Supplementary Materials

Fluorine-expedited nitridation of layered perovskite Sr₂TiO₄ for visible-light-driven photocatalytic overall water splitting

Jinxing Yu^{1#}, Jie Huang^{2,3#}, Ronghua Li⁴, Yanbo Li⁴, Gang Liu^{2,3*}, Xiaoxiang Xu^{1*}

¹Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
²Shenyang National laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China,
³School of Materials Science and Engineering, University of Science and Technology of China, 72 Wenhua Road, Shenyang 110016, China
⁴Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China

^{*} These authors contributed equally to this work.

* Correspondence: gangliu@imr.ac.cn, xxxu@tongji.edu.cn

Supplementary Tables

Samples	Space group	<i>a</i> (Å)	<i>c</i> (Å)	$V(\text{\AA}^3)$	$S_{BET} \left(m^2/g \right)$
Sr ₂ TiO ₄	I4/mmm	3.8858(1)	12.5967(3)	190.204(8)	0.9(1)
$Sr_2TiO_3F_2$	P4/nmm	3.7980(2)	15.5517(11)	224.327(32)	1.6(2)
Sr ₂ TiO ₄ -N	I4/mmm	3.8857(1)	12.5959(3)	190.185(7)	4.8(1)
Sr ₂ TiO ₄ -NF	I4/mmm	3.8866(1)	12.5988(2)	190.312(3)	4.9(1)

Supplementary Table 1. Space group, refined unit cell parameters and BET surface area of as-prepared samples, standard deviation is included in the parenthesis

Supplementary Table 2. Comparisons of POWS activity over some reported photocatalysts

active to visible light

Photocatalyst	Catalyst	Capatalyst	Gas evolution rate	AOE	STH	Ref.
	dosage (g)	Cocatalyst	(µmol/h)	AQE		
Ta ₃ N ₅	0.3	0.02 wt% Rh/0.06	~6.4 for H ₂ , ~2.6	0.22% (λ = 420 ±	0.014%	1
		wt% Cr2O3	for O ₂	25 nm)		
SrTaO ₂ N	0.15	4 wt% CrO _y /4 wt%		0.34% (λ = 420 ±	0.0063%	2
		Ru/1 wt% IrO2(MW)	-	30 nm)		
BaTaO2N	0.2	1 wt% Rh/1 wt%	~ 0.27 for H ₂ ,	0.08% (λ = 420 ±	0.0005%	3
		Cr2O3/0.3 wt% IrO2	~0.12 for O ₂	20 nm)		
LaMg1/3Ta2/3O2N	0.2	0.5 wt% RhCrOy	-	0.03% (λ = 440 ±	-	4
				30 nm)		
$Y_2 Ti_2 O_5 S_2$	0.2	1.5 wt% Cr ₂ O ₃ /2 wt%	~ 4.0 for H ₂ , ~ 2.1	0.36% (λ = 420 ±	0.007%	5
		Rh/0.3 wt% IrO2	for O ₂	13 nm)		
PbTiO ₃	0.1	0.25 wt% Rh/0.25	~3.29 for H ₂ ,	0.027% (λ = 420 ±	-	6
		wt% Cr ₂ O ₃	~ 1.74 for O_2	20 nm)		
BiVO ₄	0.01	2 wt% Rh/2 wt%		0.025% ($\lambda = 420 \pm$	0.012%	7
		Cr/0.5 wt% MnOx	-	20 nm)		
NiTi0.99Ga0.01O3	0.05	4 wt% Co/1 wt% Pt	-	$0.18\% \ (\lambda = 420 \ \pm$	-	8
				20 nm)		
BaTaO ₂ N:Mg	0.05	6 wt% Rh/6 wt%	~ 0.21 for H ₂ ,	$0.08\% \ (\lambda = 420 \ \pm$	0.0004%	9
		Cr2O3/0.3 wt% IrO2	~0.11 for O ₂	20 nm)		
TaON:Zr	0.15	4 wt% Ru/4 wt%	~3.0 for H ₂ , ~1.4	$0.66\% \ (\lambda = 420 \pm$	0.009%	10
		Cr/0.6 wt% IrO2	for O ₂	20 nm)		
F/N co-doped		0.5 wt% RhCrOy	~12.1 for H ₂ , ~6.1	$0.39\% (\lambda = 420 \pm$	0.028%	This
Sr ₂ TiO ₄	0.4		for O ₂	20 nm)		work

Supplementary Figures

Supplementary Fig. 1 FE-SEM images of the precursor powders: **a** Sr₂TiO₄. **b** Sr₂TiO₃F₂. **c** Sr₂TiO₄-N. **d** Sr₂TiO₄-NF.

Supplementary Fig. 2 Bandgap determination from UV-Vis DRS spectra of Sr₂TiO₄, Sr₂TiO₃F₂, Sr₂TiO₄-N and Sr₂TiO₄-NF

Supplementary Fig. 3 a UPS valence band spectra of Sr_2TiO_4 -N and Sr_2TiO_4 -NF. **b** UPS secondary electron cutoff spectra of Sr_2TiO_4 -N and Sr_2TiO_4 -NF, work function (WF) is deduced based on the energy difference between incident photons (40 eV) and the cutoff energy.

