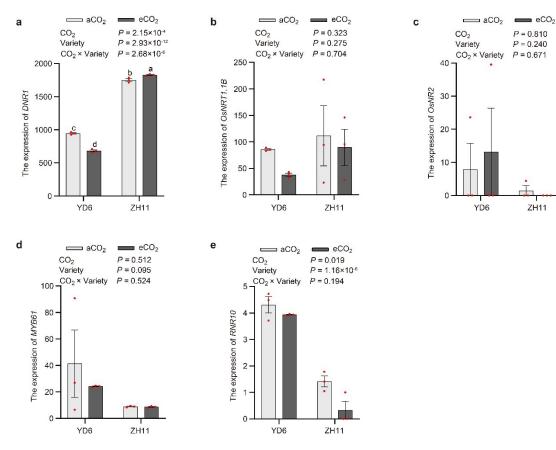
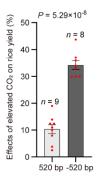
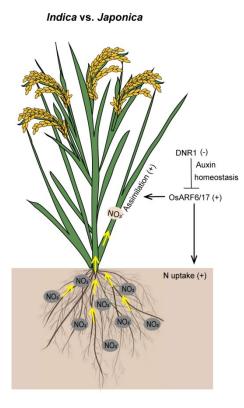
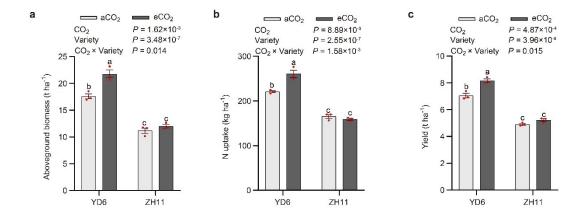

Supplementary Materials

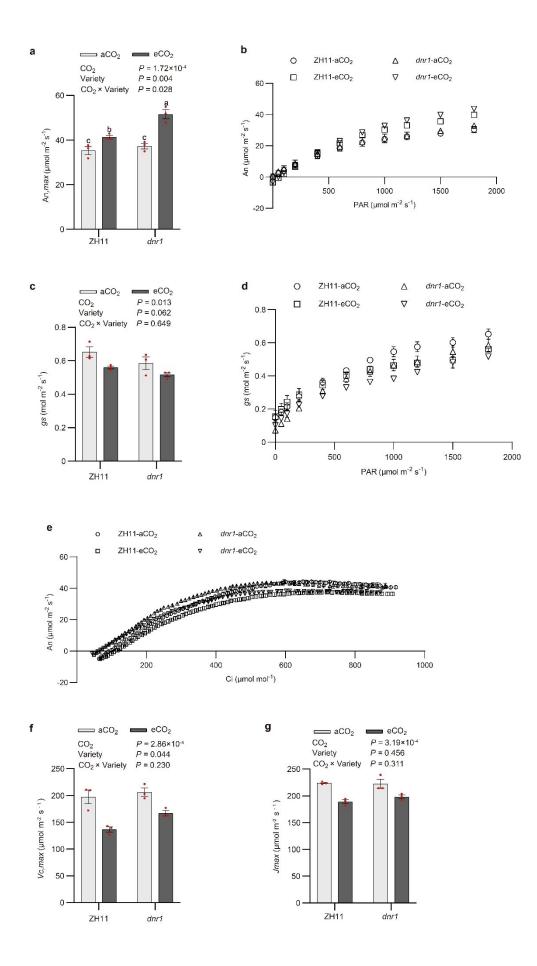

Supplementary method

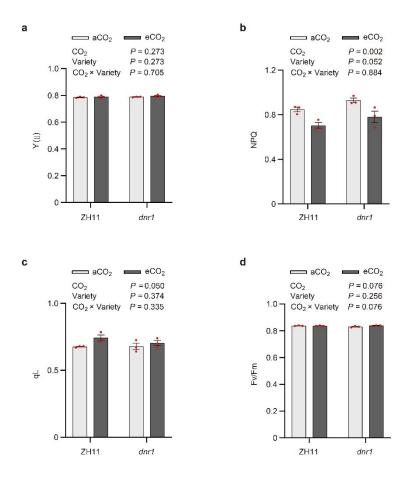
To evaluate genetic variations between *indica* and *japonica* and their responses to eCO₂, we planted a typical *indica* variety, Yangdao 6 (YD6) and a typical *japonica* variety Zhonghua 11 (ZH11) in the FACE system. The plots for each treatment were sized at 2 m × 2.5 m, with planting spaced at 15 cm × 25 cm intervals. Nitrogen fertilizer, in the form of urea, was applied at a total rate of 225 kg N ha⁻¹. This was divided into three applications: 40% at soil tillage, 30% at the tillering stage, and the remaining 30% at the jointing stage. Phosphorus fertilizer, at a rate of 120 kg P₂O₅ ha⁻¹, was applied at soil tillage, while potassium fertilizer, at 160 kg K₂O ha⁻¹, was split equally between the soil tillage and jointing stages. All other agronomic practices were conducted in accordance with local agricultural recommendations. At heading stage, rice flag leaves were collected, immediately frozen and stored at -80°C for subsequent RNA extraction and sequencing (See sampling and methods).

