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The heat shock protein 83 (Hsp83) is required for
Raf-mediated signalling in Drosophila

external stimulus. RTK activation in turn leads to RasAlexandra van der Straten,
activation, via intermediates such as Grb2, Sos, Dos, ShcChristian Rommel1, Barry Dickson and
and Gab1 (Holgado-Madrugaet al., 1996; Raabeet al.,Ernst Hafen
1996; for review, see Pawson, 1995). Activated Ras then

Zoologisches Institut, Universita¨t Zürich, Winterthurerstrasse 190, recruits Raf to the plasma membrane and stimulates its
CH-8057 Zürich and1Institut für Medizinische Virologie, kinase activity (Leeverset al., 1994; Stokoeet al., 1994).
Gloriastrasse 30, CH-8028 Zu¨rich, Switzerland Raf acts at the head of a serine/threonine kinase cascade

that ultimately leads to the phosphorylation and nuclearThe heat shock protein Hsp90 has been shown to translocation of MAPK (for review, see Marshall, 1994).associate with various cellular signalling proteins such
Once in the nucleus, MAPK is able to phosphorylate aas steroid hormone receptors, src-like kinases and
number of transcription factors, and thus alter the patternthe serine/threonine kinase Raf. While the interaction
of gene expression (for review, see Dickson, 1995).between steroid hormone receptors and Hsp90 appears

The mechanism by which Raf is activated is notto be essential for ligand binding and activation of the
well understood. In mammalian cells, it has been shownreceptors, the role of Hsp90 in Raf activation is less
that recruitment of Raf to the membrane by binding toclear. We have identified mutations in thehsp83gene,
Ras cannot account for full activation of Raf. Athe Drosophila homologue of hsp90, in a search for
membrane-anchored form of Raf can be stimulated furtherdominant mutations that attenuate signalling from Raf
by epidermal growth factor (EGF) treatment in a Ras-in the developing eye. The mutations result in single
independent manner (Leeverset al., 1994), and tyrosineamino acid substitutions in the Hsp83 protein and
phosphorylation by src-like kinases has been shown tocause a dominant-negative effect on the function of the
potentiate Raf activity (Maraiset al., 1995). Furthermore,wild-type protein. We show that both wild-type and
in addition to Hsp90, members of the 14-3-3 family ofmutant forms of Hsp83 bind to the activatedDrosophila
proteins are also known to be constitutively associatedRaf but the mutant Hsp83 protein causes a reduction
with Raf (for review, see Aitken, 1995). Little is known,in the kinase activity of Raf. Our results indicate that
however, about the role of these proteins in Raf activation.Hsp83 is essential for Raf functionin vivo.

A powerful model system for the analysis of RafKeywords: chaperone/Hsp90/Raf/Sevenless/signal
signalling in vivo is the specification of the R7 photo-transduction
receptor in the developing eye ofDrosophila melanogaster
(for reviews, see Zipursky and Rubin, 1994; Domı´nguez
and Hafen, 1996). In this case, the external stimulus is

Introduction the protein Boss, expressed on the surface of the neigh-
bouring R8 cell. Boss is the ligand for the Sevenless (Sev)Subjecting any living cell to a heat shock results in the
RTK, expressed by several undetermined cells in therapid induction of a highly conserved group of proteins,
developing eye imaginal disc. Some of these cells, thethe heat shock proteins (for review, see Parsell and
precursors of the R7 photoreceptor and the four non-Lindquist, 1993). Many of these proteins are required not
neuronal cone cells, together form the R7 equivalenceonly for stress tolerance, but also at normal physiological
group, since each has the potential to become either antemperatures for processes such as protein folding and
R7 cell or a cone cell, depending on whether or not theoligomer assembly. One family of heat shock proteins,
Sev RTK is activated (Greenwald and Rubin, 1992). Thethe Hsp90 family, has also been implicated as an important
presumptive R7 cell is the only member of this group thatcomponent of intracellular signalling pathways. Dimeric
makes direct contact with the R8 cell, and thus is the onlyHsp90 proteins bind molecules such as steroid hormone
cell in which Sev can be activated by its ligand Boss.receptors (Catelliet al., 1985) and the kinases v-src, Raf
This spatial restriction can be overcome either by ectopicand casein kinase II (Miyata and Yahara, 1992; Stancato
expression of Boss or by direct activation of Sev in theet al., 1993; Xu and Lindquist, 1993; Wartmann and Davis,
cone cell precursors (Basleret al., 1991; Van Vactoret al.,1994). In the case of steroid receptors, this interaction is
1991). In either case, the precursors of cone cells arerequired for efficient ligand binding and transcriptional
induced to differentiate as additional R7 cells.regulation (Bohen and Yamamoto, 1993). Here we present

Sev activates a signalling pathway that involves thegenetic and biochemical data suggesting that Hsp90 also
adaptor proteins Drk (a Grb2 homologue) (Olivieret al.,plays an important role in signalling via the Raf serine/
1993; Simonet al., 1993) and Daughter-of-sevenless (Dos)threonine kinase.
(Herbst et al., 1996; Raabeet al., 1996), the guanineEn route to the nucleus, many signals originating
nucleotide release factor Son-of-sevenless (Sos) (Roggeextracellularly pass through the Raf kinase. One well
et al., 1991; Simonet al., 1991), the Ras protein Ras1characterized pathway begins with the activation of a

receptor tyrosine kinase (RTK) in response to some (Simonet al., 1991) and the kinases Ksr (Therrienet al.,
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1995), Raf (Dicksonet al., 1992), MEK-1 (or Dsor1) a simple means of distinguishing components required
generally for Raf function throughout development from(Tsudaet al., 1993; Luet al., 1994) and the Rolled MAPK

