued neural networks are heavily needed include radar 
technologies, which rely on understanding phase information for target detection and 
localization, such as analyzing ice thickness or industrial activities at sea using synthetic 
aperture radar (SAR) images captured by satellites [7, 8]; telecommunications, where the 
intricate interplay of amplitude and phase defines signal characteristics; and robotics, 
where precise wave-based sensing enhances spatial awareness [9-14].” 

Complex-Valued Convolutional Neural Network 

“Post-resampling, the extracted features maps were further processed in silico to yield 
recognition results (Fig. 7). We experimentally tested 500 samples (i.e., 2×500 complex-
valued SAR images) and obtained a classification accuracy of 83.8%, close to the 85.4% 
achieved in silico. We note that the recognition accuracy (i.e., the accuracy of the 
demonstrated complex-valued convolution accelerator) mainly depends on the accuracy of 
experimental system’s time/frequency response, which were subject to factors including: 
weight control accuracy (subject to non-ideal wavelength-division responses of modulators, 
photodetectors and amplifiers, compensated for here by the peripheral comb shaping 
system); the delay errors between the CVEOM’s two arms (experimentally compensated 
for using delay lines and reduced to ps level) and adjacent wavelength channels (induced 
by high-order dispersion, negligible in our case using a spool of dispersion compensation 
fiber); inter-symbol interference caused by system bandwidth limitations/nonlinearities — 
a common issue in optical communications that can be compensated for via post digital 
electronics.” 

4. The authors discuss integration of the CVOCA improving the performance by 
polarization multiplexing. The soliton crystal is generated with a specific polarization. 
Please comment on how the output of the microresonator may be controlled to create the 
polarization states needed for polarization multiplexing, especially if integration is the 
final goal. 

We appreciate the reviewer’s insightful comments. We’ve made revisions to the 
manuscript accordingly as follows: 

Supplementary Materials  

Potentials of performance scaling  

“Scaling. … Each channel is further split by a 1×2 optical coupler and mapped to the real 
and imaginary weight components through the dual-polarization multiplexing, wherein the 
real and imaginary weights can be encoded onto the same wavelength sets via dual-



polarization modulation. This can be achieved by splitting the microcomb (linearly 
polarized) in power into two paths (both with the same wavelengths), and separately shaped 
(according to desired weights WR and WI) and modulated (with inputs of X and it’s Hilbert 
transform j⋅X, respectively), then one arm’s polarization state is rotated to the other 
orthogonal polarization axis (i.e., from TE to TM) and combined together with the other 
arm (i.e., TE). Such architectures, using additional polarization rotators and combiners to 
support the polarization division multiplexing, can be readily achieved in integrated forms 
as demonstrated in [s3].” 

I recommend publishing after the above points are addressed. 

We greatly appreciate the reviewer’s insightful comments and support to this work. 
  



Reviewer #3 (Remarks to the Author): 

In this manuscript, the authors present a complex-valued optical convolutional system 
capable of 2 TOPS of computational speed for data processing. The system leverages a 
microcomb for wavelength generation/multiplexing as well as a weighted and time-delayed 
signal mechanism to realize complex-valued convolution operations. Processing of SAR 
images and handwritten digit recognition are demonstrated with the system shown, with 
accuracies similar to those obtained with conventional electronic neural networks. 

First of all, the motivation behind the selection of the specific method presented for 
handling complex-valued data should be justified. Comparisons should be made between 
the current implementation and a more traditional approach where the real and imaginary 
parts of the complex number are treated as two separate real numbers, as this more 
traditional approach would allow the authors to directly use their previous demonstrations 
[R1]. Secondly, a more detailed discussion of power use, energy efficiency metrics, and 
system implementation/scaling cost should be provided to place the presented results in 
better context of the state-of-the-art currently available. I have provided detailed comments 
regarding these two issues and some other relevant points below: 

We appreciate the reviewer’s constructive comments, and have made corresponding 
revisions in detail as follows.  

1. The statement in the abstract regarding processing of complex valued data is subjective 
and can potentially be interpreted as an exaggeration. 

a. While there are some challenges, most of them can be dealt with separating the real and 
imaginary parts of the complex numbers and processing them simultaneously/separately 
as two independent real numbers. This naturally requires additional memory; however, 
that typically does not present insurmountable challenges in traditional electronic neural 
networks. Existing literature includes many such examples. I suggest the authors reword 
their phrasing in the abstract. 