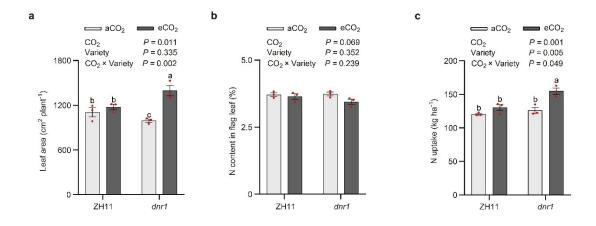

Supplementary Figures

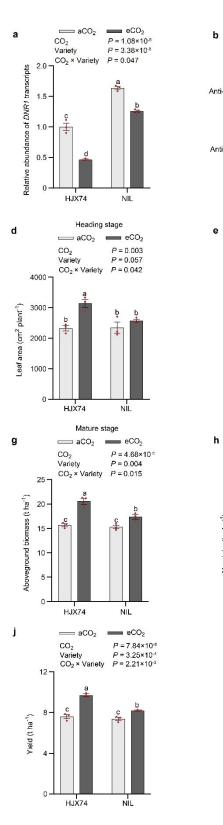

Supplementary Fig. 1 | The influx of ¹⁵NO₃⁻ and ¹⁵NH₄⁺ absorption in *indica* and *japonica* subspecies under ambient CO₂ and elevated CO₂ conditions. a-b, ¹⁵NO₃⁻ uptake (a) and ¹⁵NH₄⁺ uptake (b), in roots of 18 *indica* and *japonica* varieties labeled with 2.5 mM ¹⁵N. DW, dry weight. aCO₂ and eCO₂ indicate ambient CO₂ (aCO₂) and elevated CO₂ (eCO₂) condition, respectively. Data are mean \pm s.e.m. (*n* = 3 biological replicates). *P*-values were generated from two-way ANOVA. Source data are provided as a Source Data file.

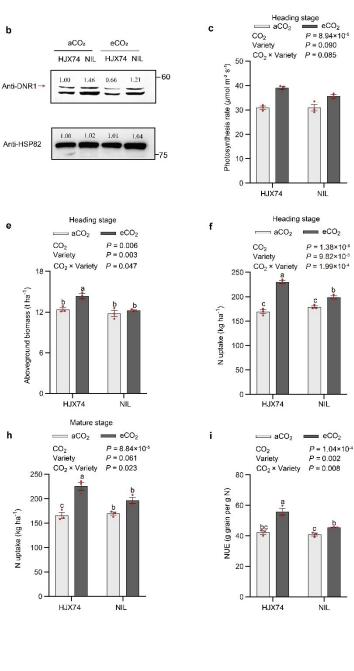

Supplementary Fig. 2 | The expression levels of DNR1, OsNRT1.1B, OsNR2, MYB61, RNR10 in *indica* variety Yangdao 6 and *japonica* variety Zhonghua 11 under ambient CO₂ and elevated CO₂ conditions. a-e, DNR1 (a), OsNRT1.1B (b), OsNR2 (c), MYB61 (d), RNR10 (e) transcript abundances in flag leaf at heading stage under ambient CO₂ (aCO₂) and elevated CO₂ (eCO₂) conditions. YD6 and ZH11 indicate *indica* variety Yangdao 6 and *japonica* variety Zhonghua 11, respectively. Data are mean \pm s.e.m. (n = 3 biological replicates). P-values were generated from two-way ANOVA. a, Different letters indicate significant differences among groups (P < 0.05). Source data are provided as a Source Data file.


Supplementary Fig. 3 | Differences in the effect of elevated CO_2 on rice yields between rice varieties carrying the *japonica DNR1* allele (520 bp) or *indica DNR1* allele (-520 bp) in FACE experiments. *P*-values were generated from two-sided Student's *t* tests. Source data are provided as a Source Data file.

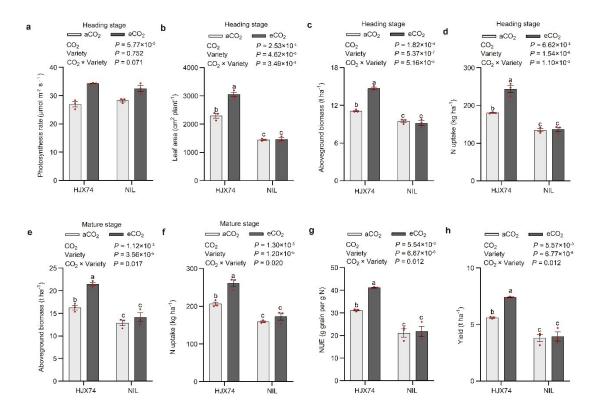

Supplementary Fig. 4 | Schematic overview of the differences in nitrate use efficiency between *indica* and *japonica* rice, as regulated by DNR1. + and - indicate positive and negative differences in *indica* compared to *japonica*, respectively.

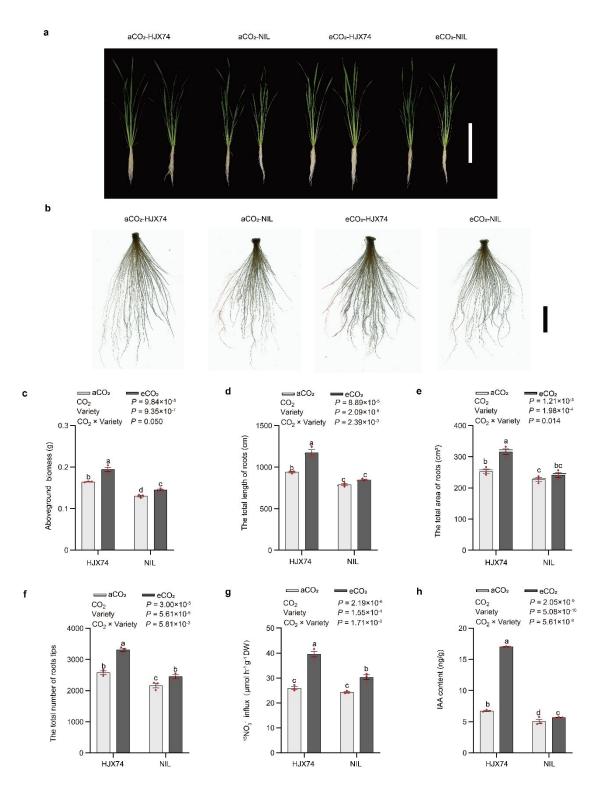

Supplementary Fig. 5 | Different responses of *indica* variety Yangdao 6 and *japonica* variety Zhonghua 11 to elevated CO₂. a-c, Aboveground biomass (a), N uptake (b), and yield (c) under ambient CO₂ (aCO₂) and elevated CO₂ (eCO₂) conditions were measured at maturity stage. YD6 and ZH11 indicate *indica* variety Yangdao 6 and *japonica* variety Zhonghua 11, respectively. Data are mean \pm s.e.m (n = 3 biological replicates). *P*-values were generated from two-way ANOVA. Different letters indicate significant differences among groups (P < 0.05). Source data are provided as a Source Data file.


