Science Advances

Supplementary Materials for

Ubiquitination of OsCSN5 by OsPUB45 activates immunity by modulating the OsCUL3a-OsNPR1 module

Chongyang Zhang et al.

Corresponding author: Ruyi Wang, wangruyi@caas.cn; Yuese Ning, ningyuese@caas.cn

Sci. Adv. **11**, eadr2441 (2025) DOI: 10.1126/sciadv.adr2441

This PDF file includes:

Figs. S1 to S6 Table S1

Fig. S1. Expression patterns of *OsCSN5*, genotype of *oscsn5* mutant and major agronomic traits of *OsCSN5*-RNAi plants.

(A) The expression of *OsCSN5* in NPB plants inoculated with the compatible *M. oryzae* isolate RB22, as determined by qRT-PCR. A mock-inoculation control was prepared using ddH₂O containing 0.1% (v/v) Tween 20. The rice *UBIQUITIN* (*OsUBQ*) gene was used as the reference gene to normalize gene expression levels. Values are means \pm SD (n = 3, technical repeats).

(B) Diagram of mutations in *oscsn5* mutants generated by CRISPR/Cas9 technology. The yellow boxes represent exons and grey boxes represent untranslated regions (UTRs).

(C) Genotypes of oscsn5 mutant plants in T1 generation.

(D) Diagram of the *OsCSN5*-silencing regions in *OsCSN5*-RNAi plants. The yellow boxes represent coding sequence (CDS) and grey boxes represent untranslated regions (UTRs).

(E) The expression of *OsCSN5* in *OsCSN5*-RNAi transgenic plants by qRT-PCR. *UBIQUITIN* (*OsUBQ*) was used as an internal control. Values are means \pm SD (n = 3, technical repeats).

(F) Bacterial growth as indicated by the numbers of colony-forming units (c.f.u.) per leaf for OsCSN5-RNAi and NPB plants (n = 3).

(G-K) Major agronomic traits measured in *OsCSN5*-RNAi plants: plant height (G), effective panicle numbers per plant (H), grain number per panicle (I), seed setting rate % (J), thousand-grain weights (K). For (G)-(K), values are means \pm SD (n = 6). 'ns' indicates no statistical significance at p > 0.05 according to Student's t test.

(A) BiFC assay to confirm the interaction between OsCSN5 and OsPUB45 in *N. benthamiana*.Scale bars, 50 μm. mCherry-OsH2B was co-expressed to indicate the nucleus.

(B) Detection of protein expression in BiFC assay shown in (A). Anti-GFP and anti-HA antibodies were used to detect OsCSN5-nYFP and OsPUB45-cYFP, respectively.

(C) E3 ubiquitin ligase activity of OsPUB45. E1, E2, Ub, and rice total extract preincubated MBP-OsPUB45 or MBP-OsPUB45-Δubox were incubated in the reactions. Ubiquitin-bound proteins were detected by immunoblot with anti-Ub and anti-MBP antibodies. Arrowheads indicate the target bands of MBP-OsPUB45 and MBP-OsPUB45-Δubox.

(D) Degradation of OsCSN5 by OsPUB45 in rice protoplasts with chitin treatment. Co-expressed OsCSN5-GFP with HA-nLuc or OsPUB45-HA in rice protoplasts with or without 80 nM chitin treatment for 1 h. Anti-GFP and anti-HA antibodies were used to check OsCSN5-GFP and OsPUB45-HA, respectively.

(E) Ubiquitination levels of OsCSN5 by OsPUB45 with chitin treatment. Flag-Ub was transiently co-expressed in rice protoplasts with OsCSN5-GFP and OsPUB45-HA or HA-nLuc with or without 80 nM chitin for 1 h. Total proteins were extracted and were then subject to immunoprecipitation with anti-Flag. The polyubiquitination of OsCSN5-GFP was detected by immunoblot with an anti-GFP antibody. The input proteins were probed with anti-GFP. Actin was served as an internal control.

Fig. S3. Expression patterns of *OsPUB45*, genotype and phenotype of *OsPUB45* transgenic plants.

(A) The expression of *OsPUB45* in NPB plants inoculated with the compatible *M. oryzae* isolate RB22, as determined by qRT-PCR. A mock-inoculation control was prepared using ddH₂O containing 0.1% (v/v) Tween 20. Values are means \pm SD (n = 3, technical repeats).

(B) Diagram of the mutation types in *ospub45* mutant lines generated by CRISPR/Cas9 technology. The yellow boxes represent exons and grey boxes represent untranslated regions (UTRs).

(C and D) Disease symptoms (C) and relative fungal biomass (D) of representative leaves from *ospub45* mutants and ZH11 plants after spray inoculation with *M. oryzae* isolate RB22. Scale bar, 2 cm.