We appreciate and agree with the reviewer’s comments. We have reworded the abstract 
accordingly as follows: 

Main Manuscript 

Abstract 

“Complex-valued neural networks process both amplitude and phase information, in 
contrast to conventional artificial neural networks, achieving new capabilities in 
recognizing phase-sensitive data inherent in wave-related phenomena. The ever-increasing 
data capacity and network scale place substantial demands on underlying computing 
hardware. In parallel with the successes and extensive efforts made in electronics, optical 
neuromorphic hardware is promising to achieve ultra-high computing performances due to 
its inherent analog architecture and wide bandwidth. Here, we report …” 



b. I also believe the introduction would benefit from a discussion of existing methods of 
processing complex valued data in fully in-silico networks. This would also help place the 
presented work in better context of existing electronic solutions (not just optical/physical-
domain solutions), and better highlight the claimed advantages. 

We appreciate and agree with the reviewer’s comments. We have included discussions as 
follows: 

Main Manuscript 

Introduction 

“The complex-valued operations in neural networks are generally decomposed as real-
valued multiply-and-accumulate operations, which can be achieved through reading and 
writing data back-and-forth between the memory and processor in von Neumann 
architectures. As the data capacity (such as for massive satellite networks) and neural 
network scale (such as for Large Language Models) dramatically increase, the underlying 
computing hardware of complex-valued neural networks are expected to feature more 
advantages such as: a) efficient computing architectures/interfaces compatible with waves 
and complex-valued data; b) sufficiently large fan-in/out, needed for processing high-
dimensional data in practical wave-related scenarios; c) high bandwidth/throughput, for 
analysis of fast-varying features of waves in real time.” 

2. The presented idea is primarily based on delayed and weighted signal replicas measured 
through incoherent detection, as was shown previously by the authors. This allows signals 
encoded onto multiple different wavelengths to “interfere” with one another, therefore 
creating the ability to extract spatial information from the provided data. While the idea is 
now well established, there are still some drawbacks that need to be discussed in detail. 

a. In delay-weight-sum type of networks, aspects regarding the symbol overlap and delay 
timing impose limitations on the system’s information processing bandwidth. Currently, is 
this bandwidth primarily limited by data modulation and detection speeds? If so, are there 
any other fundamental limitations on the optical system’s capability of processing 
information at higher speeds? 

We appreciate the reviewer’s comments. We have included discussions as follows: 

Supplementary Materials 

Potentials of performance scaling 

“Signal bandwidth. We note that the potential analog bandwidth of input signal is subject 
to: a) the bandwidth of modulators and photodetectors, which can be readily achieved up 
to over 260 GHz [61-62, s2]; b) the Nyquist bandwidth, or half of the microcomb’s free 
spectral range/spacing (50 GHz for a 100GHz spaced comb source).” 



b. The high implementation cost (high speed modulators, waveshapers for realizing 
convolution kernels, requirements of balanced photodetection for negative weights, 
multiple amplifiers necessary etc.) can present critical challenges for the adoption of such 
systems. These additional requirements also indicate a substantial power budget for the 
system presented. Can the authors discuss these implementation aspects in more detail? 
Other than the modulators and the detectors, are there any other components that can be 
replaced with on-chip equivalents, to reduce power and footprint requirements? 

We appreciate the reviewer’s comments and have added further discussions accordingly. 

Supplementary Materials 

Potentials of performance scaling 

“Monolithic Integration. Although discrete components, other than the microcomb 
source, were used in the proof-of-concept demonstration, all components comprising of the 
CVOCA can be readily integrated. The microcomb itself is an integrated circuit that arises 
from a CMOS-compatible platform [51]. Integrated electro-optic interfaces, including 
modulators and photodetectors, readily support data bandwidths over 260 GHz [61-62, s2] 
and dual polarization modulation [s3]. The rest components of the CVOCA, including the 
optical spectral shaper, dispersive media, and de-multiplexer, have all been achieved based 
on integrated platforms [s4-s7, 63-66]. With all components integrated, the power 
consumption of the CVOCA mainly comes from the light source (can reach as low as 98 
mW [s8]); other active devices, including modulators (thin film Lithium Niobate [s9]), 
photodetectors (InP [s10]), and phase shifters (thin film Lithium Niobate [s11] or doped 
SOI [s12]) in the optical spectral shaper, only need bias voltages and consume negligible 
power.” 

