


computational perspectives. 

As 10x Visium is the predominant platform in the market, it is essential to demonstrate the method's compatibility with this
data. Moreover, does the method align with the availability of various deconvolution (https://doi.org/10.1038/s41467-023-
40458-9, https://doi.org/10.1038/s41587-022-01273-7 ) and super-resolution (https://doi.org/10.1038/s41587-021-00935-2,
10.1016/j.cels.2023.03.008) methods? 

The dataset for demonstration is limited to only three platforms, which is relatively small compared to the wide array of
spatial platforms currently available. To achieve a wider scope for an interdisciplinary journal like Nat Comm, additional
spatially resolved techniques, such as MIBI-TOF, nanostring-SMI, and MERSCOPE, etc., should be included in the analysis.

The manuscript primarily focuses on highly organised tissues. It is vital to demonstrate how the method can be applied to
tissues with less organisation, such as tumours and other complex diseases, to assess its general applicability. 

Comparing colocalisation summaries between different treatment/condition/perturbation scenarios holds greater significance
than evaluating a single tissue in isolation. The manuscript should provide further elaboration on how the method can be
adjusted to derive statistical power in these comparative scenarios. 

The definition of "cell type" significantly influences the method's output (e.g., inaccurate cell type identifications and
granularity determination, etc.). The method can benefit from considering: (1) the cell type continuum in the gene expression
space; (2) cases where cell typing is not perfectly accurate. This issue becomes particularly pronounced in cases such as
Figure 3b, where the cell type boundary in the feature space is unclear. 

The simulation is overly simplified and can be improved by designing multiple simulation studies, considering (1) a
continuous cell state along the gene expression space, (2) mixed cell types in space, (3) inaccurate cell type identification,
(4) noise in gene expression (Gaussian, Poisson), and (5) uneven spatial distributions. 

We found the case study on Slide-seq data in Figure 2 unreliable. Slide-seq (V1/V2) is known to capture parts of multiple or
partial cells for each spot, leading to unrealistic cell type and spatial localisation. It appears that the proposed method does
not consider this. 

Furthermore, for the Slide-seq case, it is valuable to see the proposed method's output align with known biology. However,
for a method paper, there should be a quantitative comparison between the proposed method and others. 

In Figure S2d-f, it is unclear why CRAWDAD is superior to Squidpy and Ripley based on the figure. The author should
clearly define what the golden standard ground truth is for each dataset to determine which method is better. Similar issues
arises in Figure S2g-I and Figure S2j-l. Please establish a more solid and comprehensive benchmarking analysis in the
manuscript. 

A comparison of running time and memory usage against other related tools is necessary. 

I am not sure if this be necessary element for a Nat Comm paper. Unique biological insights brought by the proposed
method are lacking. The author should demonstrate how, by using CRAWDAD, individuals can identify previously unknown
biological discoveries that cannot be identified by similar tools (such as Squidpy). 

Minor: 
Consider splitting complex sentences, such as Line 44-48, into multiple sentences for improved clarity. 

Without substantial improvement, I believe this work seems to be immature for Nature Communications in terms of technical
novelty, simulation design, rigor of benchmarking, and biological insights, particularly when compared with other Nature
Communications papers on similar topics. 

Version 1: 

Reviewer comments: 

Reviewer #1 

(Remarks to the Author) 
The authors have carefully addressed my critiques. I have no additional comments. 



(Remarks on code availability) 

Reviewer #2 

(Remarks to the Author) 
I commend the significant efforts made to address all my previous comments. Now I support the publication of this work and
look forward to the new biological insights that this tool will bring. 

(Remarks on code availability) 
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We sincerely thank the editor and the reviewers for their insightful and constructive feedback in 
helping us improve this manuscript. We have now revised the manuscript to address all the points 
raised by the reviewers, organized herein as a point-by-point response. Throughout this point-by-
point response, reviewer comments are shown in blue, with our responses in green, and changes 
to the manuscript in black. 

************************************************************* 

Reviewer #1

We thank the reviewer for their helpful feedback. To thoroughly address these points, we have 
opted to rewrite the manuscript as a full Article instead of a Brief Communication. We hope the 
longer length format will clarify these points for readers.  

Major Comments 
1. I have only one major comment: a so-what question. CRAWDAD provides a powerful 

approach to estimate the scale of co-fi][fct[ncih. Tb[nzm h_rn: mj_]c`c][ffs, qb[n ][h

researchers do with this information in the next step? What types of subsequent analysis can 
this information be used? 

We thank the reviewer for the great question. Beyond estimating the scale of cell-type co-
localization, we have now added additional analyses to demonstrate how CRAWDAD can be used 
to compare such cell-type co-localization trends across tissues in different conditions. Such 
information can give insight into inter- and intra-individual variation linked to donor and tissue-
specific features. 

Briefly, we used CRAWDAD to compare nine MERFISH mouse brain samples and show that 
samples from the same brain location have more similar cell-type spatial relationships than those 
from different regions. We have added these results to the revised manuscript, provided below for 
nb_ l_pc_q_lzm ]ihp_hc_h]_:

Lines 246-275: 
Beyond characterizing cell-type spatial relationships within a single sample, such multi-scale 
characterization enabled by CRAWDAD can also be used to compare cell-type spatial 
relationships across samples spanning different conditions, such as health and disease, 
development, or replicates. To demonstrate this functionality, we applied CRAWDAD to nine 
mouse brain samples assayed by MERFISH comprised of three replicates from three distinct 
Bregma locations7 with cell-type annotations obtained previously using unified clustering18 (Fig 
4a). We applied CRAWDAD to evaluate 734,693 annotated cells across all datasets representing 
14 cell-types using a neighborhood size of 50µm across length scales ranging from 100µm to 
1000µm (Methods). To compare multi-scale cell-type spatial relationships across samples, we 
calculated the signed area under the curve (AUC) for each Z-score trend for each cell-type pair. 
We then performed dimensionality reduction with principal component analysis (PCA) on all 
signed AUC values to find that cell-type spatial relationships of replicates from the same Bregma 
location are highly similar, as they are positioned closer together in PC space (Fig 4b). We likewise 
overall observed a smaller variance in the signed AUC values within replicates from the same 



Bregma location compared to across locations (Fig 4c). These results suggests that samples from 
the same Bregma location have cell-type spatial relationships that are more similar than those from 
different Bregma locations, as expected. Importantly, this similarity in cell-type spatial 
relationships is robust to tissue rotation and small local diffeomorphisms, as some of the brain 
tissue sections profiled are rotated with small tissue distortions compared to others. To investigate 
specific highly variable cell-type spatial relationships further, we visualized the spatial-
relationship trends for the cell-type pair with the highest signed AUC variance across locations: 
GABAergic Estrogen-Receptive Neurons as reference and Excitatory Neurons as neighbor (Fig 
4d). Despite its comparatively higher signed AUC variance across locations, samples from the 
same Bregma location still generally exhibited the same depletion trend whereas samples across 
Bregma locations varied (Fig 4d). Visual inspection of GABAergic Estrogen-Receptive Neurons 
and Excitatory Neurons also suggested high consistency in terms of spatial relationships within 
replicates from the same Bregma location compared to across locations (Fig 4e). As such, cell-
type spatial relationship trends quantified by CRAWDAD can be used to compare across samples 
to confirm that cell-type spatial relationships in the mouse brain are generally highly consistent 
within replicates from the same Bregma location compared to across locations. 