(E) Transcript levels of OsPUB45 in OsPUB45-OX transgenic plants was measured by qRT-PCR.

(F) Bacterial growth as indicated by the numbers of colony-forming units (c.f.u.) per leaf for ospub45 mutants and ZH11 plants (n = 3).

(G) Bacterial growth as indicated by the numbers of colony-forming units (c.f.u.) per leaf for OsPUB45-OX and ZH11 plants (n = 3).

(H) Detection of OsCSN5 protein levels in ZH11 and *OsPUB45*-OX protoplasts. OsCSN5-GFP and cMyc-Luc were transiently expressed in ZH11 and *OsPUB45*-OX rice protoplasts and OsCSN5-GFP was detected by immunoblotting using an anti-GFP antibody. cMyc-Luc served as loading control. The relative OsCSN5-GFP band intensities were quantified with ImageJ. Similar results were obtained from three independent biological experiments.

(A) Detection of protein expression in Fig. 4B. Anti-GFP and anti-HA antibodies were used to detect OsCSN5-nYFP and OsCUL3a-cYFP, respectively.

(B) OsCSN5 promotes the degradation of OsNPR1. $2 \times GFP$ or OsCSN5-GFP and cMyc-OsNPR1 plasmids were co-expressed in rice protoplasts. The relative cMyc-OsNPR1 band intensities were quantified with ImageJ. Actin serves as an internal control. Similar results were obtained from three independent biological experiments.

(C) Diagram of the mutation types in *osnpr1* mutants generated by CRISPR/Cas9 technology. The yellow boxes represent exons and grey boxes represent untranslated regions (UTRs).

(D-F) Disease symptoms (D), the relative leaf area with lesions, as measured by ImageJ (E), and relative fungal biomass (F) of representative leaves of *osnpr1* and NPB plants after punch inoculation with *M. oryzae* isolate RB22. Values are means \pm SD (n = 3, technical repeats).

Fig. S5. Transcript levels of OsNPR1 in OsPUB45-OX and ospub45 plants.

(A) Relative transcript levels of *OsNPR1* in *OsPUB45*-OX and ZH11 plants as determined by qRT-PCR.

(B) Relative transcript levels of *OsNPR1* in *ospub45* mutants and ZH11 plants as determined by qRT-PCR.

Values are means \pm SD (n = 3, technical repeats). 'ns' indicates no statistical significance at p > 0.05 according to Student's t test.

Fig. S6. The ubiquitination and degradation analysis of OsNPR1 by OsCUL3a with chitin treatment.

In vivo ubiquitination assay to show the ubiquitination levels and degradation of OsNPR1 after coexpression with OsCUL3a in rice protoplasts with chitin treatment. Flag-Ub was transiently coexpressed with cMyc-OsNPR1 and HA-OsCUL3a. Transfected protoplasts were treated with 80 nM chitin for 1 h. Total proteins were extracted and were then subject to immunoprecipitation with anti-Flag. The polyubiquitination of cMyc-OsNPR1 was detected by immunoblotting with an anticMyc antibody. Actin was served as an internal control.