Supplementary Fig. 6 | The responses of photosynthetic parameters to elevated CO₂. a, Lightsaturated net photosynthesis rate. Different letters indicate significant differences among groups (P < 0.05). b, Light response of net photosynthesis rate (An). c, Light-saturated stomatal conductance (gs). d, Light response of stomatal conductance (gs). e, CO₂ response of net photosynthesis rate (An). f, Maximum rate of RuBP carboxylation (Vc, max). g, Maximum rate of electron transport driving RuBP regeneration (J max). ZH11 and dnr1 indicate japonica variety Zhonghua 11 and its dnr1 mutants mimicking the *indica DNR1* allele, respectively. aCO₂ and eCO₂ indicate ambient CO₂ and elevated CO₂ condition, respectively. a, c, f-g, Data are mean \pm s.e.m. (n = 3 biological replicates). *P*-values were generated from two-way ANOVA. Source data are provided as a Source Data file.



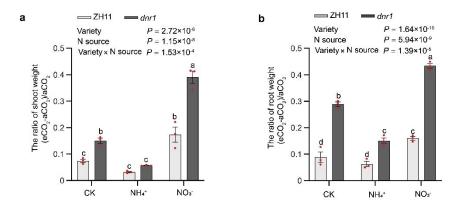
Supplementary Fig. 7 | The responses of chlorophyll fluorescence parameters to elevated CO₂. **a**, Quantum yield of Photosystem II (Y(II)). **b**, Non-photochemical quenching (NPQ). **c**, Photochemical quenching coefficient (qL). **d**, Maximum photochemical quantum yield of Photosystem II (Fv/Fm). ZH11 and *dnr1* indicate *japonica* variety Zhonghua 11 and its *dnr1* mutants mimicking the *indica DNR1* allele, respectively. aCO₂ and eCO₂ indicate ambient CO₂ and elevated CO₂ condition, respectively. **a-d**, Data are mean \pm s.e.m. (n = 3 biological replicates). *P*-values were generated from two-way ANOVA. Source data are provided as a Source Data file.


Supplementary Fig. 8 | Different responses of *japonica* variety Zhonghua 11 and its *dnr1* mutants mimicking the *indica DNR1* allele to elevated CO₂. a-c, Total leaf area per plant (a), flag leaf N content (b), and N uptake (c) under ambient CO₂ (aCO₂) and elevated CO₂ (eCO₂) conditions. All these variables were measured at the heading stage. ZH11 and *dnr1* indicate *japonica* variety Zhonghua 11 and its *dnr1* mutants, respectively. Data are mean \pm s.e.m. (*n* = 3 biological replicates). *P*-values were generated from two-way ANOVA. **a**, **c**, Different letters indicate significant differences among groups (*P* < 0.05). Source data are provided as a Source Data file.

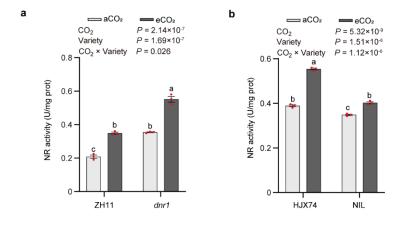


Supplementary Fig. 9 | Different responses of *indica* variety Hua-Jing-Xian 74 and the nearisogenic line carrying the *japonica DNR1* allele to elevated CO₂ in 2023. a, *DNR1* transcript abundance in shoots under ambient CO₂ (aCO₂) and elevated CO₂ (eCO₂) conditions, respectively. Transcript abundance was measured relative to Hua-Jing-Xian 74 under aCO₂ (set to 1). b, DNR1 protein abundance in shoots. HSP82 serves as a loading control. The red arrowhead indicates the

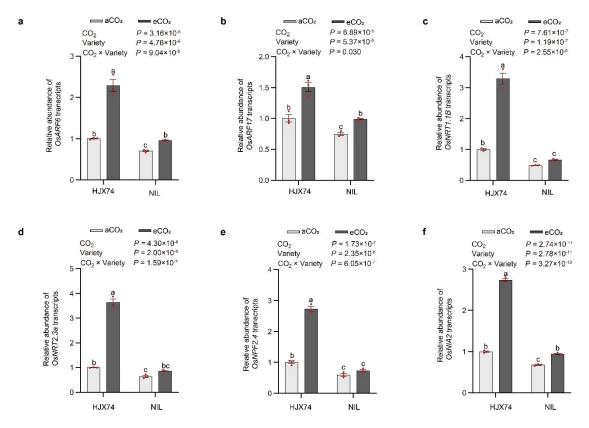
DNR1 bands. **c-f**, Net photosynthesis rate of flag leaves (**c**), total leaf area per plant (**d**), aboveground biomass (**e**), and N uptake (**f**) under aCO_2 and eCO_2 conditions were measured at heading stage. **g-j**, Aboveground biomass (**g**), N uptake (**h**), N-use efficiency (**i**), yield (**j**) under aCO_2 and eCO_2 conditions were measured at maturity. HJX74 and NIL indicate *indica* variety Hua-Jing-Xian 74 and the near-isogenic line carrying the *japonica DNR1* allele, respectively. **a**, **c-j**, Data are mean \pm s.e.m. (n = 3 biological replicates). *P*-values were generated from two-way ANOVA. **a**, **d-j**, Different letters indicate significant differences among groups (P < 0.05). Source data are provided as a Source Data file.