Figure 4. CRAWDAD enables comparison of spatial relationships across different tissue sections 
of the mouse brain assayed by MERFISH. a.  Spatial visualization of annotated cell types in each 
m[gjf_. P][f_ \[lm ]ill_mjih^ ni 1000�g. \. Scmo[fct[ncih i` _[]h sample in the principal 
component space with the first two principal components calculated using the standardized AUC 



of each multi-scale cell-type spatial relationship trend. c. Variability of multi-scale cell-type spatial 
relationship trends calculated as the variance of the AUC values across replicates (top) and 
locations (bottom). d. The multi-scale cell-type spatial relationship trend plot of GABAergic 
Estrogen-Receptive (ER) Neurons as reference and Excitatory Neurons as neighbor for samples of 
replicates from the same location (top) and different locations (bottom). e. Spatial visualization of 
the GABAergic ER Neurons and Excitatory Neurons in replicates from the same location (left) 
and different locations (right). 

We have also described these datasets in the methods section: 

Lines 589-597: 
Analysis of the mouse brains 
We obtained the nine MERFISH mouse brain datasets from the Vizgen Data Release V1.0. May 
20217 with cell types previously annotated through unified clustering18. We filtered the original 
data by removing cells with less than 3 gene counts and merging sub-cell types. The resulting 
number of cells and cell-type annotations by sample is provided below: 

Location Replicate Number of Cells Number of Cell Types Tissue Size 

1 

1 78329 13 9036.87x 6326.88 

2 88884 13 8060.09x 9936.43 

3 84635 14 8504.56x 8249.1 

2 

1 83546 14 8883.69x 7113.93 

2 84171 14 8867.34x 9316.67 

3 85957 14 9147.76x 6980.63 

3 

1 70844 14 7058.34x 7829.3 

2 83461 14 8952.54x 6747.24 

3 74866 14 8952.54x 6747.24 

For CRAWDAD, a set of shuffled null distributions were created at length scales of 100 to a 1000 
by intervals of 100 microns for 3 permutations. A neighbor distance of 50 microns was used to 
evaluate every pairwise combination of cell-types at each length scale. 

Lines 636-645: 
Comparing across different samples 
To compare different samples, we opted to use the area under the curve (AUC) of the Z-score trend 
to represent each relationship instead of the scale of when the relationship reaches significance as 



not all of them do. We represented each sample by the AUC values of each cell-type pair, creating 
an AUC high-dimensional space. By applying principal component analysis to this space, we used 
the first two components to visualize the samples. In this case, instances that are similar in the 
high-dimensional space should also be similar in the low-dimensional one. Additionally, we 
investigated the variance of AUC across samples by plotting the variance for each cell-type pair 
in a dot plot. Lastly, we visualized the relationship trends for the cell-type pair with highest AUC 
variance across conditions. 

Additionally, we used the same approach to compare the different human spleen samples. We 
observed that most spatial cell-type relationships are highly consistent (low variability) across all 
samples. However, some spatial cell-type relationships were patient-specific, while others will 
vary across patients and samples. We have added these results to the revised manuscript, provided 
below for the l_pc_q_lzm ]ihp_hc_h]_: 

Lines 298-313: 
To determine whether such cell-type spatial colocalization relationships are consistent across 
tissue sections and individuals, we further repeated these analyses with 837,952 cells from five 
additional spleen samples both within and across individuals. To ensure all datasets were annotated 
in a uniform manner, we applied batch-correction24 and used a linear discriminant analysis model 
to transfer cell-type annotations to these new datasets (Methods, Supp Fig 5). We then applied 
CRAWDAD to identify similar cell-type spatial relationships corresponding to the WP and RP 
compartments both within and across individuals (Fig 5d, Supp Fig 6a). Further analyzing the 
p[lc[h]_ i` nb_ l_f[ncihmbcj nl_h^zm ?RA p[fo_m (Dca 5_), q_ noticed that most cell-type spatial 
relationship trends were highly consistent across patients and samples, reflecting the ordered 
patterning of the functional tissue regions (Fig 5e-f, Supp Fig 7a). Select cell-type spatial 
relationship trends had patient-specific relationships, exhibiting consistent trends within replicates 
from the same patient but varying across patients, suggestive of potential patient-specific variation 
(Fig 5g, Supp Fig 7b). Other cell-type spatial relationship trends varied even within replicates, 
suggestive of potential tissue sample-specific patterns (Fig 5h, Supp Fig 7c). In general, we 
anticipate assessing these variations in cell spatial relationships can give insight into inter- and 
intra-individual variation linked to donor and tissue-specific features. 





Figure 5. CRAWDAD characterize cell-type spatial relationships in the human spleen assayed by 
CODEX. a. Heatmap of marker protein expression for annotated cell types. b. UMAP reduced-
dimensional visualization of annotated cell-types. c. Spatial visualization of annotated cell-types 
ch ih_ l_jl_m_hn[ncp_ ncmmo_ m_]ncih. P][f_ \[lm ]ill_mjih^ ni 250�g. ^. Pogg[ls pcmo[fct[ncih i`

the multi-scale cell-type spatial relationship analysis for tissue sections PKHL and XXCD from 
patient HBM966.VNKN.965. Cell types consistently colocalized in the white and red bulk are 
highlighted with small and large squares respectively. e. Variability of multi-scale cell-type spatial 
relationship trends calculated as the variance of the AUC values across samples. The multi-scale 
cell-type spatial relationship trend plots are shown for select cell-type pairs exhibiting f. low 
variability across different samples, g. high variability across patients but low variability within 
replicates, and h. high variability across samples including within patients. i. Subset of CD4+ 
Memory T cells near Follicle B cells. The number of CD4+ Memory T cells (n) and the proportion 
of subsets (left) and spatial visualization of subsets (right) in tissue sections PKHL and XXCD 
from patient HBM966.VNKN.965. j. Proportion of CD4+ Memory T cells near Follicle B cells 
over all CD4+ Memory T cells in each sample. 

Finally, we have also extended the discussion to include this and further elaborate on what 
researchers may be able to do with this information in the next step both in terms of subsequent 
analyses as well as potential experiments. In particular, q_ _gjb[mct_ nb[n AO?TB?Bzm mj[nc[f

subsetting enables additional spatial differential analysis between cells from the same type based 
on their enrichment or depletion around other cell types. We have provided relevant excerpts to 
nb_ ^cm]ommcih \_fiq `il nb_ l_pc_q_lzm ]ihp_hc_h]_:

Lines 400-411: 
Overall, when used appropriately, such cell-type spatial relationship analysis enabled by tools 
like CRAWDAD will provide another quantitative metric to facilitate the identification, 
characterization, and comparison of structural differences in tissues across axes of interest such 
as health and disease or development. Combined with the improvement in cell segmentation, we 
anticipate that future applications of spatial subsetting analysis such as that achieved with 
CRAWDAD can enable spatially-informed differential analysis to characterize subtle changes in 
cell state for cells of the same type colocalized within different microenvironment. Likewise, 
combined with other tools for identifying spatial niches or domains33w35, we anticipate such cell-
type spatial relationships may be characterized in a niche or domain-specific manner. Ultimately, 
we anticipate the analysis of SRO data with CRAWDAD can enable a more detailed quantitative 
characterization of cell-type spatial organization to contribute to our understanding of how 
spatial context and tissue architecture vary across health, disease, and development. 