(Biggs et al., 1994; Brunneret al., 1994). Activation of those required specifically for Raf function in R7 speci-
fication.this pathway at points downstream from Sev, such as

Ras1, Raf or Rolled, bypasses the need for Sev activation On the basis of its genetic interactions withRaftorY9

and rafHM7, a third Su(Raf)locus, Su(Raf)3A, presentedto induce the R7 fate in all members of the R7 equivalence
group (Dicksonet al., 1992; Fortiniet al., 1992; Brunner itself as a strong candidate for another gene encoding a

protein generally required for Raf signalling. The twoet al., 1994). Also, as a general rule, a loss-of-function
mutation in a gene encoding one of these signalling Su(Raf)3Aalleles, 9J1 and 13F3, were the strongest

dominant suppressors of theRaftorY9 phenotype wemolecules impairs signalling from a constitutely activated
form of an immediately upstream component, and thereby isolated, completely eliminating all additional R7 cells

(Figure 1C and G, Figure 4A). The strong suppression issuppresses the ability of this activated molecule to induce
the recruitment of additional R7 cells. For example, Ras1 specific forRaftorY9, since9J1 and13F3 do not strongly

suppress the rough eye phenotype caused by the constitu-mutations dominantly suppress the multiple R7 phenotype
caused by constitutive activation of the upstream com- tive activation of Ras1 (sev-RasV12) or Rl/MAP kinase

(rlDN) (Figure 4E). Furthermore, as withrl , the rafHM7ponent Sev, but have no effect on constitutively activated
downstream components such as Raf or Rolled. mutation becomes lethal in aSu(Raf)3A/1 background,

and it is not possible to recover homozygousSu(Raf)3AWith the aim of identifying other molecules involved
in this signalling process, we recently performed a genetic clones in adult flies (data not shown, and Simonet al.,

1991). We therefore decided to proceed with the molecularscreen for mutations that dominantly suppress the multiple
R7 phenotype caused by constitutive activation of the Raf characterization of this locus.
kinase (Dicksonet al., 1996). We show here that the
strongest dominant suppressor mutations isolated in thisSu(Raf)3A is the hsp83 gene

Mapping by meiotic recombination initially placed thescreen disrupt thehsp83gene, which encodes theDroso-
phila Hsp90 protein.hsp83 mutations had also been Su(Raf)3Agene at position 136 4 on the left arm of the

third chromosome, and deficiency mapping localized theisolated previously on the basis of genetic interactions
with a temperature-sensitivesevallele (Simonet al., 1991; gene to the cytological interval 63A1; C1. In addition to

the two ethyl methanesulfonate (EMS)-induced allelesCutforth and Rubin, 1994). We demonstrate here that
Hsp83 physically associates with Raf and that mutant recovered as suppressors ofRaftorY9, we also identified a

lethal P element insertion,P582 (P.Deak and P.Maro¨y,forms of Hsp83 cause a reduction in Raf kinase activity.
These results demonstrate that Hsp83 protein is required unpublished data), that failed to complement both EMS-

induced alleles. This insertion was localized to 63B5-11for Raf function inDrosophila.
on polytene chromosomes, and precise excision by P
element transposase demonstrated that this insertion wasResults
responsible for the lethality associated with this chro-
mosome.Su(Raf)3A encodes a protein generally required for

Raf signalling We cloned the region flanking theP582insertion (Figure
2A) and determined that this P element lies within the 59-We previously have reported the isolation of several

mutations which dominantly suppress the formation of untranslated region (59-UTR) of thehsp83gene (Hackett
and Lis, 1983). A construct containing 7.5 kb of genomicmultiple R7 cells as a response to constitutive activation

of the Raf kinase in all members of the R7 equivalence DNA from this region, including bothhsp83 and an
adjacent transcript (Wohlwill and Bonner, 1991), rescuedgroup (Dicksonet al., 1996). These mutations define seven

Su(Raf) loci. The molecular characterization of two of the lethality ofSu(Raf)3Amutations in transgenic flies.
Furthermore, introducing this construct into aRaftorY9/1;these has already been reported. One of these is the gene

rolled, which encodes aDrosophila MAP kinase (Biggs Su(Raf)3A/1 background resulted in the reappearance of
additional R7 cells. To demonstrate that it was thehsp83et al., 1994; Brunneret al., 1994), most likely a general

component mediating signal transduction downstream of gene and not the adjacent transcript (O’Connor and Lis,
1981) that was responsible for the abolition of suppression,Raf. The secondSu(Raf) loci to be cloned,phyllopod

(phyl) (Changet al., 1995; Dicksonet al., 1995), appears we generated transgenic flies in which thehsp83cDNA
was expressed under the control of thesev enhancerto be a target gene of the Raf/MAPK pathway that is

required in only a few specific responses to Raf signalling, (Basleret al., 1989), and thus in the cells of the R7
equivalence group. As with the genomic construct, thisincluding induction of the R7 cell fate, as well as that of

the R1 and R6 photoreceptors. Mutations in either of thesesev–hsp83construct also restored additional R7 cells in a
RaftorY9/1; Su(Raf)3A/1 background (Figure 1D and H).genes suppress the dominant rough eye phenotype of