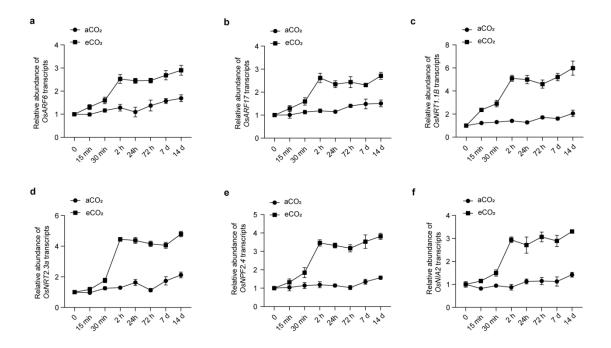


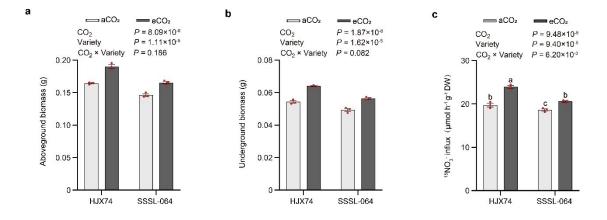
Supplementary Fig. 10 | Different responses of *indica* variety Hua-Jing-Xian 74 and the nearisogenic line carrying the *japonica DNR1* allele to elevated CO₂ in 2022. a-d, Net photosynthesis rate of flag leaves (a), total leaf area per plant (b), aboveground biomass (c), and N uptake (d) under aCO₂ and eCO₂ conditions were measured at heading stage. e-h, Aboveground biomass (e), N uptake (f), N-use efficiency (g) and yield (h) under aCO₂ and eCO₂ conditions were measured at maturity. HJX74 and NIL indicate *indica* variety Hua-Jing-Xian 74 and the near-isogenic line carrying the *japonica DNR1* allele, respectively. a-h, Data are mean \pm s.e.m. (n = 3 biological replicates). *P*-values were generated from two-way ANOVA. b-h, Different letters indicate significant differences among groups (P < 0.05). Source data are provided as a Source Data file.

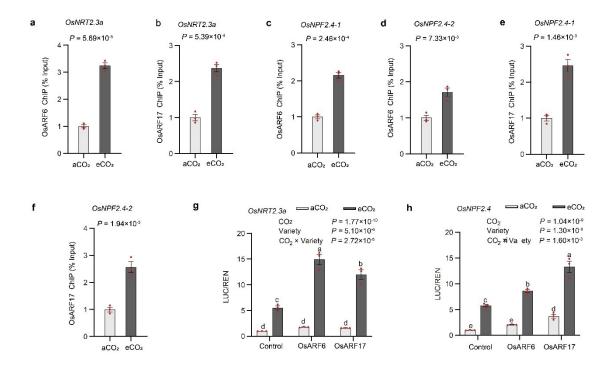


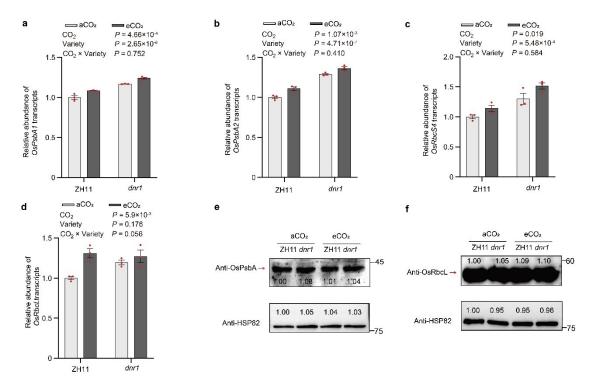
Supplementary Fig. 11 | Differences in root development in response to elevated CO₂ between *indica* variety Hua-Jing-Xian 74 (HJX74) and the near-isogenic line (NIL) carrying the *japonica DNR1* allele. **a**, **b**, 14-day-old *indica* HJX74 and NIL rice plants grown under ambient CO₂ (aCO₂) and elevated CO₂ (eCO₂) conditions, respectively. Morphology of plants (**a**), root systems (**b**). **a**, Scale bar, 20 cm. **b**, Scale bar, 5 cm. **c**, Aboveground biomass. **d-f**, Root statistics of total length of visible roots (**d**), total area of visible roots (**e**), and number of root tips (**f**). **g**, **h**, ¹⁵NO₃⁻ uptake rates (**g**) and root free IAA content (**h**) of *indica* HJX74 and NIL under aCO₂ and eCO₂

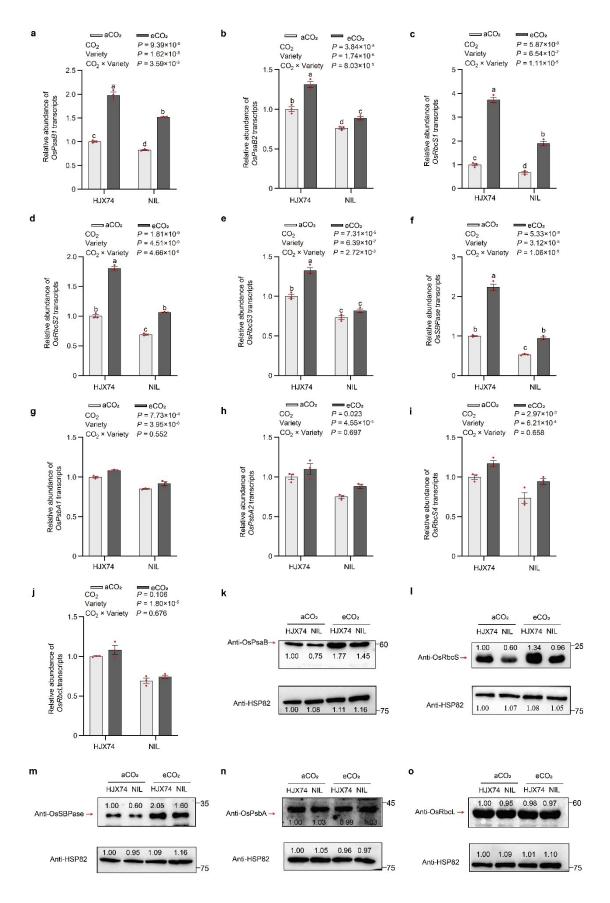

conditions. **c-h**, Data are mean \pm s.e.m. (n = 3 biological replicates). *P*-values were generated from two-way ANOVA. Different letters indicate significant differences among groups (P < 0.05). Source data are provided as a Source Data file.