3. The demonstrated system deals with complex valued data as two separate data streams 
being fed into a pair of MZIs modulating spectrally adjacent wavelengths of light, that are 
then subsequently delayed according to the symbol rate. While this implementation 
provides a way to process data coming in as real-and-imaginary pairs, it is similar to how 
one would deal with two separate streams of data, or even a single stream of data that is 
separated onto two distinct channels. In that case, would it be possible to use the authors’ 
demonstration from their earlier results, with a fully real-valued approach to mimic 
processing of complex valued data? This is an important point that needs to be clarified, 
especially to properly distinguish this 

We appreciate and agree the reviewer’s comments. We have added further discussions 
accordingly. 

Main Manuscript 

Discussions 

“Further, we note that, this CVOCA is the first demonstrated complex-valued optical 
convolutional hardware, representing major advances over the previous work [30] 



including: a) Capability of directly extracting features from complex-valued data or 
waves… We note that, although a complex-valued convolution constitutes of four real-
valued convolutions that can be separately accelerated with the approach in [30] (i.e., W*X 
= [WR*XR - WI*XI ]+ j⋅[WR*XI + WI*XR]), our approach that directly processes complex 
values is more efficient/compact. Specifically, on one hand, four separate systems are 
needed if using the real-valued approach [30], thus significantly increasing the overall 
complexity in terms of data fan-in/-out, delay error compensation, weight control, signal 
synchronization etc.; on the other hand, our approach are compatible with waves (i.e., 
|X[n]|·cos{ωct+φ[n]}), thus having the potentials of bypassing AD/sampling/demodulation 
processes and directly processing raw complex-valued data from communications and 
SAR systems, albeit requiring further investigations in terms of data encoding/decoding 
protocols etc.” 

4. Similar to my comment above, a complex valued multiply-and-accumulate (MAC) 
operation is not fundamentally different from a set of real valued MAC operations. There 
are several fundamental and implementation-related perspectives that need to be 
addressed regarding this aspect: 

a. Firstly, this fact is already explicitly stated by the equation in line 76 of the paper, where 
the real and imaginary parts of the result (which are separately real-valued) are simply a 
collection of the MAC operation results between the real and imaginary parts (which are 
also separately real-valued) of W and X. From this perspective, by separating the real and 
imaginary parts, one can execute complex MAC using only real-valued operations. This 
indicates that while hardware demands may increase slightly due to the extra 
multiplications necessary, the actual system (electrical or optical) is not fundamentally 
different from one that performs real-valued MACs. This is an important aspect that needs 
more detailed and clear explanations in the manuscript. 

b. Secondly, the use of a pair of wavelengths (named odd and even) indicates that the 
operation being performed is quite similar to (likely the same as) separating the complex 
data into two streams of real numbers, and processing them in the same way as 
demonstrated before in [R1]. This should be investigated in detail, and the comparison of 
these two approaches should be provided in the manuscript. Currently, the reader is left 
questioning the efficacy of the presented approach. 

[R1] Xu, X. et al. 11 TOPS photonic convolutional accelerator for optical neural networks. 
Nature 589, 44–51 (2021) 

We appreciate and agree with the reviewer’s comments. We’ve included discussions in the 
main manuscript to compare with the previous paper [R1] and highlight the advances made 
in this work. Please refer to our response to the above comment. 

5. Is it possible to implement a similar processing architecture using IQ modulation? In 
the current implementation, the delayed overlaps of different wavelengths is what enables 
feature extraction. At the same time, the system requires synthesis, weighing, and 
dispersion control of twice as many wavelengths. Naturally, it would be advantageous to 



explore the possibility of using a single wavelength for each data, but incorporate other 
orthogonal modalities such as IQ modulation. 

We appreciate and agree with the reviewer’s insightful comments. We have provided a 
detailed discussion on the IQ modulator scheme. Please refer to our response made to 
Comment 1, Reviewer 1. 

