
Supplementary Information for
Heterodyne analysis of high-order partial waves in attosecond
photoionization of helium
Wenyu Jiang1,2,∗, Luke Roantree3,∗, Lulu Han1,∗, Jiabao Ji4, Yidan Xu1, Zitan Zuo1, Hans Jakob
Wörner4, Kiyoshi Ueda1,5,6, Andrew C. Brown3,†, Hugo W. van der Hart3, Xiaochun Gong1, Jian
Wu1,7,8,†

1State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai
200241, China
2Present address: School of Physics and Microelectronics, Zhengzhou University, Zhengzhou
450001, China
3Centre for Light-Matter Interaction, School of Mathematics and Physics, Queen’s University
Belfast, Northern Ireland, BT7 1NN United Kingdom
4Laboratorium für Physikalische Chemie, ETH Zürich, 8093 Zürich, Switzerland
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Supplementary Note 1: Available higher-order transitions

Due to the 1s2 ground state of neutral helium, the two-photon transitions available in a typi-

cal RABBITT scheme permit only εs or εd0 final states (where we use ε to denote ‘continuum’

states). Upon extending RABBITT to include four-photon transitions, the εg0 final state may also

be populated. To reach higher electron angular momenta, at least 6-photon transitions are re-

quired. The R-Matrix with Time-dependence (RMT) approach allows the photoelectron spectra to

be calculated using only specified partial waves; we use this functionality to extract angle-resolved

2ω phase from three RABBITT spectra obtained using (s−, d0−waves), (s−, d0−, g−waves)

and (s−, d0−, g0−, i0−waves). Supplementary Figure 1(a) demonstrates that the inclusion

of the i0−wave, the first sideband-accessible partial-wave beyond the g0−wave, induces almost

no change to the angle-resolved 2ω phase as compared with a calculation comprising only the

s−, d0− and g0−waves. At the IR intensity used in this investigation (1 × 1012 W/cm2), the s−

and d0−waves alone are shown to be insufficient to describe the angular behavior of the phase–

in particular around the angular interval between 30◦ − 60◦. Supplementary Figure 1(b) provides

further clarity on the level of agreement achieved by the (s, d0) and (s, d0, g0) descriptions with

a more complete (s, d0, g0, i0) description. The maximum and mean absolute differences of the

(s, d0, g0, i0) description relative to the (s, d0) description are 0.919 radians and 0.218 radians

respectively, while the maximum and mean differences calculated relative to the (s, d0, g0) de-

scription are only 0.085 radians and 0.0160 radians respectively. If only the angular regions which

can be reliably measured experimentally are considered, as indicated by the shaded region in Sup-

plementary Figure 1(b), the maximum and mean absolute differences in 2ω phase between the

(s, d0, g0) and (s, d0, g0, i0) descriptions drop to only 0.030 radians and 0.011 radians respec-

tively.
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Supplementary Figure 1: Influence of high-order transitions on the angle-resolved relative

phase shifts in SB16.(a) ∆φSB16
rel (θ), in units of π−radians, extracted across SB16 (from simula-

tion) using only (s− and d0−waves) [red, dot-dashed], (s−, d0− and g0−waves) [blue, dashed],

(s−, d0−, g0− and i−waves) [purple, solid]. (b) Absolute difference in ∆φSB
rel (θ), over the emis-

sion angle interval [0, π/2], between (s−, d0− and g0−waves) and (s−, d0−, g0− and i0−waves)

[blue, solid], and between (s− and d0−waves) and (s0−, d0−, g0− and i0−waves) [pink, dashed].

In (b), the angular interval in which there is most difficulty resolving experimentally is shaded.
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Supplementary Note 2: Extracting the anisotropy parameters from photoelectron angular

distributions

In a system such as atomic helium, where the singly-ionized electrons may be coupled to only a

single ionic state, the lowest-order paths to the continuum require absorption of one XUV photon.

This forms the mainbands and changes the system’s orbital angular momentum by 1– in the case

of helium 1-photon transitions to mainbands lead to p0-waves only. As all further NIR-induced

transitions will then start from p0-waves, the sideband photoelectrons can be expressed in terms of

only even Legendre polynomials:

I(θ, τ) ∝
∑

n=0,2,4,6

βn(τ)Pn[cos(θ)], (S1)

The pump-probe time delay resolved anisotropy parameters are extracted by projecting the experi-

mental and theoretical photoelectron angular distributions onto the even-order Legendre polynomi-

als 1–6. These anisotropy parameters are, under the restriction of parallel linear polarization of the

laser fields, scalar multiples of the spherical harmonics comprising the observed angle-resolved

sideband signal. Which spherical harmonics comprise this signal is determined by interference

between partial waves; and so we may expect to observe different anisotropy parameters for dif-

ferent component signals of the sideband as they originate from different interferences. The an-

gular distribution of signal, W (l1, l2), resulting from interference between a pair of partial waves

with angular momenta l1 and l2 is given by the product of their associated spherical harmonics

(Yl1,0 (θ) and Yl2,0 (θ)), which may itself be expressed on the basis of spherical harmonics;

W (l1, l2) =Yl1,0 (θ)Yl2,0 (θ)∗

=

|l1+l2|∑
L=|l1−l2|

√
(2l1 + 1)(2l2 + 1)(2L+ 1)

4π

l1 l2 L

0 0 0


2

YL,0 (θ) , (S2)
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where

a b c

d e f

 is a Wigner-3j symbol. We extract the strength of each 0ωNIR, 2ωNIR and 4ωNIR

signal for each anisotropy parameter via a Fourier transform, mapping βn(τ) → β̃n(ω). Inspecting