Supplementary Fig. 12 | The response of Zhonghua 11 and *dnr1* plants to elevated CO₂ under different nitrogen source conditions. a-b, 14-day-old *japonica* variety Zhonghua 11 (ZH11) and its *dnr1* mutants (*dnr1*) conducted hydroponic experiments using NH₄NO₃ (CK), (NH₄)₂SO₄ (NH₄⁺ N) or KNO₃ (NO₃⁻ N) as the N source, respectively. The ratio of shoot weight (a), and the ratio of root weight (b). Data are mean \pm s.e.m. (*n* = 3 biological replicates). *P*-values were generated from two-way ANOVA. Different letters indicate significant differences among groups (*P* < 0.05). Source data are provided as a Source Data file.

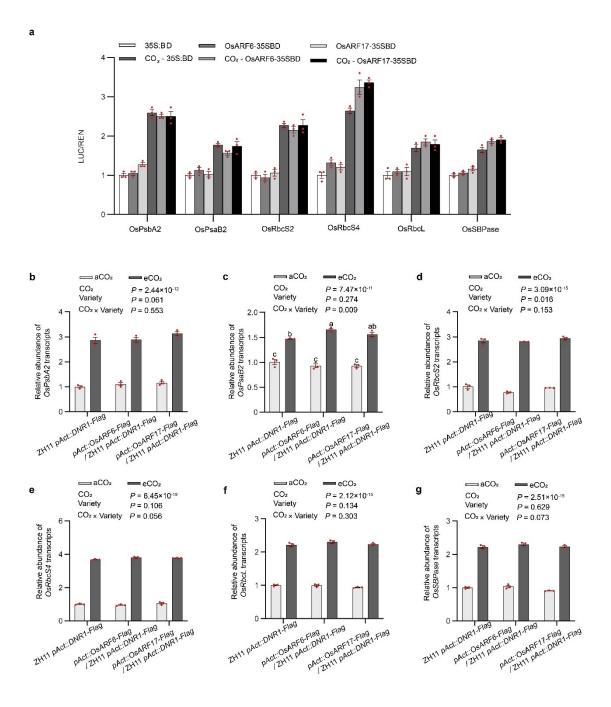

Supplementary Fig. 13 | The responses of nitrate reductase activity to elevated CO₂. a-b, Nitrate reductase (NR) activities in *japonica* variety Zhonghua 11 (ZH11) and its *dnr1* mutants (*dnr1*) mimicking the *indica DNR1* allele (a), and *indica* variety Hua-Jing-Xian 74 (HJX74) and the near-isogenic line (NIL) carrying the *japonica DNR1* allele (b) grown under ambient CO₂ (aCO₂) and elevated CO₂ (eCO₂) conditions. Data are mean \pm s.e.m. (*n* = 3 biological replicates). *P*-values were determined by two-way ANOVA. Different letters indicate significant differences among groups (*P* < 0.05). Source data are provided as a Source Data file.


Supplementary Fig. 14 | Elevated CO₂ enhances the expression levels of genes related to NO₃⁻ metabolism in *indica* variety Hua-Jing-Xian 74 and the near-isogenic line carrying the *japonica DNR1* allele. a-b, Shoot mRNA abundances of *OsARF6* (a) and *OsARF17* (b) under ambient CO₂ (aCO₂) and elevated CO₂ (eCO₂) conditions relative to HJX74 under aCO₂ (set to 1). c-d, Root mRNA abundances of *OsNRT1.1B* (c) and *OsNRT2.3a* (d) under ambient CO₂ (aCO₂) and elevated CO₂ (eCO₂) conditions relative to HJX74 under aCO₂ (set to 1). e-f, Shoot mRNA abundances of *OsNRT2.4* (e) and *OsNIA2* (f) under ambient CO₂ (aCO₂) and elevated CO₂ (eCO₂) conditions relative to HJX74 under aCO₂ (aCO₂) and elevated CO₂ (eCO₂) conditions relative to HJX74 and NIL indicate *indica* variety Hua-Jing-Xian 74 and the near-isogenic line carrying the *japonica DNR1* allele, respectively. a-f, Data are mean \pm s.e.m. (*n* = 3 biological replicates). *P*-values were determined by two-way ANOVA. Different letters indicate significant differences among groups (*P* < 0.05). Source data are provided as a Source Data file.


Supplementary Fig. 15 | Elevated CO₂ enhances the expression levels of nitrogen-related genes through *OsARFs*. a-f, The time course expression levels of *OsARF6* (a), *OsARF17* (b), *OsNRT1.1B* (c), *OsNRT2.3a* (d), *OsNPF2.4* (e), and *OsNIA2* (f) in Zhonghua 11 under ambient CO₂ (aCO₂) and elevated CO₂ (eCO₂) conditions relative to 0 (set to 1). Data are mean \pm s.e.m. (n = 3 biological replicates). Source data are provided as a Source Data file.


Supplementary Fig. 16 | Differences in biomass and ¹⁵NO₃⁻ influx in responses to elevated CO₂ of Hua-Jing-Xian 74 and the near-isogenic line carrying the *japonica OsNRT1.1B* allele. a-c, 14-day-old *indica* Hua-Jing-Xian 74 (HJX74) and near-isogenic line (SSSL-064) rice plants grown under ambient CO₂ (aCO₂) and elevated CO₂ (eCO₂) conditions, respectively. Aboveground biomass (a), underground biomass (b), and ¹⁵NO₃⁻ influx (c). Data are mean \pm s.e.m. (n = 3 biological replicates). *P*-values were determined by two-way ANOVA. c, Different letters indicate significant differences among groups (P < 0.05). Source data are provided as a Source Data file.