6. An important of optical networks like the one presented here is their inherent capability 
to handle theoretically unlimited precision, whereas their electronic counterparts are 
typically limited to double-precision arithmetic. Similarly, while increased precision 
incurs computational overhead in electronics, the detector in an optical system practically 
does not care about the input precision, given that it receives sufficient power. Can this 
advantage potentially be leveraged to perform operations that require computationally 
prohibitive precision levels in electronics, in an optical manner through this weighed-and-
delayed processing method? Even if that is not currently demonstrated, the authors should 
discuss the possibility of other potential tasks that require more intensive electronic 
computations, but can be performed in fewer optical layers using a system such as the one 
demonstrated here. 

We greatly appreciate the reviewer’s insightful comments that point out the advantages 
and future research directions of optical computing hardware. We’ve added further 
discusses according as follows. 

Supplementary Materials 

Potentials of performance scaling 

“Precision. Further, we note that the input data’s precision of analog optical computing 
hardware can be potentially much larger than their digital electronic counterparts. In 
contrast to the bit resolution of digital electronics that is determined by the 
architecture/memory width and scales with the electrical signal-to-noise ratio (ESNR) at 
one bit per 6dB of ESNR, optical computing hardware can potentially process data with 
much higher precision/bit-resolution, since: a) optical signals are less susceptible to 
electromagnetic interference compared to electronic signals. This can lead to clearer signal 
transmission and higher fidelity in data representation; b) optical computing typically 
generates less heat than electronic circuits, allowing for more efficient operation and the 
possibility of more complex systems without thermal throttling; c) optical systems can 
exploit principles of quantum mechanics, such as superposition and entanglement, to 
perform complex computations that traditional electronic systems cannot easily achieve. 
These advantages position optical computing hardware, including our CVOCA or more 
complicated optical computing hardware such as Ising machines [s18], as a promising 
candidate for directly processing real-world analog information (such as waves) without 
losing precisions due to the sampling process of digital electronics.” 

7. From a more general standpoint, many authors in modern physical (or physically-
inspired) machine learning literature discuss the benefits and drawbacks of two 
information processing regimes: In the first regime, the physical networks constructed (like 



the one shown in this paper) exactly replicate the operations that would otherwise be done 
in electronic circuits through completely artificial neural networks. In the second regime, 
the physical nature (including complex system dynamics, memory, nonlinearity etc.) of the 
constructed system directly performs various inference tasks, with potential added pre- or 
post-processing through electronic layers. While there may not be clear winner between 
these two regimes, it is quite important to discuss the capabilities of the presented system 
in the context of these two approaches. Especially since the presented demonstration 
mimics an operation that can already be performed by existing electronics, it is critical to 
provide broader application perspectives in the second regime aforementioned. For 
instance, can a system like the one demonstrated here be leveraged for other operations 
that are currently not possible through conventional electronics? In the presented work, 
are there any system dynamics (optical nonlinearity, memory, inter-modal coupling etc.) 
that could be taken advantage of in the future? 

We greatly appreciate the reviewer’s insightful comments regarding the two information 
processing regimes in physical machine learning, and appreciate the suggestion to discuss 
our system's capabilities in the context of both regimes. We’ve added discussions 
accordingly as follows. 

Supplementary Materials 

Potentials of performance scaling 

“Other potentials. In parallel with accelerating classic operations widely achieved in 
digital electronics (such as the convolutions or matrix multiplication), optical computing 
systems’ inherent physical natures (such as complex nonlinear dynamics) can be further 
explored to achieve dramatically increased computing performances (trillions of physical 
parameters can be involved within computations in several nanoseconds), albeit with 
tradeoffs in terms of compatibility (such as network fan-in/-out, data formats, and 
universality) with existing digital electronics. We note that, while the demonstrated 
CVOCA performs linear operations (formed by multiplication and accumulation), it 
involves much more complicated nonlinear dynamics that can be further investigated and 
potentially harnessed to achieve dramatically different computing regimes. For example, 
the used microcombs arose from parametric oscillation inside a micro-ring resonator that 
has: a long photon life time (Q factor > 1.2 million), supporting data storage and 
accumulation; high nonlinearity that supports high-dimension nonlinear mapping and 
interference via four-wave mixing; tailored dispersion and mode-crossing that enables 
manipulation of the signal’s linear transmission process and wavelength-dependent 
characteristics. Moreover, the generated soliton crystal state itself represents a 
mathematical solution of the Lugiato-Lefever equation, indicating that complicated 
physical systems can be used in turn to dramatically accelerate computing operations—if 
appropriate data mapping/encoding can be addressed.” 