Minor Comments 
1. The summary of relationship plot is not exactly symmetric, could the authors explain the reason? 

The reviewer is correct that the relationship dot plot is not symmetric. Briefly, there are two 
possible reasons for this:  

� One possibility is due to an imbalance in the cell type locations. In this case, cells from one 
type are close to some cells of another type but not to all of them. As an example, in the 



cerebellum, Supp Fig 4 a-d shows this phenomenon in the relationship of UBCs and 
granule cells w UBCs are always close to granule cells but there are also some granule cells 
not close to UBCs. 

� The second possibility is caused by an imbalance in the cell type density. One cell type can 
have cells largely concentrated in one region, with a few dispersed elsewhere. In this case, 
the dispersed cells will contribute to the creation of the neighborhood that will consider the 
cells around them. However, due to their small number, they will not significantly 
contribute to the proportions as a neighbor cell type. In the embryo, Supp Fig 4 e-h shows 
this relationship between presomitic mesoderm and spinal cord cells w presomitic 
mesoderm cells are largely concentrated outside of the spinal cord cellsz h_cab\ilbii^, \on

a few presomitic mesoderm cells are present inside it.

We have added an explanation of this asymmetry to the results section with a supplementary figure, 
jlipc^_^ \_fiq `il nb_ l_pc_q_lzm ]ihp_hc_h]_:

Lines: 223-243 
In general, we note that the cell-type spatial relationships identified in CRAWDAD are not always 
symmetric. Asymmetric results may be caused by two scenarios: location imbalance and density 
imbalance. In location imbalance, cells of the neighboring cell-type may be close to only some 
cells of the reference cell-type, but not all. For example, the neighborhood of UBCs is enriched 
with granule cells (Supp Fig 4a, c). However, UBCs are rare and present in only a small proportion 
i` nb_ al[hof_ ]_ffmz h_cab\ilbii^ [h^ nb_l_`il_ ^i_m hin l_jl_m_hn [ mcahc`c][hn l_f[ncihmbcj (Pojj

Fig 4b, d). In density imbalance, cells from one type are highly concentrated in one region, with a 
few dispersed across other parts of the tissue. Therefore, the sparse cells will contribute to the 
creation of the neighborhood as the reference cell type but will not significantly contribute to the 
proportions as the neighbor cell type, due to their small number. For example, a large part of the 
jl_migcnc] g_mi^_lgzm h_cab\ilbii^ cm ]l_[n_^ \s cnm mj[lm_ ]_ffm, qbc]b _h][jmof[n_ mjch[f ]il^

cells, creating a relationship of enrichment (Supp Fig 4e, g). On the other hand, most of the 
presomitic mesoderm cells are outsi^_ nb_ mjch[f ]il^zm h_cab\ilbii^ ]l_[ncha [ l_f[ncihmbcj i`

depletion (Supp Fig 4f, h). Such asymmetric cell-type spatial relationships may reflect non-
exclusive cell-type interactions. For example, immune cells may infiltrate a focal tumor such that 
the neighborhood of tumor cells will be enriched with immune cells, but the neighborhood of 
immune cells might not be enriched by tumor cells given their widespread spatial distribution 
throughout the body, consistent with a non-exclusive cell-type spatial relationship at a whole-body 
spatial extent17. Therefore, CRAWDAD can quantitatively capture such asymmetric cell-type 
spatial relationships and effectively delineate cell-type spatial relationships across multiple length 
scales for diverse tissues and SRO technologies. 



Supplementary Figure 4. Sample asymmetric cell-type spatial relationships. Spatial visualization 
of cells in the cerebellum with the neighborhood of UBCs (a) and Granule cells (b) outlined. 
AO?TB?Bzm gofnc-scale spatial relationship trend plot for UBCs and Granule cells with UBCs 
as the reference cell-type and Granule cells as the neighboring cell-type (c) and vice versa (d). 
Spatial visualization of cells in the embryo with the neighborhood of presomitic mesoderm cells 



(e) and spinal cord cells (f) outline^. AO?TB?Bzm gofnc-scale spatial relationship trend plot for 
presomitic mesoderm cells and spinal cord cells with presomitic mesoderm cells as the reference 
cell-type and spinal cord cells as the neighboring cell-type (g) and vice versa (h). Scale bars 
corl_mjih^ ni 250�g.

2. The spatial griding for creating the null distribution plays an essential role in the analysis. Could 
the authors explain more regarding the splitting: how exactly are the grids split and do the squares 
overlap with each other? The grids are squares, which is a rather natural choice. But does the shape 
of the grid also affect the power? Along the line, does the shape of spatial pattern affect the test 
power? 

We thank the reviewer for the opportunity to clarify this point. In summary, we create the grids by 
dividing the tissue into side-by-side non-overlapping squares with sides of the scale size. In 
addition, we allow the apply to use different permutations to accommodate for spatial patterns that 
might benefit from a perfect alignment with the grids. 

We have now added a clarification of this to the methods, jlipc^_^ \_fiq `il nb_ l_pc_q_lzm

convenience: 

Lines 423-438:  
Creating null distributions at different length scales 
To generate empirical null distributions against which observed cell-type spatial relationships can 
be compared to evaluate for statistical significance, CRAWDAD employs a grid-based cell-type 
label shuffling strategy. Given a tissue containing cells represented by x-y spatial coordinates with 
cell-type annotations, we partition the tissue into non-overlapping side-by-side tiles. By default, 
tiles are squares of area r^2, where r is the size of the spatial length scale of analysis. Then for all 
cells that reside within the same square, cell-type labels are shuffled to create a null distribution 
for the given r. These shuffled null distributions are created for multiple rs to achieve a set of 
empirical null distribution at different length scales. We further create multiple permutations at 
each length scale by applying different random seeds and a grid-offsetting approach to mitigate 
the influence of spatial patterns that would benefit specific grid divisions. Specifically, the offsets 
are calculated by creating a sequence from 0 to r, in equally spaced intervals of r divided by the 
number of permutations. In each of the permutations, a different offset of the sequence will be 
applied. In addition to square tiles, CRAWDAD allows the creation of side-by-side non-
overlapping hexagon tiles. In this case, the size of the scale is represented by length of the sides of 
the hexagon (Supp Fig 9a). 

We agree with the reviewer that square grids are a natural choice. However, we acknowledge that, 
particularly given more circular tissue structures, hexagonal grids may also be a reasonable option. 
We have therefore updated CRAWDAD to allow users to choose hexagonal grids as an alternative. 
To determine the potential impact of the shape of the grid, we evaluated the spatial 
enrichments/depletions Z-scores across resolutions and cell-type pairs in our simulated data with 
either square or hexagonal grids. We find highly correlated z-scores across resolutions, suggesting 
that the shape of the grid does not substantially impact results. We have now included these results 
in discussion with a supplementary figure, jlipc^_^ \_fiq `il nb_ l_pc_q_lzm ]ihp_hc_h]_:



Lines 377-384: 
Second, to create empirical null backgrounds of cell-type spatial relationships, CRAWDAD 
shuffles cell-type labels within non-overlapping tiles to create different null backgrounds. 
Although square tiles are used by default, hexagonal tiles are also available. To evaluate the 
robustness of trends given these different grid shapes, we created hexagonal tiles in our simulated 
dataset and repeated analysis (Supp Fig 9a). Comparing the Z-scores obtained at each scale on the 
different tiles, we noted a high correlation (R = 0.99) across all evaluated scales (Supp Fig 9b), 
suggesting the shape of the tiles is likely not a key factor in identifying spatial relationships, though 
both are available as options. 