Supplementary Fig. 17 | eCO₂ promotes OsARF6 and OsARF17-mediated ChIP-qPCR enrichment and transactivation on N metabolism-related genes. a-f, Extent of OsARF6 and OsARF17-mediated ChIP-qPCR enrichment (relative to Input) of TGTCTC-containing promoter fragments from OsNRT2.3a (a, b) and OsNPF2.4 (c-f) under ambient CO₂ (aCO₂) and elevated CO₂ (eCO₂) conditions. *P*-values were generated from two-sided Student's *t* tests. g, h, OsARF6 and OsARF17 activate promoter-luciferase fusion constructs OsNRT2.3a (g) and, OsNPF2.4 (h) in transient transactivation assays. The luciferase (LUC)/renilla (REN) activity obtained from a cotransfection with an empty effector construct and indicated reporter constructs under ambient CO₂ was set to 1. *P*-values were generated from two-way ANOVA. Different letters indicate significant differences among groups (P < 0.05). **a-h**, Data are mean \pm s.e.m. (n = 3 biological replicates). Source data are provided as a Source Data file.



Supplementary Fig. 18 | The expression of photosynthetic genes in *japonica* variety Zhonghua 11 and its *dnr1* mutants mimicking the *indica* DNR1 allele under ambient CO₂ and elevated CO₂. a-d, Shoot mRNA abundances of *OsPsbA1* (a), *OsPsbA2* (b), *OsRbcS4* (c), and *OsRbcL* (d) grown ambient CO₂ (aCO₂) and elevated CO₂ (eCO₂) conditions, respectively, relative to Zhonghua 11 under aCO₂ (set to 1). *P*-values were generated from two-way ANOVA. Data are mean \pm s.e.m. (*n* = 3 biological replicates). e-f, OsPsbA (e) and OsRbcL (f) protein abundances in shoots. HSP82 serves as a loading control. The red arrows indicate the OsPsaA, and OsRbcL bands, respectively. Data are representative of three independent experiments, with similar results. Source data are provided as a Source Data file.

Supplementary Fig. 19 | Elevated CO₂ affects the abundances of photosynthetic-related genes in *indica* variety Hua-Jing-Xian 74 and the near-isogenic line carrying the *japonica DNR1*

allele. a-j, The expression levels of OsPsaB1 (a), OsPsaB2 (b), OsRbcS1 (c), OsRbcS2 (d), OsRbcS3 (e), OsSBPase (f) OsPsbA1 (g), OsPsbA2 (h), OsRbcS4 (i), OsRbcL (j) in plants grown under ambient CO₂ (aCO₂) and elevated CO₂ (eCO₂) conditions, relative to Hua-Jing-Xian 74 (HJX74) under aCO₂ (set to 1). Data are mean ± s.e.m. (n = 3 biological replicates). *P*-values were generated from two-way ANOVA. k-o, OsPsaB (k), OsRbcS (l), OsSBPase (m), OsPsbA (n) and OsRbcL (o) protein abundances in leaves. HSP82 serves as a loading control. The red arrows indicate the OsPsaB, OsRbcS, OsSBPase, OsPsbA, and OsRbcL bands, respectively. Data are representative of three independent experiments, with similar results. a-f, Different letters indicate significant differences among groups (P < 0.05). Source data are provided as a Source Data file.

Supplementary Fig. 20 | The effect of elevated CO₂ on the expression of photosynthetic genes may not be mediated by OsARFs. (a) OsARF6 and OsARF17 do not activate promoter-luciferase fusion constructs *OsPsbA2*, *OsPsaB2*, *OsRbcS2*, *OsRbcS4*, *OsRbcL* and *OsSBPase* in transient transactivation assays. The luciferase (LUC)/renilla (REN) activity obtained from a co-transfection with an empty effector construct and indicated reporter constructs under ambient CO₂ (aCO₂) was set to 1. b-g, Shoot mRNA abundances of *OsPsbA2* (b), *OsPsaB2* (c), *OsRbcS2* (d), *OsRbcS4* (e), *OsRbcL* (f), and *OsSBPase* (g) in plants overexpressing *OsARF6* and *OsARF17* within the ZH11/*pAct::DNR1-Flag* background with either aCO₂ or elevated CO₂ (eCO₂) treatment, relative to ZH11 *pAct::DNR1-Flag* under aCO₂ (set to 1). a-g, Data are mean \pm s.e.m. (*n* = 3 biological replicates). *P*-values were generated from two-way ANOVA. c, Different letters indicate significant differences among groups (*P* < 0.05). Source data are provided as a Source Data file.

Supplementary Tables

Supplementary Table 1 | The allelic variations of five genes involved in NO_3^- use efficiency between *indica* and *japonica*.

Location	Indica	Japonica
OsNRT1.1B	c.980 T	c.980 C
OsNR2	Arg783	Trp779
DNR1	-	p -1728 ~ -1209, 520 bp insertion
RNR10	-	p -3645 ~ -150, 3496 bp insertion
MYB61	-	helitron element

Gene name	Gene ID	Crop biological function(s)
OsNRT1.1B	LOC_Os10g40600	dual-affinity nitrate transporter
OsNRT2.3a	LOC_Os01g50820	high-affinity nitrate transporter
OsNPF2.4	LOC_Os03g48180	root to shoot nitrate transporter
OsNIA2	LOC_Os08g36500	NADH-dependent nitrate reductase
OsARF6	LOC_Os02g06910	auxin-responsive transcription factor promoting nitrate metabolism
OsARF17	LOC_Os06g46410	auxin-responsive transcription factor promoting nitrate metabolism

Supplementary Table 2 | Detailed information on genes regulated by DNR1.

Supplementary Table 3 | Rice varieties in FACE experiments exhibiting *DNR1* allelic variations.