Supplementary Fig. 4 Schematic illustration of UPS-deduced band edge positions of Sr_2TiO_4 -N and Sr_2TiO_4 -NF, fermi level is denoted by dashed lines and the potential scale is defined by referring to the vacuum level at 0.0 V.

Supplementary Fig. 5 Mott-Schottky (MS) plot of Sr₂TiO₄-N and Sr₂TiO₄-NF, flat-band potential is determined by extrapolating the MS curves down to energy axis.

Supplementary Fig. 6 a XRD patterns of $Sr_2TiO_3F_2$ and Sr_2TiO_4 precursors. b XRD patterns of Sr_2TiO_4 -N and Sr_2TiO_4 -NF.

Supplementary Fig.7 Raman spectra of Sr_2TiO_4 -NF and Sr_2TiO_4 -N, the main Raman active modes (A_{1g} and E_g) for Sr_2TiO_4 are maintained in both samples.

Supplementary Fig. 8 XPS spectra of Sr_2TiO_4 , $Sr_2TiO_3F_2$, Sr_2TiO_4 -N and Sr_2TiO_4 -NF: **a** Ti 2p, **b** N 1s, **c** F 1s, **d** O 1s.

Supplementary Fig.9 Band structure, density of states (DOS) and projected density of states (PDOS) of Sr₂TiO₄, Fermi level is denoted by the dashed purple lines.

Supplementary Fig. 10 Band structure, density of states (DOS) and projected density of states (PDOS) of Sr_2TiO_4 containing Ti^{3+} and V_O defects, Fermi level is denoted by the dashed purple lines.

Supplementary Fig. 11 Band structure, density of states (DOS) and projected density of states (PDOS) of Sr_2TiO_4 containing Ti^{3+} , V_O and N_O defects, Fermi level is denoted by the dashed purple lines.

Supplementary Fig. 12 Band structure, density of states (DOS) and projected density of states (PDOS) of Sr₂TiO₄ containing F₀ and N₀ defects, Fermi level is denoted by the dashed purple lines.

Supplementary Fig. 13 Linear scan voltammetry (LSV) curves of photoelectrodes fabricated by Sr₂TiO₄-N and Sr₂TiO₄-NF powders under chopped visible light illumination ($\lambda \ge 420$ nm). The potential is not iR corrected. The area of the photoelectrode is 1 cm².

Supplementary Fig. 14 Open-circuit voltage (V_{OC}) decay profiles of Sr₂TiO₄-N and Sr₂TiO₄-NF in Ar. The potential is not iR corrected.

Supplementary Fig. 15 EPR spectra of TEMPO in the presence and absence of light-illuminated Sr_2TiO_4 -N and Sr_2TiO_4 -NF for 8 s

Supplementary Fig. 16 Temporal gas evolution (H₂, O₂ and N₂) over Sr₂TiO₄-NF coated with or without TiOXH (1 wt%) under visible light illumination ($\lambda \ge 420$ nm). RhCrO_y (0.5 wt%) was loaded as a cocatalyst.

Supplementary Fig. 17 a XRD patterns of Sr₂TiO₄-N, Sr₂TiO₄-N2, and Sr₂TiO₄-NF, standard patterns of Sr₂TiO₄ are also included for comparisons; **b** UV-vis DRS spectra of Sr₂TiO₄-N, Sr₂TiO₄-N2, and Sr₂TiO₄-NF; **c** photocatalytic overall water splitting for Sr₂TiO₄-N, Sr₂TiO₄-N2, and Sr₂TiO₄-NF under visible light ($\lambda \ge 420$ nm); **d** photocatalytic overall water splitting for Sr₂TiO₄-N, Sr₂TiO₄-N, Sr₂TiO₄-N, Sr₂TiO₄-N, Sr₂TiO₄-N, Sr₂TiO₄-N, Sr₂TiO₄-N, Sr₂TiO₄-NF under visible light ($\lambda \ge 420$ nm); **d** photocatalytic overall water splitting for Sr₂TiO₄-N, Sr₂TiO₄-N2, and Sr₂TiO₄-N2, and Sr₂TiO₄-N2, and Sr₂TiO₄-NF under simulated sunlight (100 mW·cm⁻²). Reaction conditions: 0.4 g catalysts, RhCrO_y (0.5 wt%) cocatalyst, 100 mL deionized water.