Supplementary Figure 9. a. Visualization of the shuffled labels using the square and hexagonal 
grid tiles on simulated dataset for finer and coarser scales. b. Consistency of Z-scores and scales 
for the different grid tile shapes. The x-axis represents the Z-score obtained using the square grid 
tiles and the y-axis represents the Z-score obtained using the hexagon grid tiles. The color 
saturation represents the scale in which the value was obtained. The red line represents the 
correlation of the values. 

3. How did authors evaluate type-I error? 

We thank the reviewer for bringing up this important question. To perform a quantitative 
evaluation of the methods, we created ten simulated datasets with self-enrichment patterns using 
a simulation approach previously described [Viladomat et al, Biometrica 2014]. Briefly, we used 
a Matern autocorrelation function to create two independent gaussian random fields. We binarize 
the gaussian random field to create two spatially separated cell-types. Due to the autocorrelation, 
each cell-type should be colocalized with itself and separated from the other cell type originated 
in the same gaussian field. Likewise, given the underlying independent gaussian random fields, 
cell-type pairs across the two independent instantiations should exhibit no spatial relationship. We 
repeated this process to generate ten datasets.  



Qb_h, q_ _p[fo[n_^ nb_ [\cfcns i` AO?TB?B, Ocjf_szm I [h^ Squidpy in distinguishing 
enrichment and depletion between cell types. As Ocjf_szm I [h^ Pkoc^jszm ]i-occurrence methods 
do not present a statistical threshold to detect significant relationships, to perform a fair comparison 
between our method and the others, we determined the cell-type relationships based on a relative 
comparison of the Z-score trends. The neighbor cell type which Z-score trend had the highest area 
under the curve (AUC) value the was considered enriched around the reference cell type, while 
the one with the lowest AUC value was considered depleted. Since there are only two true 
relationships for each cell type in our simulated datasets, this strategy is able to detect them even 
though it does not rely on a statistical threshold. As such, we considered detecting the relationship 
(enrichment or depletion) as a positive result and not detecting it as a negative result and calculated 
the number of false positives for each tool. Based on this simulation framework, we obtained a 
nlo_ jimcncp_ l[n_ i` 0.95 `il AO?TB?B, 0.86 `il Pkoc^jszm ]i-occurrence implementation, and 
0.8 `il Ocjf_szm I Alimm.

We have now added the results for these simulations in the revised manuscript with relevant 
_r]_ljnm jlipc^_^ \_fiq `il nb_ l_pc_q_lzm ]ihp_hc_h]_: 

Lines 140-175: 
Qi `olnb_l \_h]bg[le [h^ ]igj[l_ AO?TB?Bzm `oh]ncih[fcns, q_ mcgof[n_^ [ p[lc_ns i` POM

datasets using a previously developed simulation framework11 (Methods). Briefly, we simulated 
cells by sampling from a uniform distribution to create x-y positions. We split the cells into two 
groups, and, for each group, we associated a value to each cell using independent, autocorrelated 
Gaussian random fields (Supp Fig 2a). We binarized the values, splitting the cells into two cell-
types based on the underlying simulated value (Supp Fig 2b). In this manner, we created a 
simulated dataset with four cell types (Supp Fig 2c) where we expect each cell-type to be enriched 
with itself due our use of spatially autocorrelated simulation values. Likewise, we can expect the 
two cell-types simulated from the same Gaussian random field to be spatially mutually exclusive 
and therefore identified to be separated. Additionally, we expect the cell-types from different 
random fields to exhibit no significant spatial relationship due to the Gaussian random fields being 
independent. We repeated this process to create a total of ten random simulated datasets.  

We used these simulated datasets to benchmark and compare CRAWDAD with two other spatial 
l_f[ncihmbcj [h[fsmcm g_nbi^m nb[n [fmi ]ihmc^_l mj[nc[f f_hanb m][f_m, Ocjf_szm I Alimm12 and 
Pkoc^jszm ]i-occurrence implementation of the approach described in Tosti et al.13 Although all 
evaluated methods perform cell-type enrichment analysis across length scales, their definition of 
f_hanb m][f_m ^c``_lm. @lc_`fs, Ocjf_szm I Alimm _p[fo[n_m gofncjf_ f_hanb m][f_m \s ch]l_[mcha nb_

neighborhood size while comparing the cell-type proportion in the neighborhood to the global 
jlijilncih. Mh nb_ inb_l b[h^, Pkoc^jszm ]i-occurrence implementation evaluates multiple length 
scales by increasing the size of an annulus neighborhood and calculating the conditional 
probability of the neighbor ceff nsj_m acp_h nb_ l_`_l_h]_ ]_ff nsj_. Gh [^^cncih, [m Ocjf_szm I Alimm

[h^ Pkoc^jszm ]i-occurrence implementation do not present a threshold to determine statistical 
mcahc`c][h]_, `il ]igj[l[ncp_ joljim_m, q_ ijn_^ ni [mm_mm _[]b g_nbi^zm [\cfcns ni ^cmninguish 
between cell-type spatial enrichment and depletion. Specifically, given a reference cell type, we 
considered a method as achieving a true positive prediction if the cell type identified with the most 
enriched relationship trend was itself. Alternatively, we also considered a method as achieving a 
true positive prediction if the cell type identified with the most depleted relationship trend was the 



other cell type from the same Gaussian random field. We identified the cell-type with the most 
enriched and most depleted spatial trend using their area under the trend curve value (Methods). 
Using this approach, we evaluated all four cell types across all ten simulated datasets using all 
three methods (Supp Fig 2d). Based on this simulation framework, we obtained a true positive rate 
i` 0.95 `il AO?TB?B, 0.86 `il Pkoc^jszm ]i-i]]oll_h]_ cgjf_g_hn[ncih, [h^ 0.8 `il Ocjf_szm

K Cross. In this manner, cell-type spatial relationships identified by CRAWDAD can more 
accurately distinguish between cell-type spatial enrichment and depletion compared to other 
evaluated methods based on simulated data. 

Supplementary Figure 2. Creation of the simulated dataset. a. Two independent Gaussian random 
fields with uniformly sampled spatial positions representing 1000 cells. b. These spatial positions 
[l_ [mmcah_^ [ ]_ff nsj_ \[m_^ ih nb_ l[h^ig `c_f^zm p[fo_. ]. @inb `c_f^m [l_ ]ig\ch_^ ni a_h_l[n_

one dataset with 4 cell-types. d. Relationships trends obtained by each method using cell-type A 
as the reference cell-type. 