Varieties	520 bp	indica/japonica
No8	+	japonica
Koshi	+	japonica
Aikoku	+	japonica
Akita	+	japonica
Nipponbare	+	japonica
Nanjing 9108	+	japonica
Wuxiangjing 14	+	japonica
Wuyunjing 21	+	japonica
Wuyunjing 23	+	japonica
YD6	-	indica
IR24	-	indica
IIyou 084	-	indica
Shanyou 63	-	indica
Liangyoupei 9	-	indica
Huajingxian 74	-	indica

Gene name	Gene ID	Crop biological function(s)
OsPsbA1	LOC_Os04g16770.1	photosynthetic reaction center protein, putative, expressed
OsPsbA2	LOC_Os08g35420	photosynthetic reaction center protein, putative, expressed
OsPsbA3	LOC_Os10g21192	photosystem Q, putative, expressed
OsPsbA4	LOC_Os10g39880	photosynthetic reaction center protein, putative, expressed
OsPsbA5	LOC_Os12g19580	photosynthetic reaction center protein, putative, expressed
OsPsaB1	LOC_Os01g57962	photosystem I P700 chlorophyll a apoprotein A2, putative, expressed
OsPsaB2	LOC_Os01g57964	photosystem I P700 chlorophyll a apoprotein A1, putative, expressed
OsPsaB3	LOC_Os04g16760	photosystem I P700 chlorophyll a apoprotein A1, putative
OsPsaB4	LOC_Os05g01675	photosystem I P700 chlorophyll a apoprotein A1, putative
OsPsaB5	LOC_Os10g21248	photosystem I P700 chlorophyll a apoprotein A2, putative
OsPsaB6	LOC_Os10g21250	photosystem I P700 chlorophyll a apoprotein A1, putative
OsPsaB7	LOC_Os10g38229	photosystem I P700 chlorophyll a apoprotein A1, putative
OsPsaB8	LOC_Os10g38234	photosystem I P700 chlorophyll a apoprotein A2, putative
OsRbcS1	LOC_Os02g05830	small subunit of Rubisco
OsRbcS2	LOC_Os12g17600	small subunit of Rubisco
OsRbcS3	LOC_Os12g19381	small subunit of Rubisco
OsRbcS4	LOC_Os12g19470	small subunit of Rubisco
OsRbcL	LOC_Os10g21268	ribulose bisphosphate carboxylase large chain precursor
OsSBPase	LOC_Os04g16680	sedoheptulose 1,7-bisphosphatase

Supplementary Table 4 | Detailed information on photosynthetic genes.

Gene_id	Gene_name	Gene_description	Annotation
Os01g0619900	OsTCL2	TCL2_ARATH MYB-like transcription factor TCL2	
Os01g0603300	Os01g0603300	KUA1_ARATH Transcription factor KUA1	
Os06g0166400	OsERF#007	ERF08_ARATH Ethylene-responsive transcription factor ERF008	
Os10g0562900	DERF12	EF102_ARATH Ethylene-responsive transcription factor 5	Up-regulated by
Os12g0116600	OsWRKY95	WRK46_ARATH Probable WRKY transcription factor 46	both eCO ₂ and
Os12g0618600	OsHAP2F	NFYA6_ARATH Nuclear transcription factor Y subunit A-6	null-DNR1 allele
Os11g0117600	OsWRKY50	RK19_ORYSJ Transcription factor WRKY19	
Os07g0158500	OsHAP2J	NFYAA_ARATH Nuclear transcription factor Y subunit A-10	
Os03g0366800	OsHsfB4d	HFB4D_ORYSJ Heat stress transcription factor B-4d	
Os04g0541100	GT-2	DF1_ARATH Trihelix transcription factor DF1	_
Os04g0381700	OsbHLH156	BH156_ORYSJ Transcription factor BHLH156	Down-regulated
Os04g0686200	Os04g0686200	PRAF1_ARATH PH, RCC1 and FYVE domains-containing protein 1	by both eCO ₂ and
Os08g0483900	OsbHLH047	BH094_ARATH Transcription factor bHLH94	null-DNR1 allele

Supplementary Table 5 | 13 transcription factors respond to both eCO₂ and DNR1.

Ti	reatment	Panicles per ha (10 ⁴)	Spikelets per panicle	Grain filling rate (%)	1000-grain weight (g)
	aCO ₂	215.1±6.4	137.3±3.0	82.1±0.6	28.6±0.2
ZH11	eCO ₂	220.4±6.4	141.7±0.9	82.7±1.0	27.9±0.1
	aCO ₂	227.6±1.8	150.0±0.6	80.4±1.4	26.3±0.2
dnr1	eCO ₂	248.9±4.7	158.8±2.3	87.8±0.2	25.6±0.1
	CO ₂	0.033	0.010	0.003	0.001
P-value	Variety	0.004	6.5×10 ⁻⁵	0.108	2.3×10 ⁻⁷
	CO ₂ ×Variety	0.161	0.296	0.006	0.770
111274	aCO ₂	245.3±5.3	170.0±5.7	86.7±0.6	24.6±0.2
HJX74 e	eCO ₂	284.4±7.7	182.6±4.4	93.3±0.1	23.9±0.2
NUT	aCO ₂	216.9±8.9	164.2±3.3	82.5±0.9	29.0±0.1
NIL	eCO ₂	231.1±6.4	165.7±2.9	83.1±1.3	29.3±0.3
	CO ₂	0.006	0.136	0.003	0.423
P-value	Variety	4.7×10 ⁻⁴	0.028	3.2×10 ⁻⁵	2.0×10 ⁻⁸
	CO ₂ ×Variety	0.123	0.226	0.008	0.056

Supplementary Table 6 | Effects of elevated CO₂ and varieties on rice yield composition.

ZH11 and *dnr1* indicate *japonica* variety Zhonghua 11 and its *dnr1* mutants mimicking the *indica DNR1* allele, respectively. HJX74 and NIL indicate *indica* variety Hua-Jing-Xian 74 and the nearisogenic line carrying the *japonica DNR1* allele, respectively. aCO₂ and eCO₂ indicate ambient CO₂ and elevated CO₂ condition, respectively. Data are mean \pm s.e.m. (n = 3 biological replicates). *P*-values were generated from two-way ANOVA. Source data are provided as a Source Data file.