Equation S2, the highest order spherical harmonic (equivalently, anisotropy parameter) comprising

interference between only s and d0 waves is Y4,0 (θ) (corresponding to β4). Observation of the non-

zero β6 parameter, particularly within the 2ω and 4ω component signals, provides direct evidence

of the presence of higher-order partial-waves, and thus evidence of higher-order photoionization

processes which cannot be satisfactorily explained by traditional (2-photon) RABBITT theory. In

general RABBITT measurements in the perturbative regime, the partial-wave resolved two-photon

phase shifts and proportions can be reconstructed by fitting the PADs and emission-angle resolved

phase shift distributions with spherical harmonics 7, 8. However, with the introduction of the higher

order processes, this kind of fitting becomes unstable due to the tiny proportion of the high-order

partial waves– g0- and i0-waves here. In this case, the heterodyne analysis of anisotropy parameters

serves as a sensitive tool to detect the participation of high-order partial waves.

Supplementary Note 3: Comparison of delay-resolved anisotropy parameters

Supplementary Figure 2 shows the βn(τ) parameters extracted from simulated and experimental

RABBITT spectra. The extremely small magnitude of the β10 coefficient in all cases (or, more

importantly, its variation over time) indicates partial waves beyond the g0-wave do not contribute

significantly enough to be detected within the component signals. While the variation in β8 is just

large enough to be visible in Supplementary Figure 2(a) and (d), Equation S2 shows β8 comprises

interference between two g0-waves, and interference between a d0-wave and an i0-wave. As each

of these options requires interaction with the same number of photons, they both contribute to β8

with a similar magnitude, making it difficult to attribute anything to a particular partial wave. In β6,

however, interference between g0- and d0 waves contributes significantly more than interference
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between i0- and s0-waves, as s− and d− waves may both be reached via two-photon paths. As

such, we limit our analysis of ‘higher-order’ anisotropy parameters to {β0, β2, β4, β6}.

By comparing the anisotropy coefficients in Supplementary Figure 2(b) and (c) (correspond-

ing to only the s- and d0-wave contributions from the 1 TW/cm2 simulation and the 0.05 TW/cm2

simulation), it is clear that while the signal contributions from s- and d0-waves in the 1 TW/cm2

case contain contributions from both 2- and 4-photon paths, the extracted anisotropy parameters

show almost no difference from the 0.05 TW/cm2 case where contribution from 4-photon paths

may be considered negligible.

Further evidence of the relationship between the contribution of higher-order partial waves

and the RABBITT phase is given from the experiment; comparing the magnitude of oscillations

of the β8 parameter (relative to the other βn parameters) in Supplementary Figure 2(d) and (e), it

is clear that the higher-order partial waves play an increasingly important role as the NIR intensity

increases. The angular distributions of 2ωNIR oscillation phase shifts of SB16 and SB18 with a

NIR intensity of 3.2× 1012 W/cm2 are shown in Supplementary Figure 3(a) and (b).

From this, we conclude that the most significant differences to the photoelectron angular

distribution (or its component signals) between ‘standard’ RABBITT and RABBITT-HOP may

be attributed much more to interference with additional partial-waves than to any changes to the

information contained in the phase of the s- or d0-waves.

Supplementary Note 4: Combined contribution of component signals

It is well-known that when two component signals of the same frequency overlap, the resulting

total signal has the same frequency. However, when there are relative differences in the component

signals’ phases and magnitudes, the calculation of the phase of the total signal is non-trivial. We
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Supplementary Figure 2: Delay-resolved anisotropy coefficients. Delay-resolved anisotropy

coefficients extracted from RABBITT scans from RMT simulation (a-c) and experiment (d-e).

Subfigure (a) displays the anisotropy parameters extracted from the full output of an RMT simu-

lation using a 1.0 × 1012 W/cm2 NIR field, (b) the contribution of only s− and d0−waves to the

output of an RMT simulation using a 1.0 × 1012 W/cm2 NIR field and (c) anisotropy parameters

extracted from the full output of an RMT simulation using a 5.0× 1010 W/cm2 NIR field. Subfig-

ure (d) displays the anisotropy parameters extracted from an experiment using a 1.1× 1012 W/cm2

NIR field and (e) from an experiment using a 3.2× 1012 W/cm2 NIR field.
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Supplementary Figure 3: The emission-angle-resolved 2ωNIR phase shifts with a NIR field

intensity of 3.2 TW/cm2 as measured experimentally: (a) SB16(5p), (b) SB18. The error bars

represent the standard deviation.

show now that approximating the total signal’s phase as the mean of the two-component phases,

weighted by the component signal magnitudes, is accurate to second order in phase difference.

Let S be a total signal comprising two component signals with distinct magnitudes and

phases. Without loss of generality, we will take the phase of the first component as zero – i.e.

we describe the phase of the second component relative to that of the first.

S = A1cos(2ωτ) + A2cos(2ωτ + φ)

=

(√
A2

1 + A2
2 + 2A1A2cos (φ)

)
× cos

(
2ωτ + atan

(
A2sin (φ)

A1 + A2cos (φ)

))
. (S3)

Taylor expanding each term of S in terms of ∆φ and truncating to second order, we obtain

S '
(√

A2
1 + A2

2 + 2A1A2

)
× cos

(
2ωτ +

A2 (φ)

A1 + A2

)
= (A1 + A2)× cos

(
2ωτ + φ̄

)
, (S4)

where φ̄ is the mean of the component signals’ phases, weighted by their magnitudes.
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