Additionally, wezp_ elaborated on how the simulation was created in the methods, provided below 
`il nb_ l_pc_q_lzm ]ihp_hc_h]_: 

Lines 536-545: 
Simulating SRO data using Gaussian random fields 
To create the simulated datasets with self-enrichment patterns, we followed the procedure 
previously described11. First, we simulate the position of 2000 cells by sampling from a uniform 
distribution ranging from 0 to 1 for both x and y axis. Then, we randomly split the cells in two 
groups of 1000 instances each. Using the Matern function with nugget variance of 0.1, shape 
parameter of 0.5, and smoothness parameter of 0.3, we created a covariance function to generate 
a Gaussian random field for each group. We binarize each field by assigning positive cells to one 
cell tsj_ [h^ h_a[ncp_ ]_ffm ni nb_ inb_l. Dch[ffs, q_ g_la_ \inb aliojm [h^ m][f_^ nb_ ]_ffmz

positions to 1000 microns. To generate all the ten datasets, we repeated this process using a 
different random seed for each. 

We also explain how the methods were compared in the methods, provided below for the 
l_pc_q_lzm ]ihp_hc_h]_: 

Lines 547-553: 
Comparing methods using simulated data 
To benchmark CRAWDAD without relying on a significance threshold we performed a relative 
comparison between the relationship trends. We classified a cell-type as enriched in the 
neighborhood of the reference cell type if it had the trend with the highest area under the curve 
(AUC) value in the reference cell-type trend plot. Likewise, we classified a cell type as depleted 
c` cn b[^ nb_ gimn h_a[ncp_ ?RA p[fo_. T_ `i]om_^ ih g_[molcha _[]b g_nbi^zm ][j[]cns ni

distinguish trends, not the ability to identify statistically significant results. 

4. It seems that the authors fix d (spatial distance for selecting neighbors) and change r to determine 
the scale. How to determine d in real data analysis?

We thank the reviewer for bringing up this great point. In a biological setting, we generally choose 
d based on known biological constraints. For example, the limit of diffusion of small molecules 
that cells may use to communicate and interact with each other is generally between 10 to 100�g.

As such, we may choose 10 < d < 100�g based on such known effective paracrine signaling 
distances.  

In practice, visualization is quite helpful in choosing an appropriate d. Taken to the extreme, if d 
is too small (smaller than the width of 1 cell), there would not be other cells inside the 
neighborhood, resulting in NaN Z-scores. Alternatively, if d is too large, every cell would be inside 
the neighborhood and the cell-type proportions would stay the same after shuffling, leading no 
significant relationships.  

We have updated our schematic in Figure 1 to better clarify this important distinction between d 
and length-scale, jlipc^_^ \_fiq `il nb_ l_pc_q_lzm l_`_l_h]_.



Figure 1. Motivating Cell-type Relationship Analysis Workflow Done Across Distances 
(CRAWDAD) using simulated data. a. Illustration of the cell-type spatial relationships found at 
different length scales. b. Simulated spatial omics tissue data, visualized at different scales. Each 
jichn cm [ ]_ff, ]ifil_^ \s ]_ff nsj_. P][f_ \[lm ]ill_mjih^ ni 250�g. ]. O_jl_m_hn[ncih i` nb_

creation of the neighborhood and the null background. CRAWDAD draws a circle (neighborhood 
distance as the radius) around each cell of the reference cell type and merges them into one 



neighborhood. d. CRAWDAD creates a grid of side-by-side tiles (length scale defined as the side 
length for square pixels and the distance between opposite edges for hexagonal pixels) and shuffles 
the labels inside each tile to create the null background. e. The multi-scale spatial relationship trend 
plot for reference cell-type C and neighbor cell-type B. The horizontal dotted lines represent the 
z-score significance threshold corrected for multiple testing (Z-score = ±2.96). The red bars denote 
the standard error for the z-score estimated using permutations. f. The multi-scale spatial 
relationship trend plot for reference cell-type A and neighbor cell-type B. g. Summary 
visualization all cell-type spatial relationships. The size of the dot represents the scale in which a 
neighbor cell-type first reaches a significant spatial relationship with respect to a reference cell-
type. The color of the dot is the z-score at such scale. Created in BioRender. Fan, J. (2023) 
BioRender.com/y47n964. 

In addition, we have now incorporated a function in CRAWDAD to aid the choice of d, added 
more information about the choice of d, and included a new supplementary figure to visualize its 
application: 

Lines 355-376: 
Although we have demonstrated CRAWDAD to be a potentially useful tool in identifying, 
characterizing, and comparing cell-type spatial relationships, there are several considerations 
worth noting as they may influence interpretation. First, CRAWDAD results rely on a few user-
defined parameters. In particular, it uses a fixed neighborhood distance d to determine the size of 
the neighborhood used to consider neighboring cells. In the context of geospatial analysis, such 
sensitivity of results to the neighborhood distance has been previously characterized as the 
sensitivity to kernel bandwidth29. We note that if the defined d is too small, the neighborhood will 
only contain cells from the reference cell type. In such a scenario, the total number of neighbor 
cells would be zero, leading to non-significant results. Alternatively, if d is too large, the 
neighborhood will encompass all the cells in the sample. In this case, the proportions of cell types 
within the neighborhood before and after shuffling will remain the same, leading to non-significant 
results. Generally, we recommend choosing d based on the biological constraints of the analysis. 
For example, to identify cell-type spatial relationships that may be relevant to cell-cell interactions, 
one may choose a n_cab\ilbii^ ^cmn[h]_ ^ oj ni 100 �g ni l_`f_]n nb_ fcgcnm i` ^c``omcih i`

epidermal growth factor that cells may use in paracrine signaling30. Additionally, visualizing the 
neighborhood may be used to guide the choice of d (Supp Fig 8). For example, for mouse 
]_l_\_ffog [h^ _g\lsi POM ^[n[m_nm [h[fst_^, q_ bcabfcabn biq [ h_cab\ilbii^ i` 10�g qiof^

be too small as it does not enclose a significant proportion of the cells given the density of cells in 
nb_ ncmmo_m. Mh nb_ inb_l b[h^, [ h_cab\ilbii^ i` 100�g qiof^ \_ nii f[la_ [m mig_ i` nb_ ]_ff

types would incorporate all cells of other cell types inside the neighborhood buffer. Hence, a d = 
50�g was used for these SRO datasets. In general, the neighborhood distance should be chosen 
based on guidance from data visualization as well as biological prior knowledge. 





Supplementary Figure 8. The effects of the neighborhood size. a-c. Histogram of the cell-type 
proportion of cells from the neighbor of each cell type given neighborhood sizes of 10, 50 and 100 
�g (nij). Aill_mjih^cha mj[nc[f pcmo[fct[ncih i` nb_ h_cab\ilbii^ [m [ \f[]e ionfch_ `il ]bim_h

cell type (bottom). (a) Visualization of the cerebellum proportions and spatial visualization 
Granule neighborhoods. (b) Visualization of the embryo proportions and spatial visualization of 
the Endothelium neighborhoods. (c) Visualization of the PKHL spleen proportions and spatial 
visualization of the Neutrijbcfm/Kihi]sn_m h_cab\ilbii^m. P][f_ \[lm ]ill_mjih^ ni 250�g.

5. The test score may be affected by cell numbers in a local region. How did authors adjust for this 
kind of spatial imbalance in cell density? 