Primers	Forward sequence (5'-3')	Reverse sequence (5'-3')	Annotation
OsActin2	AGCAGCATGAAGATCAAGGTGGTC	CCTTGGCAATCCACATCTGCTG	
DNR1	TGCAAACAAGCATGGTGTGG	TCACAAGTTCTTGCAAGCCG	
OsNRT1.1B	GGCAGGCTCGACTACTTCTA	AGGCGCTTCTCCTTGTAGAC	
OsNRT2.3a	CTCATCCGCGACACCCTC	GATGGAGGAGCAGTACACCG	
OsNPF2.4	TAGGATTAAGTGGGTGAGG	GTCAAACAGCAAGTAGCG	
OsNIA2	GTTACGAACCAAGGGGGGGAT	AATCTCCACGGGCCACCATA	
OsARF6	CCACATCCAACTTCCTTAGC	ACAGAGACGTACAGAACTGG	
OsARF17	GGATCAAGATGGGAACTCTG	TAGTCATCACAGCTGCTACC	
OsPsbA-Primer 1	TGCAGCTGCTACTGCTGTTT	CACTAAATAGGGAACCGCCG	For OsPsbA1-3
OsPsbAPrimer 2	TTTGGGAAGCTGCATCTGTT	AGAAAACAGCAGTAGCAGCT	For OsPsbA1-5
OsPsaBPrimer 1	CCACTCAAGGAGCGGGAACTG	GAGCAATATCGGTCAGCCACAAAC	For OsPsaB1, 5, 8
OsPsaBPrimer 2	TATTTGCTCGCAGTTCCCGT	TACCCCAAACATCCGACTGC	For OsPsaB2, 3, 4, 6, 7
OsRbcS1	ATGCCATTGCCATCCCAAGT	ATGTCGCCGGAGTAGAGAGT	
OsRbcS2	CCCTCTCCTACCTGCCACCG	GACGAATGCATCAGGGTACG	
OsRbcS3	GCATCATCGGCTTCGACAAC	TTAGTTTCCGCCGGACTCCT	
OsRbcS4	CTCTGTCGTACTTGCCGCCAT	AACGAAGGCATCAGGGTATG	
OsRbcL	AAACTTTCCAAGGTCCGCCT	ACAAAACGGTCCCTCCAACG	
OsSBPase	AAACAGTCGGTGCTGGACAA	GAGTCTCCTCGAACCGGATG	
ChIP-OsNRT1.1B	CGGTGGCTTCATCACAGCAT	TTGTAGTCCCACGCGTCCGT	
ChIP-OsNRT2.3a	CGGCCAGCTCAAGGAAACTT	CCATGGCTTCTCATGCTCTG	
ChIP-OsNPF2.4-1	CTGACGACTAGTACGAATCG	TCTCACCAACCACCACCTCT	
ChIP-OsNPF2.4-2	CGCATCCGCATCCGTACATT	CTCTCCCTTCACACTGCGTC	
ChIP-OsNIA2	ATGTGTCGATGTTGTGTACG	TTCAGCTCAGCTACAGCTCG	

$\label{eq:supplementary} Supplementary \ Table \ 7 \ | \ Primer \ sequences \ used \ for \ qPCR \ assays \ used \ in \ this \ study.$

Primers	Sequence (5'-3')
OsARF6-sem-BamHI-F	TCGCCGTCTAGAACTAGTGGAATGAAGCTCTCGCCGTCGGCC
OsARF6-sem-EcoRI-R	GTATCGATAAGCTTGATATCGTTTCAGAACTCAACTGAGCCCA
OsARF17-sem-BamHI-F	TCGCCGTCTAGAACTAGTGGAATGAGGCTTTCGTCGTCGTCGTC
OsARF17-sem-EcoRI-R	GTATCGATAAGCTTGATATCGTTTCAGAATTCAACTGAGCCGA
OsNRT1.1B-sem-EcoRV-F	TGGATTGATGTGATATCAAGGGCATCGTCTGAGTCTG
OsNRT1.1B-sem-XbalI-R	CTTGCAGATCCTCTAGAATCAACAACAACAAGCTCGA
OsNRT2.3a-sem-EcoRV-F	TGGATTGATGTGATATCCTGTTGCCAGGAATTGCTTG
OsNRT2.3a-sem-XbalI-R	CTTGCAGATCCTCTAGACTCCAACACGTGGTAGCAAG
OsNPF2.4-sem-EcoRV-F	TGGATTGATGTGATATCTGGAAGGAGGGTTTTGGCCAG
OsNPF2.4-sem-XbalI-R	CTTGCAGATCCTCTAGACCTCTCTCACCAACCACCACCT
OsNIA2-sem-EcoRV-F	TGGATTGATGTGATATCGAATTCCCACAATTATTTTC
OsNIA2-sem-XbalI-R	CTTGCAGATCCTCTAGAGCTTGGTGTTCGGTTCTGCGT
OsPsbA2-sem-EcoRV-F	TGGATTGATGTGATATCGGGAGGAAGGTCTCGGACAA
OsPsbA2-sem-XbalI-R	CTTGCAGATCCTCTAGACTTTCTCCCGAGTCCCAATA
OsPsaB2-sem-EcoRV-F	TGGATTGATGTGATATCAATGACGGTAGCTTGCGAAT
OsPsaB2-sem-XbalI-R	CTTGCAGATCCTCTAGATAAGTCCTCCTCTTTCCGGA
OsRbcS2-sem-EcoRV-F	TGGATTGATGTGATATCGTATTGCTGATGCCCTTATT
OsRbcS2-sem-XbalI-R	CTTGCAGATCCTCTAGACTCTGCAGCTCACCAAGCTC
OsRbcS4-sem-EcoRV-F	TGGATTGATGTGATATCTTGTCACTGGCAGTCTATGA
OsRbcS4-sem-XbalI-R	CTTGCAGATCCTCTAGATGCTAGCTTGCTAGGAGCTA
OsRbcL-sem-EcoRV-F	TGGATTGATGTGATATCCCCAAATAATTCGCTTAGGA
OsRbcL-sem-XbalI-R	CTTGCAGATCCTCTAGAACAGGGTCTACTCGATATGG
OsSBPase-sem-EcoRV-F	TGGATTGATGTGATATCTCATGAGCCTGCACAGATAG
OsSBPase-sem-XbalI-R	CTTGCAGATCCTCTAGACCGGCCTAGCTAGTTAGTTA

Supplementary Table 8 | Primer sequences used for luciferase activity assays.