Primer Name	Primer Sequence (5'-3')	
Primers for vectors used for plant transformation		
CRISPR-OsPUB45-F	TGTTGCGTTCCGACCACAAACACT	
CRISPR-OsPUB45-R	AAACAGTGTTTGTGGTCGGAACGC	
CRISPR-OsNPR1-F	TGTTGTTGATGCACGCCTAAGCCT	
CRISPR-OsNPR1-R	AAACAGGCTTAGGCGTGCATCAAC	
CRISPR-OsCSN5-F	TGTTGTCGTCCACGCCCGCGCCGG	
CRISPR-OsCSN5-R	AAACCCGGCGCGGGGCGTGGACGAC	
OsPUB45-OX-F	TCCCCGGGTGAGCTCGGTACCATGGACCCCTCATCCTCCT	
OsPUB45-OX-R	CACCATAGCGGCCGCACTAGTGAAAGGCATGATGTGGGTG	
Primers for co-IP and degradation assay		
OsCSN5-GFP-F	TAGAACTAGTGGATCCATGGAGCCCACCTCGTCG	
OsCSN5-GFP-R	CCCCCTCGAGGTCGACTGCTTCAACCATAGGCTCAG	
OsPUB45-HA-F	TAGAACTAGTGGATCCATGGACCCCTCATCCTCCTC	
OsPUB45-HA-R	CCCCCTCGAGGTCGACGAAAGGCATGATGTGGGTG	
OsPUB45-uboxHA-F	GCTCTAGAACTAGTGGATCCATGGCCTCCACGGCCGCGC	
OsPUB45-uboxHA-R	GGGCCCCCCTCGAGGTCGACGAAAGGCATGATGTGGGTG	
pRTVnHA-OsCLU3a-F	GTTCCAGATTACGCTGGATCCATGAGCGGGGGGGGGGGG	
pRTVnHA-OsCLU3a-R	TCACTTAGCGGCCGCACTAGTCTATGCAAGATAGCGATATAAC	
pRTVcMyc-OsNPR1-F	GAGGACTTGAATTCGGGATCCATGGAGCCGCCGACCAG	
pRTVcMyc-OsNPR1-R	TCACTTAGCGGCCGCACTAGTTCATCTCCTTGGTCGAATGG	
Primers for yeast two hybrid assay		
pGBKT7-OsCSN5-F	ATGGCCATGGAGGCCGAATTCATGGAGCCCACCTCGTCG	
pGBKT7-OsCSN5-R	TGCGGCCGCTGCAGGTCGACTCATGCTTCAACCATAGGC	
Primers for BiFC assay		
p2YN-OsCSN5-F	CATTTACGAACGATAGTTAATTAAATGGAGCCCACCTCGTCG	
p2YN-OsCSN5-R	CACTGCCACCTCCACTAGTTGCTTCAACCATAGGCTCAG	
p2YC-OsPUB45-F	CATTTACGAACGATAGTTAATTAAATGGACCCCTCATCCTCCT	
p2YC-OsPUB45-R	CACTGCCACCTCCACTAGTGAAAGGCATGATGTGGGTG	
p2YC-OsCLU3a-F	CATTTACGAACGATAGTTAATTAAATGAGCGGGGGGGGGG	
p2YC-OsCLU3a-R	CACTGCCACCTCCTCCACTAGTTGCAAGATAGCGATATAACTTC	
Primers for qRT-PCR and Fungal biomass determination		
<i>OsPAL1-</i> qF	TGAATAACAGTGGAGTGTGGAG	
OsPAL1-qR	AACCTGCCACTCGTACCAAG	
OsPR10-qF	CCCTGCCGAATACGCCTAA	
OsPR10-qR	CTCAAACGCCACGAGAATTTG	
<i>OsPUB45-</i> qF	ATGGACCCCTCATCCTCCTC	
OsPUB45-qR	GGTGTTGCAACAATGGCGAT	
<i>OsCSN5</i> -qF	CCTTTTGTTGATGCTGGATTCA	

	OsCSN5-qR	TTGACGATAAAACGCAGCTAAC	
	<i>OsUBQ</i> -qF	CGCAAGAAGAAGTGTGGTCA	
	OsUBQ-qR	GGGAGATAACAACGGAAGCA	
	<i>MoPot2</i> -qF	ACGACCCGTCTTTACTTATTTGG	
	MoPot2-qR	AAGTAGCGTTGGTTTTGTTGGAT	
	<i>OsgUBQ</i> -qF	TTCTGGTCCTTCCACTTTCAG	
	<i>OsgUBQ</i> -qR	ACGATTGATTTAACCAGTCCATGA	
	Primers for RT-PCR		
	<i>OsCSN5</i> -F	GGTCTCATGTCACAGGTCATTA	
	OsCSN5-R	TGAATCCAGCATCAACAAAAGG	
	<i>OsNPR1-</i> F	GAGCCCTTGACTCTGACGAT	
	OsNPR1-R	CCTCGCAGCAATGTGAAGAA	
Primers for ubiquitination assay			
	pGEX-6P-1-OsCSN5-F	TTCCAGGGGCCCCTGGGATCCATGGAGCCCACCTCGTCG	
	pGEX-6P-1-OsCSN5-R	ATGCGGCCGCTCGAGTCGACTCATGCTTCAACCATAGGC	
	pMAL-c2X-OsPUB45-F	ATTTCAGAATTCGGATCCATGGACCCCTCATCCTCCTC	
	pMAL-c2X-OsPUB45△ubox-F	ATTTCAGAATTCGGATCCATGGCCTCCACGGCCGCGC	
	pMAL-c2X-OsPUB45△ubox-R	GCTTGCCTGCAGGTCGAC TTAGAAAGGCATGATGTGGGT	
	Primers for Genotyping knockout plants		
	Genotype-CRISPR-OsPUB45-F	GAAAAGGCCACCACTGCCTA	
	Genotype-CRISPR-OsPUB45-R	CGGAAGAACGTGGGTACCTT	
	Genotype-CRISPR-OsNPR1-F	ATTGCTAGCCCAATGCATGTC	
	Genotype-CRISPR-OsNPR1-R	CCTCGTAGACTCTCACCTGC	
	Genotype-CRISPR-OsCSN5-F	TGGGAGCTGGAGAACAACATC	
	Genotype-CRISPR-OsCSN5-R	GGCAGGGAAAGCAGATAACG	