8. The hand-written digit recognition has become a staple in demonstration of many 
physical machine learning models, as also shown in Fig 5. Looking at the details shown 
here, it appears that the original data starts as a real-valued image, and is then converted 
into a complex-valued image through a slicing operation. This method of converting real 



data into complex data is quite interesting, but I am not aware of any physical or 
mathematical motivation for this choice of operation. It would make a lot more sense (and 
be commensurate with well-known approaches in image processing) to perform FFT on 
these images, and retrieve the amplitudes and phases of the transforms to use as complex-
valued data in such a problem. In that case, it is also possible that the underlying feature 
maps obtained carry physically relevant information regarding both the geometrical 
structures in the original image and their specific locations. In fact, it is well-established 
that the phase of the transform carries more information that is relevant to human 
perception than the amplitude. Since it is done electronically, is there a reason that the 
authors did not opt for a more conventional real-to-complex data conversion method here? 
Is it possible that the authors present capabilities of the network (at least in simulation), 
using instead a spectral transform such as FFT? 

We appreciate the reviewer’s insightful comments. We note that the MNIST task served as 
a benchmark to verify the performance of the CVOCA in convolving complex-valued data, 
and we used the method in [60] to convert the real-valued images into complex-valued 
ones. However, as acknowledged in [60], such method does not guarantee a better 
performance than real-valued operators and needs further optimization to demonstrate its 
advantage/efficacy. Please refer to Reviewer#1, Comment 2. 

In terms of FFT, we have actually simulated its performance, yet found this approach led 
to worse performance than the presented method [60], as shown in the following figure. 
We assume that this is because the MNIST dataset are more widely separated in the ‘spatial’ 
hyperspace (i.e., its raw form) than in the ‘spectral’ hyperspace (after FFT), which can be 
further investigated with deterministic decision boundaries using supporting vector 
machines. We note that, for datasets that are inherently more separable in the ‘spectral’ 
hyperspace, such as voices/speeches, the FFT based method should outperform the slicing 
approach. 

 

Figure. R3-1 the comparison of different data-conversion methods 



We’ve added discussions accordingly to clarify this point. 

Supplementary Materials 

Network training  

“For the MINIST handwritten digit recognition task, data points in the top half of each 
image are assigned to the real part and points in the bottom half are assigned to the 
imaginary part. We note that here the MNIST task served as a benchmark to verify the 
performance of the CVOCA in convolving complex-valued data, and the real-to-complex 
conversion method [60] does not guarantee a better performance than real-valued operators. 
Further optimization of this method or alternative Fourier transform-based methods are 
necessary to reveal complex-valued operators’ advantages for real-valued data.” 

9. Fig 7’s comparison to in-silico metrics for the SAR images is mainly focused on the 
prediction accuracy of 83.8% to demonstrated electronic accuracy of 85.4%. However, 
even before constructing the optical system, one expects these metrics to be similar as the 
optical system exactly mimics the mathematical operations performed by its electronic 
counterpart. One also does not expect the optical system to significantly outperform its 
electronic counterpart on accuracy alone, due to the same reason above, since the 
fundamental computations are identical. These points highlight that a more detailed 
comparison including other aspects is necessary. Energy efficiency is presented as one of 
the most important advantages of the demonstrated system. As such, it is critical to include 
quantitative comparisons regarding the amount of energy per operation (or per image, per 
bit, etc.) used in the demonstrated system, and place it in context of existing state-of-the-
art electronic or optical systems in the literature. 

We appreciate the reviewer’s insightful comments and have added quantitative 
comparisons regarding the amount of energy efficiency as follows. 