T_ [jjl_]c[n_ nb_ l_pc_q_lzm ]igg_hn [h^ [al__ nb[n mj[nc[f ^_hmcns qcff [``_]n nb_ l_mofnm.

Notably, in our statistical evaluation, we consider the number of cells in each reference cell-nsj_zm

neighborhood. For some cell-types, this neighborhood may have lower cell density. However, 
because we use a permutation-based approach, this lower cell density is maintained in the 
permuted null.

6. Similarly, when cell type A has two types of neighbors: cell type B and cell type C, but the 
number of cells of type B is much larger than that of type C. The spatial colocalization pattern of 
cell type C will be diluted, how did authors adjust for this? 

T_ nb[he nb_ l_pc_q_lzm ]igg_hn [h^ []ehiqf_^a_ nb[n lare cell types can affect CRAWDAD 
results. To accurately quantify the statistical significance of cell-type spatial relationships, 
CRAWDAD relies on an accurate quantification of cell numbers for all cell-types represented in 
a tissue. As presented in the methods, the Z-score formula not only considers the proportions 
before and after shuffling, but also total number of cells inside the neighborhood. Consequently, 
rare cell types will generally have smaller Z-scores both as neighbor and as reference. As the 
reference cell-type, rare cell types may have smaller neighborhoods, which will enclose a small 
number of cells inside, contributing to a lower Z-score. As the neighboring cell-type, rare cell types 
will have fewer cells inside the neighborhood, requiring a greater difference in the proportions to 
achieve statistical significance. These results are expected as it demands greater sample sizes to 
achieve higher significance values. Normalizing by the number of cells would create bias towards 
rare cell types and imply more confidence in observations that are not truly present. We anticipate 
SRO technologies that selectively profile a subset of cells in a tissue such as Slide-tags [Russel et 
al, Nature 2024] will require additional characterization to ensure accurate results with 
CRAWDAD analysis. 

7. Does CRAWDAD work for spot level data? 

T_ [jjl_]c[n_ nb_ l_pc_q_lzm ko_mncih. ?m AO?TB?B ihfs considers spatial positions and their 
associated labels, technically, it could be applied to spot-based SRO. However, since spot-based 
SRO data may have spots with multiple cells, the results should be interpreted with care. We 
theorize that to properly apply CRAWDAD to this type multi-cellular spot data, we would need to 



know how many cells of each type are inside the spots and incorporate segmentation of the H&E 
images and cell-type deconvolution, which is outside the scope of this project. On the other hand, 
super resolution spot level methods, such as Visium HD, that collect information with subcellular 
resolution could be aggregated into cells for CRAWDAD analysis. 

We have now added a clarification of this to the discussion, jlipc^_^ \_fiq `il nb_ l_pc_q_lzm

convenience: 

Lines 394-399:
Finally, although we have elected to demonstrate CRAWDAD analysis on datasets from select 
SRO technologies, in general, CRAWDAD is amenable to any SRO technology for which spatial 
positions and associated labels can be derived. However, we caution that for some multi-cellular 
spot-based SRO technologies, additional deconvolution or processing may be needed to ensure 
appropriate interpretation of results. In general, we recommend applying CRAWDAD to datasets 
with single cell resolution to facilitate interpretation.

8. It would nice to see a comparison with the following approach: first using spatial grid to group 
cells and then calculating the correlation between cell proportion of two cell types in different 
distance scale (keep only grids that contain two cell types). 

We thank the reviewer for this interesting suggestion. A similar approach has been explored 
previously in [Viladomat et al, Biometrica 2014] and was shown to lead to false positives due to 
the high-levels of spatial-autocorrelation in the features of interest (such as cell-type proportions). 
We can demonstrate this using our own data with the simulation described previously in Comment 
#3 and again assess type-I-error. As suggested, we created a spatial grid to group cells and then 
][f]of[n_^ nb_ N_[lmihzm ]ill_f[ncih \_nq__h nb_ ]_ff-type proportions of pairs of cell-types across 
all grids. We interpreted significant N_[lmihzm correlations as significant co-localizations. Based 
on this approach, consistent with Viladomat et al, we were able to confirm that this approach gives 
a highly inflated type-I-error rate of approximately 43% consistent with the previously published 
findings.  

9. For Figure 1c, why authors use large circle for 350 mum and smaller circles for 550 mum? 

The reviewer is correct that we use a larger circle to correspond to a smaller scale and a smaller 
circle to correspond to a coarser scale. This is because we generally care more about co-localization 
relationships that reach significance at a smaller scale. Therefore, we use a bigger size to draw 
attention to the aspect of the data that we care more about. We have clarified this in the revised 
methods, jlipc^_^ \_fiq `il nb_ l_pc_q_lzm convenience: 

Lines 490-498:
To visualize the spatial relationship results for a particular cell-type pair across different spatial 
extents, CRAWDAD uses trend plots where the x-axis represents the length scale and the y-axis 
represents the Z-score such that the trend represents how the spatial relationship of the cell-type 
pair changes as the spatial length scales increases. To summarize relationship trends across all 



evaluated cell-type pairs, CRAWDAD identifies the scale and value of the first Z-score of the 
trend that is above the significance threshold and plot them as a dot for each reference and neighbor 
pair and uses a dot plot where the Z-score value is represented by the color hue and the scale is 
represented by the size of the dot. Smaller scales are represented as larger dots to visually 
emphasize the potential importance of these small-scale colocalization relationships. 

Reviewer #2 

We thank the reviewer for their helpful feedback. To thoroughly address these points, we have 
opted to rewrite the manuscript as a full Article instead of a Brief Communication. We hope the 
longer length format will clarify these points for readers.  

Major Comments 
1. When it is first introduced in the manuscript, please provide a clear definition of "length 

scale" from both biological and computational perspectives. 

We thank the reviewer for the comment and further explained the meaning of length scale. Length 
scale refers to the spatial extent in which we should analyze the tissue for the relationship to be 
statistically significant. In a biological perspective, it means the physical size of the tissue region 
we should look at to determine if the relationship between two cell types exists. In a computational 
perspective, it refers to the size of the squared grids that are used to create the null background. 

We have now further clarified this in the introduction as well as updated Figure 1 to provide a 
pcmo[fct_ _rjf[h[ncih, jlipc^_^ \_fiq `il nb_ l_pc_q_lzm ]ihp_hc_h]_: 

Lines 49-58: 
Cell-type spatial relationships can occur at different length scales, with some cell types 
colocalizing to engage in paracrine signaling and other close-range interactions at a fine, 
micrometer length scale3; others colocalizing into distinct environments and functional tissue units 
at a more meso-scale1; while others colocalizing into anatomical structures at a more macro-scale 
(Fig 1a-b). Whether we consider two cell-types as being colocalized is often a function of the 
spatial extent that we analyze (Fig 1b). For example, two cell types uniquely present in distinct 
layers of the brain may be considered separated if we consider only the spatial extent of the brain. 
However, we may consider these cell types to be colocalized in the same organ if we consider the 
spatial extent of the whole body. Thus, we sought to consider the effects of spatial extent by 
investigating cell-type spatial relationships across different length scales. 