RaftorY9 flies (described in Dicksonet al., 1992), but differ Finally, we cloned and sequenced thehsp83gene from
both Su(Raf)3A9J1 andSu(Raf)3A13F3 strains. Single pointmarkedly in their interactions with a hypomorphicraf

allele, rafHM7. Hemizygous rafHM7 flies show reduced mutations were identified for each allele (Figure 2B), in
regions that are highly conserved amongst theDrosophila,viability, as well as the absence of the R7 cell in ~50%

of the ommatidia. Bothrl andphyl mutations dominantly yeast and human Hsp90 family members. Since neither
theP582insertion nor deficiencies that completely removeenhance therafHM7 phenotype, but whereas therafHM7

allele becomes completely lethal in arl /1 background, thehsp83gene act as dominant suppressors of theRaftorY9

phenotype, we infer that both EMS-induced mutations areno reduction of viability is seen at all in aphyl/1
background. The interaction withrafHM7 thus provides antimorphic in nature.
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Fig. 1. The RaftorY9 gain-of-function phenotype is suppressed bySu(Raf)3A. Scanning electron micrographs (A–D) and histological sections (E–H) of
eyes of flies of the following genotypes are shown: wild-type (A andE), RaftorY9/1 (B andF), RaftorY9/1; Su(Raf)3A9J1/1 (C andG), sE-hsp83/1;
Su(Raf)3A9J1, RaftorY9/1 (D andH). TheRaftorY9 flies have rough eyes due to the recruitment of multiple R7 photoreceptor cells (F). Removal of
one copy ofSu(Raf)3Aprevents this recruitment of additional R7 cells, reverting the RaftorY9 phenotype to almost wild-type (G). Addition of one
wild-type copy of thehsp83gene rescues the suppression and restores the multiple R7 cells (H). The scale bars represent 100µm in (D) and 10µm
in (H).

Five additionalhsp83alleles have been isolated previ- As shown in Figure 4, theSu(Raf)alleles also interact
genetically with both gain- and loss-of-functionsevalleles,ously as dominant enhancers of a temperature-sensitive

loss-of-functionsev allele [E(sev)] (Simon et al., 1991; though these interactions appear to be generally weaker
than the interactions withraf. Conversely, four of the fiveCutforth and Rubin, 1994). All five mutations also result

in single amino acid substitutions. There is, however, no E(sev)alleles showed no genetic interaction with either
raf or sev. One of the fiveE(sev)alleles,hsp83e6D, did,obvious correlation between the site of a mutation in the

primary sequence and its recovery as either aSu(Raf)or however, show strong interactions with bothsevand raf
alleles, acting as an antimorph. Since bothSu(Raf)alleles,E(sev)mutation (Figure 2B).
as well as theE(sev)allele hsp83e6D, interact genetically
with both raf and sev, we conclude that the two classesIntragenic complementation between hsp83 alleles

Surprisingly,hsp83alleles recovered asE(sev)mutations of mutations probably do not specifically disrupt domains
required for interactions withraf or sev, respectively.generally complement those recovered asSu(Raf)

mutations, with the exception that twoE(sev) alleles, Rather, the distinction appears to be one of strength: the
Su(Raf) alleles are strongly antimorphic; most of thehsp83e4A and hsp83e6D, do not complement theSu(Raf)

allele hsp8313F3 (Figure 3). The viable heteroallelic com- E(sev)alleles are not. Antimorphic alleles were recovered
in the RaftorY9 screen at a frequency of 1/100 000, and itbinations result in male sterility, but no other signs of

abnormal development. The P element allele,P582, does is therefore not surprising that only one such allele was
recovered in thesevts screen, in which only 30 000 fliesnot complement any of the EMS-induced alleles, and all

alleles are lethal over a deficiency for the locus. were screened. Conversely, hypomorphicE(sev)alleles,
recovered at high frequency (1/6000) in thesevts screen,Since Hsp90 proteins act as dimers (Minamiet al.,

1994), a likely explanation for the existence of these two do not interact withRaftorY9 and thus could not have been
recovered in theRaftorY9 screen.classes of mutation is that they affect different functional

domains of the protein, such that certain heteroallelic Reconsidering the locations of the varioushsp83
mutations in this light, one can observe a weak correlationcombinations result in functional heterodimers, even if

the homodimers are not functional. The broad correlation between the site of a mutation and its genetic nature: all
but one of the hypomorphic alleles, and none of thebetween these two complementation groups and their

recovery asE(sev)and Su(Raf)mutations suggested that antimorphs, map to the C-terminal domain known to be
involved in dimerization (Minamiet al., 1994).the former mutations may specifically disrupt an inter-

action with Sev, the latter specifically an interaction with
Raf. To verify this hypothesis, we tested theE(sev)alleles Wild-type and mutant Hsp83 proteins bind Raf