Supplementary Materials 

Potentials of performance scaling 

“Scaling. Although the demonstrated CVOCA readily achieve high performances among 
complex-valued optical hardware accelerators, its parallelism and thus computing 
performance can be further boosted using photonic multiplexing methods and state-of-art 
techniques. Specifically, as shown in Fig.S14, the number of wavelength channels can be 
significantly increased by using broader bandwidths of microcombs, for example, over 200 
wavelength channels (at a 100 GHz spacing) can be obtained when exploring the S, C and 
L bands (~20-THz). Two such MRRs with 50-GHz spacing difference in center pump 
wavelengths are interleaved and combined through a 2×1 optical coupler to produce a light 
source with 400 wavelengths (at a 50 GHz spacing), then split into four parallel channels 
via a 1×4 optical coupler. Each channel is further split by a 1×2 optical coupler and mapped 
to the real and imaginary weight components through the dual-polarization multiplexing, 
wherein the real and imaginary weights can be encoded onto the same wavelength sets via 
dual-polarization modulation. This can be achieved by splitting the microcomb (linearly 



polarized) in power into two paths (both with the same wavelengths), and separately shaped 
(according to desired weights WR and WI) and modulated (with inputs of X and it’s Hilbert 
transform j⋅X, respectively), then one arm’s polarization state is rotated to the other 
orthogonal polarization axis (i.e., from TE to TM) and combined together with the other 
arm (i.e., TE). Such architectures, using additional polarization rotators and combiners to 
support the polarization division multiplexing, can be readily achieved in integrated forms 
as demonstrated in [s3]. After spectral shaping and demultiplexing, 10 spatial parallel 
channels are generated, with each channel supporting four 3×3 complex-valued 
convolutional kernels.As such, four parallel channels include 40 spatial parallel channels 
in total, thereby supporting 40 3×3 kernels. For the single spatial parallel channel, the 
Nyquist bandwidth of input signal is over 100 GHz ( can reach 500 GHz in theory) and 
enough for an input data rate of 100 GBaud. Therefore, the computing speed would be 
100G×(2×4×9+2) = 7.4 Tops per kernel, and thus 7.4 Tops×4×10×4 = 1.184 Peta-OPs in 
the entire scaled CVOCA.  

Energy Efficiency. It is a challenge to directly reflect the ultimate potential of our scheme 
due to the fact that the CVOCA in this work was validated with discrete devices. Therefore, 
we have evaluated the energy efficiency of a fully integrated CVOCA, which has the same 
architecture as the scaled CVOCA. As shown in Fig.S14, the scaled scheme requires about 
47 erbium-doped amplifiers based on integrated circuits, with each amplifier's power 
consumption not exceeding 200 mW [63]. As such, the energy per operation of the scaled 
CVOCA can be roughly given as (98 × 2 + 47 × 200)mW/1.184 POPs =  0.008 pJ/
operation—exceeding electronics (0.5pJ/operation [s15]). Table S1 compares the power 
consumption of this work with existing state-of-the-art electronic or optical systems. Such 
performances will reach the same level of (if not exceed) state-of-art electronics [s13-s15], 
capable of serving as an efficient computing unit of an electro-optic hybrid computing 
hardware, which leverages the broad bandwidths of optics and the flexibility of electronics, 
ultimately achieving unparalleled performances for artificial intelligence applications.” 

Table.S1 The energy efficiency of the potential scaled CVOCA compared with state-of-the-art 
electronic or optical systems. 

 

 

Reference Power Consumption ( 𝐩𝐩𝐩𝐩/𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨 ) 

Nature (2021) [30] 0.8 
Nature (2021) [22] 2.5 

NVIDIA A100 [s16]  0.641 
Google TPU-v4 [s17] 0.699 

This work (the potential scaled 
CVOCA) 

0.008 



 

Figure S14 | The schematic diagram of designed scaled optical complex-valued convolution 
accelerator by fully using the multiple freedom degrees of light. 



10. On a related point, while the discussion of power is currently missing from the 
manuscript; and the power characteristics of the microcomb are also not reported. Can 
the authors please report the total optical input power and/or power per comb line? 
Understanding these metrics is important for evaluating the energy efficiency and 
scalability of the system. Then, the authors should discuss if any steps can be taken to 
further reduce the optical power necessary, relevant optical losses in the system, and other 
factors contributing to the overall power budget for the image processing capabilities 
presented. Finally, at least the obtained SNR at the detectors should be reported, in order 
to fully convey the technical details necessary. 