We also added more information in the results section: 

Lines 74-78: 
Next, CRAWDAD creates a series of non-overlapping grids of tiles (square or hexagonal) where 
the side-length of each tile corresponds to a user-defined spatial length scale. Then, it shuffles the 
cell-type annotations for all cells within each tile to create an empirical null background at the 
specified spatial length scale (Fig 1d) 



Figure 1. Motivating Cell-type Relationship Analysis Workflow Done Across Distances 
(CRAWDAD) using simulated data. a. Illustration of the cell-type spatial relationships found at 
different length scales. b. Simulated spatial omics tissue data, visualized at different scales. Each 
point is a cell, colored by cell type. Scale bars correspon^ ni 250�g. ]. O_jl_m_hn[ncih i` nb_

creation of the neighborhood and the null background. CRAWDAD draws a circle (neighborhood 
distance as the radius) around each cell of the reference cell type and merges them into one 



neighborhood. d. CRAWDAD creates a grid of side-by-side tiles (length scale defined as the side 
length for square pixels and the distance between opposite edges for hexagonal pixels) and shuffles 
the labels inside each tile to create the null background. e. The multi-scale spatial relationship trend 
plot for reference cell-type C and neighbor cell-type B. The horizontal dotted lines represent the 
z-score significance threshold corrected for multiple testing (Z-score = ±2.96). The red bars denote 
the standard error for the z-score estimated using permutations. f. The multi-scale spatial 
relationship trend plot for reference cell-type A and neighbor cell-type B. g. Summary 
visualization all cell-type spatial relationships. The size of the dot represents the scale in which a 
neighbor cell-type first reaches a significant spatial relationship with respect to a reference cell-
type. The color of the dot is the z-score at such scale. Created in BioRender. Fan, J. (2023) 
BioRender.com/y47n964. 

2. As 10x Visium is the predominant platform in the market, it is essential to demonstrate 
the method's compatibility with this data. Moreover, does the method align with the 
availability of various deconvolution (https://doi.org/10.1038/s41467-023-40458-9, 
https://doi.org/10.1038/s41587-022-01273-7 ) and super-resolution 
(https://doi.org/10.1038/s41587-021-00935-2, 10.1016/j.cels.2023.03.008) methods? 

T_ [jjl_]c[n_ nb_ l_pc_q_lzm ko_mncih. ?m AO?TB?B ihfs ]ihmc^_lm mj[nc[f jimcncihm [h^ nb_cl

associated labels, technically, it could be applied to spot-based SRO. However, since spot-based 
SRO data may have spots with multiple cells, the results should be interpreted with care. We 
theorize that to properly apply CRAWDAD to this type of multi-cellular spot data, we would need 
to know how many cells of each type are inside the spots and incorporate segmentation of the H&E 
images and cell-type deconvolution, which is outside the scope of this project. On the other hand, 
super resolution spot level methods, such as Visium HD, that collect information with subcellular 
resolution could be aggregated into cells for CRAWDAD analysis. 

We have now added a clarification of this to the discussion: 

Lines 394-399:
Finally, although we have elected to demonstrate CRAWDAD analysis on datasets from select 
SRO technologies, in general, CRAWDAD is amenable to any SRO technology for which spatial 
positions and associated labels can be derived. However, we caution that for some multi-cellular 
spot-based SRO technologies, additional deconvolution or processing may be needed to ensure 
appropriate interpretation of results. In general, we recommend applying CRAWDAD to datasets 
with single cell resolution to facilitate interpretation.

3. The dataset for demonstration is limited to only three platforms, which is relatively small 
compared to the wide array of spatial platforms currently available. To achieve a wider 
scope for an interdisciplinary journal like Nat Comm, additional spatially resolved 
techniques, such as MIBI-TOF, nanostring-SMI, and MERSCOPE, etc., should be 
included in the analysis. 



We thank the reviewer for this suggestion. We have now applied CRAWDAD to additional 
datasets from a wide array of spatial platforms including Xenium and MERSCOPE as suggested. 
In general, we emphasize that our approach is amenable to technologies for which we can obtain 
cell positions and cell-type labels for all cells in the tissue (as opposed to technologies that only 
characterize the spatial organization of one or two cell-types). We have added a clarification of 
this to the discussion. We hope this will help users understand how they may use CRAWDAD 
even as new spatial platforms become available: 

Lines 217-222: 
Qi `olnb_l _r_gjfc`s AO?TB?Bzm applicability to potentially less well-organized tissues such 
as cancer tissues, we applied it to a breast cancer dataset assayed by Xenium6 (Fig 3a). We applied 
CRAWDAD to evaluate 162,107 annotated cells representing 19 cell-types using a neighborhood 
size of 100µm across length scales ranging from 100µm to 1000µm (Fig 3, Methods). CRAWDAD 
identified three groups of cell types based on their cell-type spatial relationships, corresponding to 
histologically distinct structures (Fig 3b-e). 



Fig 3. CRAWDAD characterizes cell type spatial relationships in breast cancer assayed by 
Xenium. a. Spatial visualization of annotated cell types (left) with corresponding histology image 
(right). b. Summary visualization all cell-type spatial relationships in the breast cancer data. Select 
groups of consistently colocalized cell-types is outlined by a unique color. c. Spatial visualization 
of the consistently colocalized cell-types. Plots for each tissue structure are outlined by the 
corresponding color in (b). Scale barm ]ill_mjih^ ni 250�g.

Lines 246-275: 
Beyond characterizing cell-type spatial relationships within a single sample, such multi-scale 
characterization enabled by CRAWDAD can also be used to compare cell-type spatial 
relationships across samples spanning different conditions, such as health and disease, 
development, or replicates. To demonstrate this functionality, we applied CRAWDAD to nine 
mouse brain samples assayed by MERFISH comprised of three replicates from three distinct 
Bregma locations7 with cell-type annotations obtained previously using unified clustering18 (Fig 
4a). We applied CRAWDAD to evaluate 734,693 annotated cells across all datasets representing 



14 cell-types using a neighborhood size of 50µm across length scales ranging from 100µm to 
1000µm (Methods). To compare multi-scale cell-type spatial relationships across samples, we 
calculated the signed area under the curve (AUC) for each Z-score trend for each cell-type pair. 
We then performed dimensionality reduction with principal component analysis (PCA) on all 
signed AUC values to find that cell-type spatial relationships of replicates from the same Bregma 
location are highly similar, as they are positioned closer together in PC space (Fig 4b). We likewise 
overall observed a smaller variance in the signed AUC values within replicates from the same 
Bregma location compared to across locations (Fig 4c). These results suggests that samples from 
the same Bregma location have cell-type spatial relationships that are more similar than those from 
different Bregma locations, as expected. Importantly, this similarity in cell-type spatial 
relationships is robust to tissue rotation and small local diffeomorphisms, as some of the brain 
tissue sections profiled are rotated with small tissue distortions compared to others. To investigate 
specific highly variable cell-type spatial relationships further, we visualized the spatial-
relationship trends for the cell-type pair with the highest signed AUC variance across locations: 
GABAergic Estrogen-Receptive Neurons as reference and Excitatory Neurons as neighbor (Fig 
4d). Despite its comparatively higher signed AUC variance across locations, samples from the 
same Bregma location still generally exhibited the same depletion trend whereas samples across 
Bregma locations varied (Fig 4d). Visual inspection of GABAergic Estrogen-Receptive Neurons 
and Excitatory Neurons also suggested high consistency in terms of spatial relationships within 
replicates from the same Bregma location compared to across locations (Fig 4e). As such, cell-
type spatial relationship trends quantified by CRAWDAD can be used to compare across samples 
to confirm that cell-type spatial relationships in the mouse brain are generally highly consistent 
within replicates from the same Bregma location compared to across locations. 