It has been reported that human c-Raf-1 and Hsp90for interactions with Raf and theSu(Raf) alleles for
interactions with Sev. proteins form part of a large, multi-subunit complex
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Fig. 3. Intragenic complementation ofhsp83alleles. A Venn diagram
indicating subsets ofhsp83alleles that fail to complement each other.
For example,9J1 complements all other EMS-induced alleles except
13F3, which in turn is lethal overe4Aande6D but viable overe1D,
e3Aande6D. Note that two of the subsets of non-complementing
hsp83alleles correspond to theE(sev)andSu(Raf)classes. The P
element-induced alleleP582 fails to complement all EMS-inducedFig. 2. Su(Raf)3Aencodes the heat shock protein 83 (Hsp83). (A) A
alleles.restriction map of 12 kb of the genomic region encompassing the

hsp83gene is shown. The region was isolated by means of the
plasmid rescue technique (Mlodziket al., 1990) using the P element

two E(sev) mutant proteins showed somewhat reducedinsertion lineP582 (P.Deak and P.Maro¨y, unpublished results). The
insertion point of the P element is located 29 bp downstream of the binding. We cannot exclude the possibility, however, that
hsp83transcription start site. cDNAs derived from theHsp83mRNA these mutant proteins bind to Raf as part of complexes
were isolated from an eye disc cDNA library (prepared by with endogenous wild-type Hsp83.A.Cowman). The position of the flanking transcript T2 (0.8 kb) is
approximate, since the genomic extent of this transcript has not been
determined (O’Connor and Lis, 1981; Blackmann and Meselson, Hsp83 mutations reduce Raf kinase activity
1986). pW82 represents the genomic DNA clone (Wohlwill and Since mutant Hsp83 proteins are still able to bind the Raf
Bonner, 1991) that rescues the suppression as well as the lethality of protein, we next tested whether they cause a reduction in
Su(Raf)3Amutants. The restriction sites forBamHI (B), EcoRI (E) and

RaftorY9 kinase activity. Larvae heterozygous forSalI (S) are indicated. (B) The coding region ofhsp83is shown
RaftorY9 and either one of these fourhsp83alleles wereschematically as a horizontal bar. The positions and the resulting

amino acid substitutions of the seven EMS-inducedhsp83mutations heat shocked for 1 h at 37°C to induce ubiquitous
are shown above the bar for the twoSu(Raf)alleles and below the bar expression of theRaftorY9 transgene. Cell-free extracts
for the five alleles identified and characterized asE(sev)mutations by were prepared and incubated with recombinant kinase-Cutforth and Rubin (1994). The positions of the amino acid exchanges

inactive GST–MEK. Upon heat induction, the Raf kinaseare as follows: 9J1, E377K (G1129A); 13F3, R48C (C142T); e1D,
S38L (C113T); e3A, S574C (C1721G); e4A, S655F (C1964T); e6A, activity in RaftorY9 larval extracts was increased. The
S592F (C1775T); e6D, E317K (G949A). presence of a single copy of the fourhsp83alleles tested

resulted in a marked reduction in Raf kinase activity
(Figure 6). These experiments indicate that although the(Stancato et al., 1993; Wartmann and Davis, 1994).

To test for possible physical interactions between the mutant Hsp83 proteins are still able to bind to Raf they
weaken signalling from RaftorY9 by directly reducing RafDrosophila Hsp83 protein and Raf, we co-transfected

Drosophila Schneider cells with constructs encoding a kinase activity.
c-myc epitope-tagged Hsp83 protein (Hp83-myc) and an
activated form of Raf (Raftor4021). Raftor4021is identical to Discussion
RaftorY9 except that it contains a different amino acid
subsitution in the Torso extracellular domain which results The heat shock proteins are induced rapidly at elevated

temperatures, but are also expressed at high levels atin a stronger activation of the Raf kinasein vivo (Dickson
et al., 1992). The use of a c-myc tag (Evanet al., 1985) normal growth temperatures (for review, see Parsell and

Lindquist, 1993). One function of these proteins is toallowed us to distinguish the transfected and endogenous
versions of the Hsp83 protein, so that subsequently we facilitate protein folding, and they are probably induced

at higher temperatures to meet the increased demand forcould test mutant forms of the protein. Cells co-expressing
Hsp83-myc and Raftor4021were lysed and immunoprecipit- the refolding of denatured proteins. Another function

of these proteins, which is probably not temperatureated with antibodies against Raf. Immunoprecipitates were
separated by SDS–PAGE and analysed on Western blots dependent, appears to be to stabilize particular conforma-

tional states and facilitate the transition from one state tousing the monoclonal antibody 9E10 (BAbCO) against
the c-myc tag. These blots showed that Hsp83 associates another. It is in this regard that they are likely to play a

critical role in signal transduction pathways, in whichstrongly with Raf (Figure 5).
We next tested mutant forms of the Hsp83 protein for accurate switching is required between the inactive and

active states of various signalling molecules.binding to Raf. To do this, we introduced into the Hsp83-
myc construct the point mutations identified in theSu(Raf) One of the best understood interactions between a heat

shock protein and a signal transduction molecule is thatalleleshsp839J1 andhsp8313F3, as well as two of theE(sev)
alleles, hsp83e1D and hsp83e6D. Co-immunoprecipitation between the Hsp90 protein and steroid receptors (for a