We appreciate and agree with the reviewer’s insightful comments. We have provided a 
detailed discussion on the energy efficiency in our response to above comment, and added 
some necessary technical details as follows.  

Supplementary Materials 

Details of experiments 

“As for the optical power of the microcomb and the optical losses encountered within the 
system, we use the optical input with the power of ~30.5dBm into the micro-ring to 
generate the microcomb in this work, and the total optical output power of the 18 comb 
lines used in the CVEOM scheme is ~20 dBm. The measured optical spectrum of the 
microcomb after 20dB attenuation is shown in Figure S1a, and the microcomb generation 
system is shown in Figure S1b. We used an erbium-doped amplifiers (EDFA) in the 
CVEOM scheme, which have a total power consumption of ~200 mW, to compensate for 
the optical losses of the comb shaping and modulators so that the total optical input power 
of the photodetectors was at ~7 dBm, corresponding to a root-mean-square voltage of ~100 
mVrms for the received electronic signal (with a responsivity of ~0.4 A/W and 50 Ω 
impedance).  

The electrical signal-to-noise ratio (ESNR) of our experimental system was mainly subject 
to our external equipment rather than the CVOCA itself: the arbitrary waveform generator 
(Keysight 8196, Effective Number of Bits = 5.4) has an effective ESNR of 5.4×6=32.4 dB 
for the computing system; the oscilloscope (Lecory 830, vertical noise floor = 2.90 mVrms) 
has an effective ESNR of 20⋅log10(100/2.90) = 30.75 dB for the computing system. Due 
to limited experimental capabilities for accurate ESNR characterization, we used 
experimentally measured waveforms to roughly estimate the ESNR of the computing 
system as 36.57 dB (with <10 dB ESNR enhancement using averaging), close to the upper 
limit of the external equipment, thus indicating that the CVOCA would have a similar, if 
not higher, ESNR.”  
 
11. Even though the authors discuss the potential for scaling up to Peta-OPS performance, 
aren’t there potential bottlenecks regarding inter-modal crosstalk? Also, couldn’t more 
closely spaced wavelengths be used for stronger parallelization? Does the reduced 
spectral spacing between channels pose any restrictions for this purpose? 



We appreciate the reviewer’s comments. As mentioned by our response made to your 
Comment 2(a) (Reviewer 3, Comment 2(a)), the potential analog bandwidth of input signal 
is subject to the Nyquist bandwidth, or half of the microcomb’s free spectral range/spacing 
(50 GHz for a 100GHz spaced comb source). While more closely spaced wavelengths be 
used for stronger parallelization, the reduced spectral spacing between channels will indeed 
pose restrictions on the Nyquist bandwidth of input signal. This issue can be resolved 
through the wavelength interleaving method introduced in Fig. S1. Specifically, all used 
wavelengths with more closely spaced can be divided into 9 groups in sequence, the single 
parallel computing channel can be designed by selecting one wavelength at the same 
position from every group to make up the weights of one 3×3 kernel. In this way, multiple 
parallel computing channels with significantly improved wavelength space and Nyquist 
bandwidth can be easily obtained, with the more closely spaced wavelengths utilized. 
Therefore, the stronger parallelization can be achieved in the scaled CVOCA via utilizing 
the proposed wavelength interleaving method. 

We’ve added discussions accordingly as follows. 

Supplementary Materials 

Potentials of performance scaling  

“Signal bandwidth. … While the more closely spaced wavelengths are utilized for 
implementing multiple parallel computing channels, the Nyquist bandwidth of input signal 
can keep enough through utilizing wavelength interleaving method. Specifically, all used 
wavelengths with more closely spaced can be divided into 9 groups in sequence, the single 
parallel computing channel can be designed by selecting one wavelength at the same 
position from every group to make up the weights of one 3×3 kernel. As such, in the 
scaled CVOCA, if a microcomb with a smaller FSR is used, stronger parallelization can be 
achieved without sacrificing Nyquist bandwidth via utilizing the proposed wavelength 
interleaving technique.” 

12. The numbering of references in the main text should be revised to reflect their order of 
appearance. 

We appreciate the reviewer’s comments, and have revised the numbering of references 
according to their order of appearance. 
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