Supplementary Fig. 18 a XRD patterns of Sr₂TiO₄-N, Sr₂TiO₄-N@F, and Sr₂TiO₄-NF, standard patterns of Sr₂TiO₄ are also included for comparisons; **b** XPS F 1*s* spectra of Sr₂TiO₄-N@F and Sr₂TiO₄-NF; **c** element content of Sr₂TiO₄-N@F by ICP, ONH and ion chromatograph analysis, deduced chemical formula are shown at the bottom (oxygen vacancies are represented by empty squares '□'); **d** UV-vis DRS spectra of Sr₂TiO₄-N, Sr₂TiO₄-N@F, and Sr₂TiO₄-NF; **e** photocatalytic overall water splitting for Sr₂TiO₄-N, Sr₂TiO₄-N@F, and Sr₂TiO₄-NF; **e** photocatalytic overall water splitting for Sr₂TiO₄-N, Sr₂TiO₄-N@F, and Sr₂TiO₄-NF under visible light ($\lambda \ge 420$ nm); **f** photocatalytic overall water splitting for Sr₂TiO₄-N, Sr₂TiO₄-N@F, and Sr₂TiO₄-NF under visible light ($\lambda \ge 420$ nm); **f** photocatalytic overall water splitting for Sr₂TiO₄-N, Sr₂TiO₄-N@F, and Sr₂TiO₄-NF under simulated sunlight (100 mW·cm⁻²). Reaction conditions: 0.4 g catalysts, RhCrO_y (0.5 wt%) cocatalyst, 100 mL deionized water.

Supplementary Fig. 19 POWS activity over Sr_2TiO_4 -NF as a function of: a RhCrO_y content, TiOXH content is fixed at 1 wt%, catalyst dosage is fixed at 50 mg; b TiOXH content, RhCrO_y content is fixed at 0.5 wt%, catalyst dosage is fixed at 50 mg; c catalyst dosage, RhCrO_y content is fixed at 0.5 wt%, TiOXH content is fixed at 1 wt%. The error bars correspond to the standard deviations of the measurements repeated for three times.

Supplementary Fig. 20 (a) Comparisons of visible-light-active compounds reported for POWS: (a) AQE of POWS under visible light; (b) STH of POWS. More detailed information can be found in **Supplementary Table 2**.

Supplementary Fig. 21 Gas evolution rate as a function of wavelength over Sr₂TiO₄-NF.

Supplementary Fig. 22 XRD patterns of Sr₂TiO₄-NF before and after photocatalytic overall

water splitting reactions, standard patterns of $\mathrm{Sr_2TiO_4}$ are also included for comparisons.

Supplementary Fig. 23 XPS of Sr_2TiO_4 -NF before and after photocatalytic overall water splitting reactions: **a** Ti 2*p*; **b** N 1*s*; **c** F 1*s*; **d** Rh 3*d*; **e** Cr 2*p*; **f** O 1*s*.

Supplementary Fig. 24 SEM image of Sr₂TiO₄-NF before and after photocatalytic overall

water splitting reactions: a before; b after.

Supplementary References

- 1. Wang Z., *et al.* Overall water splitting by Ta₃N₅ nanorod single crystals grown on the edges of KTaO₃ particles. *Nat. Catal.* **1**, 756-763 (2018).
- 2. Chen K. H., *et al.* Overall Water Splitting by a SrTaO₂N-Based Photocatalyst Decorated with an Ir-Promoted Ru-Based Cocatalyst. *J. Am. Chem. Soc.* **145**, 3839-3843 (2023).
- 3. Nishimae S., *et al.* Active BaTaO2N photocatalysts prepared from an amorphous Ta₂O₅ precursor for overall water splitting under visible light. *J. Mater. Chem. A* **11**, 6299-6310 (2023).
- 4. Pan C. S., et al. A Complex Perovskite-Type Oxynitride: The First Photocatalyst for Water Splitting

Operable at up to 600 nm. Angew. Chem. Int. Ed. 54, 2955-2959 (2015).

- 5. Wang Q., *et al.* Oxysulfide photocatalyst for visible-light-driven overall water splitting. *Nat. Mater.* **18**, 827-832 (2019).
- 6. Wan G. D., *et al.* Photocatalytic Overall Water Splitting over PbTiO₃ Modulated by Oxygen Vacancy and Ferroelectric Polarization. *J. Am. Chem. Soc.* **144**, 20342-20350 (2022).
- Dai D. J., *et al.* Strain Adjustment Realizes the Photocatalytic Overall Water Splitting on Tetragonal Zircon BiVO₄. *Adv. Sci.* 9, 2105299 (2022).
- Wang L., Kong Y. H., Fang Y. X., Cai P. R., Lin W., Wang X. C. A Ga Doped NiTiO₃ Photocatalyst for Overall Water Splitting under Visible Light Illumination. *Adv. Funct. Mater.* 32, 2208101 (2022).
- 9. Li H. H., *et al.* One-Step Excitation Overall Water Splitting over a Modified Mg-Doped BaTaO₂N Photocatalyst. *ACS Catal.* **12**, 10179-10185 (2022).
- 10. Xiao J. D., *et al.* Enhanced Overall Water Splitting by a Zirconium-Doped TaON-Based Photocatalyst. *Angew. Chem. Int. Ed.* **61**, e202116573 (2022).