review see Bohen and Yamamoto, 1994). In the absenceassays showed that all four mutant proteins are still able
to bind Raf, although compared with wild-type Hsp83 the of a ligand, many steroid receptors have been shown to
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Fig. 4.Genetic interactions ofhsp83alleles with gain-of-function and loss-of-function alleles ofraf andsevand gain-of-function mutations inRas1and
rl . All seven EMS-inducedhsp83alleles, the P element insertion lineP582and a deficiency forhsp83[Df(3L)M21] were tested for an interaction with the
gain-of-function allelesRaftorY9 (A) andsevS11(B) or with the partial loss-of-function allelesrafHM7 (C) andsev351(D). Eyes of flies heterozygous for
eitherRaftorY9 (A) or sevS11(B) and for one of the ninehsp83alleles were sectioned and the percentage of the ommatidia with more than one R7 cell was
determined for each genotype. The multiple R7 phenotype ofRaftorY9 is almost completely suppressed by the alleles9J1and13F3. e1D, e4Aande6D
show a weak suppression ande3A, e6Aand the P elementP582do not suppressRaftorY9detectably. The alleles show a similar, albeit generally weaker,
interaction withsevS11. The interaction between thehsp83alleles and the partial loss-of-function mutationrafHM7 (C) was quantified by determining the
precentage of ommatidia with one R7 cell inrafHM7/Y; hsp83/1 flies that had been reared at 18°C. At this temperature, hemizyousrafHM7 flies are semi-
viable. Since the9J1and13F3alleles enhanced this semi-lethality to complete lethality, the eyes of these flies could not be analysed. Of all other alleles,
only e6Dweakly enhanced the semi-lethality (80% compared with the control) and the same is true for the enhancement of the eye phenotype. For the
interaction withsev351, the percentage of ommatidia with one R7 cell was determined in fliesw sevd2 P[w1 sev351] /Y; hsp83/1. As in the case of the gain-
of-function alleles ofraf andsev, the relative degree of enhancement by eachhsp83allele of thesev351andrafHM7 phenotypes was similar. No significant
suppression of the multiple R7 phenotype caused by the activation of Ras1 (RasV12, Fortini et al., 1992) and Rl/MAP kinase (rlDN, Brunneret al., 1994)
by the9J1and13F3alleles was observed (E). For each genotype, five eyes were analysed.
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Fig. 5. Binding of Hsp83 to Raf. TheRaftor4021 construct was co-
transfected into Schneider cells with constructs expressing epitope-
tagged versions of wild-type Hsp83 or Hsp83 variants possessing the
amino acid substitions found in either 9J1, 13F3, e1D or e6D. The
first lane represents non-transfected control cells. Cell lysates were
immunoprecipitated with anti-Raf antiserum and the immune
complexes were subjected to Western blot analysis with the 9E10
antibody to detect the myc-tagged Hsp83 proteins.

Fig. 6. Raf kinase activity is reduced by the mutant Hsp83 proteins.
The Raf kinase activity in cell-free extracts from third instar larvaeexist as an ‘aporeceptor complex’, consisting of a single
heterozygous forsE-RaftorY9 and one of the fourhsp83allelesreceptor molecule and an Hsp90 dimer, as well as severalindicated as well as control larvae was determined by phosphorylation

other molecules, such as hsp56/FKBP59 (Sanchezet al., of the Raf-specific substrates GST–MEK1 and GST–Dsor1 in an
1990). It is thought that the function of Hsp90 in this in vitro kinase assay. To induce ubiquitious expression of thesE-

RaftorY9 transgene, the larvae were heat-shocked prior to preparation ofcomplex is to hold the receptor in a ‘poised’ state, in
a cell-free larval extract. The extracts were incubated withwhich it is able to bind the hormone ligand with high
recombinant kinase-inactive GST–MEK1 fusion protein and Raf

affinity, release the associated proteins and switch to its activity was measured by the amount of32P incorporated into the
transcriptionally active state. Hsp90 dimers have also beensubstrate. The activity was quantified using a PhosphorImager

(Molecular Dynamics) and is shown relative to the control larvaeshown to be tightly associated with the Raf serine/
lacking thesE-RaftorY9 transgene. The assay was performed twice withthreonine kinase, in large multi-component complexes that
recombinant kinase-inactive GST–MEK1 as well as once withinclude a different set of associated proteins to those recombinant kinase-inactive GST–Dsor1 as Raf-specific substrates and

found in the Hsp90–steroid receptor complexes (Stancatoshowed similar results.
et al., 1993; Wartmann and Davis, 1994). The function of
Hsp90 in this complex, however, remains unclear.

We have isolated two antimorphic mutations in the result in a reduction in Raf kinase activity (Figure 6).
Therefore, we propose that Hsp83 is involved directlyhsp83gene, which encodes theDrosophilahomologue of

the Hsp90 protein. These mutations were isolated on the only in Raf function, and that the weak genetic interactions
between thesehsp83alleles andsevis due to the require-basis of their ability to dominantly suppress the formation

of ectopic R7 cells in response to constitutive activation ment for Raf in Sev signalling.
An intriguing aspect ofhsp83genetics is that, in general,of the Raf kinase in theDrosophila eye. Both mutations

also act as dominant enhancers of a hypomorphicraf the Su(Raf)and E(Raf) alleles complement each other,
producing viable and, at least as far as eye developmentallele,rafHM7. This allele results in the reduced expression

of a wild-type Raf kinase. Thus, we observe genetic is concerned, completely wild-type flies. While this might
be explained readily by mutations in two separate domainsinteraction with both constitutively activated and wild-

type forms of Raf kinase. that disrupt the function of homodimers but not hetero-
dimers, it is more difficult to envisage such a possibilityDuring Drosophila eye development, Raf acts in a

signal transduction cascade that is initiated by activation in cases where both alleles appear to be antimorphic in
nature. For example, the alleleshsp839J1 and hsp83e6Dof the Sev RTK. Another group previously has reported

the isolation of five loss-of-functionhsp83alleles on the both act as ‘dominant negatives’ in their genetic inter-
actions with raf and sev, but fully complement eachbasis of a genetic interaction with a temperature-sensitive

sevallele (Simonet al., 1991; Cutforth and Rubin, 1994). other. Antimorphic mutations are often the result of one
mutant molecule sequestering wild-type molecules in non-We found, however, that the majority of thesehsp83

alleles, as well as a deficiency for the locus, exhibit no functional heterodimers. Clearly this cannot be the case
in hsp839J1/hsp83e6Danimals, since both homo- and hetero-genetic interaction with a different hypomorphicsevallele

in which the kinase domain is intact. These results suggest dimers would be non-functional and this allelic combina-
tion would be lethal.that the genetic interaction observed betweensev and

hsp83is critically dependent on the temperature-sensitive We can offer two possible solutions to this paradox.
Firstly, these alleles have only been shown to be anti-mutation in the kinase domain, and may thus reflect the

increased sensitivity of this conformationally unstable morphic with respect to their interactions with Raf and
Sev, but not with respect to viability, in which they act askinase to Hsp83 levels.

We do, however, observe weak genetic interactions normal recessive loss-of-function mutations (otherwise
they would be dominantly lethal, obviously precludingbetween all three antimorphichsp83alleles [twoSu(Raf)

and oneE(sev)] and both gain- and loss-of-functionsev their recovery). Perhaps heterodimers involving such an
antimorphic allele do retain some function, sufficient foralleles. This might be taken as evidence for a direct

involvement of Hsp83 in Sev activation. However, these viability, but still detectable in our genetically sensitized
assays. A second possibility is that even if heterodimersalleles show much stronger genetic interactions withraf,

for which a physical association has also been shown, and involving one wild-type and one antimorphic molecule are
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~200 000 F1 progeny of EMS-mutagenized males mated with femalesnon-functional, the heterodimers formed by two different
carrying the RaftorY9 fusion coding region under the transcriptionalantimorphic molecules are nevertheless functional, each
control of a singlesevenhancer and thehsp70promoter, providing the

mutation somehow making the molecule immune to the two alleleshsp839J1 and hsp8313F3. The P element insertion lineP582
‘poisoning’ effects of the other. was found in a collection of homozygous lethal P element insertions on

the third chromosome (P.Deak and P.Maro¨y, unpublished data) by itsWhile the latter possibility may at first seem somewhat
failure to complementhsp839J1. The dominant suppression phenotyperemote, we have obtained preliminary evidence that it
associated with thehsp839J1 and hsp8313F3 chromosomes was mappedmay indeed partially account for the ability of two different to chromosome 3, position 136 4 cM using the markersh, th, cu, sr

antimorphic hsp83 alleles to complement each other: ande. Thehsp83alleles were maintained as stocks balanced over either
theTM3,RaftorY9 chromosome or aTM6Bbalancer. All thehsp83alleleswhereas the eyes ofRaftorY9/1; hsp839J1/1 flies contain
are either embryonic or early larval lethal, with the excepetion offew if any ommatidia with additional R7 cells, a significant
hsp8313F3, which survives until the third larval instar stage. Flies carryingnumber of ommatidia inRaftorY9/1; hsp839J1/hsp83e6D
the rafHM7 mutation were raised at 18°C, all the other crossses were

flies contain ectopic R7 cells (data not shown). This rather performed at 25°C.sev351 flies aresevd2 null mutants partially rescued
surprising observation suggests that 9J1:e6D heterodimersby a P insertion carrying asevcDNA construct in which the codons for

Y1485 and W1486 have been replaced by alanine codons (B.Dicksonmay indeed be much more effective in mediating Raf
and E.Hafen, unpublished data). ThesevS11mutant is described in Baslersignalling than 9J1:1 heterodimers. It will be interesting
et al. (1991).to investigate the molecular basis of these results once

the three-dimensional structure of Hsp90 and the sites of Scanning electron microscopy and histology
Adult flies for scanning microscopy were stored in 70% acetone beforedimerization and interaction with other proteins have been
they were critical-point dried and coated for examination with a Hitachidetermined.
S-4000 scanning electron microscope as described by Basler andIn conclusion, we have presented here strong genetic
Hafen (1988).

evidence that Hsp83 plays an important role in signalling
via the Raf kinase. How does Hsp83 facilitate Raf func- Molecular analysis

The DNA surrounding thehsp83locus was isolated using the plasmidtion? One possibility is that Hsp83 is needed merely for
rescue technique (Mlodziket al., 1990). cDNAs were isolated from athe maturation of the Raf protein. We do not consider it
λgt10 third instar eye–antennal disc library prepared by A.Cowman. Thelikely, however, that this is the only function of Hsp83 in largest cDNA clone was subcloned into M13 and the ends were

Raf signalling, since it would be unlikely to account for sequenced. A database search with the partial cDNA sequence indicated
that it was identical to the sequence of thehsp83gene (Hackett and Lis,the strong genetic and physical interactions we have
1983). To determine the DNA alterations present in thehsp839J1 andobserved between Raf and Hsp83. Another possibility is
hsp8313F3 alleles, genomic DNA was amplified in several independentthat Hsp83 may also help to assemble complexes consisting
PCRs fromhsp839J1/TM3,RaftorY9, hsp8313F/TM3,RaftorY9 flies and as

of both Raf and other signalling components, such as Rasa control from an independent suppressor,Su(Raf)3B/TM3,RaftorY9,
and MEK. Both of these proteins have been observed to representing the parentalhsp831 chromosome. Fragments were amplified

using leader- and trailer-specific primers, subcloned into M13 andassociate with the Raf–Hsp90 complex, and it has been
sequenced in one direction. We also amplified DNA fromhsp839J1/suggested that the interaction with Ras is required for the
hsp83e3A andhsp8313F3/hsp83e3Aflies and used a polymorphism presentRaf–Hsp90 complex to be translocated to the membranein the hsp83e3A allele (Cutforth and Rubin, 1994) to distinguish this

(Leevers et al., 1994; Stokoeet al., 1994), while the from hsp839J1 andhsp8313F3 products.
interaction with MEK (Wartmann and Davis, 1994) is a

Germline transformationprerequisite for this kinase to be a substrate of Raf. The
The construct used for rescue experiments was a 2.7 kb cDNAconstitutively activated Raf kinase we have used in these
fragment cloned into a modified pW8 transformation vector (Klemenz

studies, however, is anchored to a transmembrane proteinet al., 1987) containing the induciblehsp70promoter and two copies of
(Torso) and therefore reaches the plasma membrane inde-a 1.2 kbsevenhancer element (Basleret al., 1989). The pW82 construct

(Wohlwill and Bonner, 1991) contained a 7.5 kbBamHI–BglII fragmentpendently of Ras (Dicksonet al., 1992). If the genetic
including thehsp83gene as well as the adjancent gene (T2) cloned intointeractions we observe between this activated Raf and
the transformation vector CaSpeR (Pirotta, 1988). Transgenic flies wereHsp83 are indeed due to a requirement for Hsp83 to generated as described by Basleret al. (1991).

assemble multi-component signalling complexes, then it
is more likely that they disrupt the association with MEK Schneider cell transfections

The Hsp83-myc fusion construct was generated by introducing aBamHIrather than Ras.
site at the 39 end of thehsp83open reading frame via PCR mutagenesisWhile neither a chaperone nor template function for
and by then inserting an oligonucleotide encoding the c-myc epitope

Hsp90 can be excluded on the basis of our data, the (Evan et al., 1985) between thisBamHI site and anSphI site in the
scenario we prefer is that Hsp90 facilitates Raf signalling polylinker of the vector. These manipulations added codons for the

amino acid sequence GSQGTEQKLISEEDLN to the end of thehsp83in a manner similar to that proposed for its function in
ORF. In this fusion construct, fourhsp83mutations (9J1, 13F3, e1Dsteroid receptor signalling, allowing it to switch rapidly
ande6D) were introduced viain vitro mutagenesis using the followingto its active conformation once it reaches the plasma oligonucleotides: CAGATCCTTGGAGTCGA (9J1), CTCATAGCAG-

membrane. This model is consistent both with the strong ATCTTGT (13F3), AAGCGTTCAAGATCAAC (e1D) and CTGAC-
CCTTCACGGAGA (e6D). These cDNAs were then subcloned intorequirement for Hsp90 in Raf signalling and also the
the expression vector pPACBamHI containing the actin5C promoterobservation that even a Raf protein targetted directly to
(Krasnowet al., 1989). TheRaftor4021construct includes thesevenhancerthe membrane still appears to require Hsp90 to achieve
and the heat-induciblehsp70promoter, which permits heat induction.

its active state. Schneider S2 cells were co-transfected by the calcium chloride method
(Ashburner, 1989), incubated for 72 h and then prepared for further
examinations. The Schneider S2 cells were kept in Schneider cell
medium (Gibco) supplemented with 10% fetal calf serum.Materials and methods

Genetics Immunoprecipitations and Western blotting
For immunoprecipitations, the cells were heat shocked for 1 h at 37°C,The genetic screen for dominant modifiers of theRaftorY9 phenotype is

described in detail in Dicksonet al. (1996). In short, we screened allowed to recover for 3–4 h, washed once with phosphate-buffered
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saline (PBS) and lysed in buffer A [20 mM Tris, pH 7.4, 137 mM NaCl, screening for decreased steroid receptor function.Proc. Natl Acad.
2 mM EDTA, 2 mM sodium pyrophosphate, 1 mM sodium orthovanadate, Sci. USA, 90, 11424–11428.
1 mM phenylmethylsulfonyl fluoride (PMSF), 10µg/ml leupeptin, 1% Bohen,S.P. and Yamamoto,K.R. (1994) Modulation of steroid receptor
Triton X-100, 10% glycerol and 25 mMβ-glycerophosphate] (Wartmann signal transduction by heat shock proteins. In Morimoto,R.I.,
and Davis, 1994). Lysates were clarified by centrifugation and incubated Tissères,A. and Georgopolous,C. (eds),The Biology of Heat Shock
for 2 h at 4°C with 4 µl of anti-Raf antiserum (F.Sprenger and Proteins and Molecular Chaperones.Cold Spring Harbor Laboratory
C.Nüsslein-Volhard, unpublished) and protein A–Sepharose (Sigma). Press, Cold Spring Harbor, NY, pp. 313–334.
Immunoprecipitates were washed once with buffer A, twice with Brunner,D., Oellers,N., Szabad,J., Biggs,W.H.,III, Zipursky,S.L. and
buffer D (buffer A supplemented with 0.1% SDS and 0.5% sodium Hafen,E. (1994) A gain of function mutation inDrosophila MAP
deoxycholate), once with buffer E (10 mM Tris, pH 7.4 and 25 mM kinase activates multiple receptor tyrosine kinase signalling pathways.
β-glycerophosphate) and then boiled for 5 min in SDS sample buffer. Cell, 76, 875–888.
The samples were then fractionated by electrophoresis on an 8% SDS–Catelli,M.G., Binart,N., Jung,T.I., Renoir,J.M., Baulieu,E.E.,
PAGE and analysed by Western blotting. The blots were probed with a Feramisco,J.R. and Welch,W.J. (1985) The common 90-kd protein
1:5000–1:1000 dilution of anti-myc antibody (BAbCO). The blots were component of non-transformed ‘8S’ steroid receptors is a heat-shock
developed using the ECL kit (Amersham). protein.EMBO J., 4, 3131–3135.

Chang,H.C., Solomon,N.M., Wassarman,D.A., Karim,F.D., Therrien,M.,
Cell-free in vitro kinase assay Rubin,G.M. and Wolff,T. (1995)phyllopod functions in the fate
For each assay, six larvae (with or without heat shock) were washed determination of a subset of photoreceptors inDrosophila. Cell, 80,
three times with ice-cold PBS and twice with kinase buffer (50 mM 463–472.
Tris–HCl, pH 7.4, 50 mM NaCl, 10 mM MnCl2, 2 mM dithiothreitol, Cutforth,T. and Rubin,G.M. (1994) Mutations in Hsp83 and cdc37 impair
25 mM β-glycerophosphate, 25 mM NaF, 1 mM PMSF, 1 mM leupeptin, signaling by the sevenless receptor tyrosine kinase inDrosophila.
1 mM pepstatin, 1 mM benzamidin, 200 KIE/ml trasylol) prior to lysis. Cell, 77, 1027–1036.
Larvae were homogenized in 250µl of kinase buffer by six strokes Dickson,B. (1995) Nuclear factors in sevenless signalling.Trends Genet.,
using a homogenizer adapted with a plastic Eppendorf tube pestle. The 11, 106–111.
total larval extract was adjusted to 0.5% NP-40 and incubated for 20 Dickson,B., Sprenger,F., Morrison,D. and Hafen,E. (1992) Raf functions
min at 4°C by end-over-end rotation. The obtained lysate was cleared downstream of Ras1 in the Sevenless signal transduction pathway.
by high-speed centrifugation twice for 10 min at 4°C. For measurement Nature, 360, 600–603.
of Raf kinase activity, 200µl of cell-free larval extract was agitated Dickson,B.J., Domı´nguez,M., van der Straten,A. and Hafen,E. (1995)
gently for 20 min at 30°C with 5µg of recombinant kinase-inactive Control of Drosophilaphotoreceptor cell fates by phyllopod, a novel
GST–MEK1 or 2 µg of recombinant kinase-inactive GST–Dsor1 in

nuclear protein acting downstream of the Raf kinase.Cell, 80, 453–462.the presence of 15µCi of [γ-32P]ATP (Amersham) and 5µM ATP
Dickson,B.J., van der Straten,A., Domı´nguez,M. and Hafen,E. (1996)per reaction.

Mutations modulating Raf signaling inDrosophilaeye development.To isolate thein vitro phosphorylated recombinant GST–MEK1 or
Genetics, 142, 163–171.GST–Dsor1 substrate, the kinase reaction was incubated subsequently

Domı́nguez,M. and Hafen,E. (1996) Genetic dissection of cell fatefor 1 h with 10µl of washed glutathione beads. The beads were washed
specification in the developing eye ofDrosophila. Semin. Cell Dev.three times with kinase buffer containing 0.5% NP-40 and resuspended
Biol., 7, 219–226.in 50 µl of SDS sample buffer. The samples were heated at 95°C for

Evan,G.I., Lewis,G.K., Ramsey,G. and Bishop,J.M. (1985) Isolation of5 min. After SDS–PAGE (10%), the quantification of radioactivity
monoclonal antibodies specific for human c-myc proto-oncogeneincorporated into GST–MEK or GST–Dsor1 substrates was carried out
product.Mol. Cell. Biol., 5, 3610–3616.with a PhosphorImager (Molecular Dynamics).

Fortini,M.E., Simon,M.A. and Rubin,G.M. (1992) Signalling by the
sevenlessprotein tyrosine kinase is mimicked by Ras1 activation.
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