Figure 4. CRAWDAD enables comparison of spatial relationships across different tissue sections 
of the mouse brain assayed by MERFISH. a.  Spatial visualization of annotated cell types in each 
m[gjf_. P][f_ \[lm ]ill_mjih^ ni 1000�g. \. Scmo[fct[ncih i` _[]h sample in the principal 
component space with the first two principal components calculated using the standardized AUC 



of each multi-scale cell-type spatial relationship trend. c. Variability of multi-scale cell-type spatial 
relationship trends calculated as the variance of the AUC values across replicates (top) and 
locations (bottom). d. The multi-scale cell-type spatial relationship trend plot of GABAergic 
Estrogen-Receptive (ER) Neurons as reference and Excitatory Neurons as neighbor for samples of 
replicates from the same location (top) and different locations (bottom). e. Spatial visualization of 
the GABAergic ER Neurons and Excitatory Neurons in replicates from the same location (left) 
and different locations (right). 

We also described these datasets in the methods section: 

Lines 578-586: 
Analysis of the human breast cancer 
We collected the 7520.95µm-by-5471.17µm Xenium breast cancer dataset (in situ sample 1, 
replicate 1) and with annotated cell types from the original publication6. Supervised cell type 
annotations were used. We filtered the original data by removing cells with less than 3 gene counts, 
obtaining 162107 cells with x-y coordinates and 20 cell-type annotations. 

For CRAWDAD, a set of shuffled null distributions were created at length scales of 100 to a 1000 
by intervals of 100 microns for 3 permutations. A neighbor distance of 50 microns was used to 
evaluate every pairwise combination of cell-types at each length scale. To identify significant 
trends with multiple testing correction, we used a Z-score threshold of 3.84. 

Lines 588-597: 
Analysis of the mouse brains 
We obtained the nine MERFISH mouse brain datasets from the Vizgen Data Release V1.0. May 
20217 with cell types previously annotated through unified clustering18. We filtered the original 
data by removing cells with less than 3 gene counts and merging sub-cell types. The resulting 
number of cells and cell-type annotations by sample is provided below: 

Location Replicate Number of Cells Number of Cell Types Tissue Size 

1 

1 78329 13 9036.87x 6326.88 

2 88884 13 8060.09x 9936.43 

3 84635 14 8504.56x 8249.1 

2 

1 83546 14 8883.69x 7113.93 

2 84171 14 8867.34x 9316.67 

3 85957 14 9147.76x 6980.63 

3 1 70844 14 7058.34x 7829.3 



2 83461 14 8952.54x 6747.24 

3 74866 14 8952.54x 6747.24 

For CRAWDAD, a set of shuffled null distributions were created at length scales of 100 to a 1000 
by intervals of 100 microns for 3 permutations. A neighbor distance of 50 microns was used to 
evaluate every pairwise combination of cell-types at each length scale. 

Lines 636-645: 
Comparing across different samples 
To compare different samples, we opted to use the area under the curve (AUC) of the Z-score trend 
to represent each relationship instead of the scale of when the relationship reaches significance as 
not all of them do. We represented each sample by the AUC values of each cell-type pair, creating 
an AUC high-dimensional space. By applying principal component analysis to this space, we used 
the first two components to visualize the samples. In this case, instances that are similar in the 
high-dimensional space should also be similar in the low-dimensional one. Additionally, we 
investigated the variance of AUC across samples by plotting the variance for each cell-type pair 
in a dot plot. Lastly, we visualized the relationship trends for the cell-type pair with highest AUC 
variance across conditions.

4. The manuscript primarily focuses on highly organised tissues. It is vital to demonstrate 
how the method can be applied to tissues with less organisation, such as tumours and other 
complex diseases, to assess its general applicability. 

We thank the reviewer for this suggestion. We have now applied CRAWDAD to Xenium spatial 
transcriptomics data from breast tumor tissue section to demonstrate its general applicability, even 
to potentially less organized tissues such as tumors, as suggested. The response to Comment 3 
details this application. 

5. Comparing colocalisation summaries between different treatment/condition/perturbation 
scenarios holds greater significance than evaluating a single tissue in isolation. The 
manuscript should provide further elaboration on how the method can be adjusted to derive 
statistical power in these comparative scenarios. 

We agree with the reviewer and acknowledge the importance of comparing different conditions. 
To further develop this topic, wezp_ hiq included new analyses of nine different mouse brain 
samples, composed of three replicates for three distinct locations. We also developed functions to 
summarize the relationships found in the multiple samples by calculating their signed AUC of the 
cell-type spatial relationship trends. In our analysis, we found that samples from the same location 
of the brain share the most relationships with each other when comparing with sample from other 
locations, as expected. Response to Comment 3 details this application.  



Further, to specifically compare across patients to identify potential patient-specific differences, 
we compared multiple human spleen samples. Given that these samples all come from non-
diseased tissues as part of the Human BioMolecular Atlas Progarm, we observed that most spatial 
cell-type relationships presented high consistency with low variability across all samples. 
However, we were able to identify some patient-specific trends, though the sample sizes evaluated 
here limit our ability to make general significant conclusions. Wezp_ added information about this 
analysis in the results and discussion section, provided \_fiq `il nb_ l_pc_q_lzm ]ihp_hc_h]_: 

Lines 298-313: 
To determine whether such cell-type spatial colocalization relationships are consistent across 
tissue sections and individuals, we further repeated these analyses with 837,952 cells from five 
additional spleen samples both within and across individuals. To ensure all datasets were annotated 
in a uniform manner, we applied batch-correction24 and used a linear discriminant analysis model 
to transfer cell-type annotations to these new datasets (Methods, Supp Fig 5). We then applied 
CRAWDAD to identify similar cell-type spatial relationships corresponding to the WP and RP 
compartments both within and across individuals (Fig 5d, Supp Fig 6a). Further analyzing the 
p[lc[h]_ i` nb_ l_f[ncihmbcj nl_h^zm ?RA p[fo_s (Fig 5e), we noticed that most cell-type spatial 
relationship trends were highly consistent across patients and samples, reflecting the ordered 
patterning of the functional tissue regions (Fig 5e-f, Supp Fig 7a). Select cell-type spatial 
relationship trends had patient-specific relationships, exhibiting consistent trends within replicates 
from the same patient but varying across patients, suggestive of potential patient-specific variation 
(Fig 5g, Supp Fig 7b). Other cell-type spatial relationship trends varied even within replicates, 
suggestive of potential tissue sample-specific patterns (Fig 5h, Supp Fig 7c). In general, we 
anticipate assessing these variations in cell spatial relationships can give insight into inter- and 
intra-individual variation linked to donor and tissue-specific features. 

Lines 340-346: 
Additionally, we emphasize that such quantified cell-type spatial relationships trends can be used 
to compare across SRO datasets and demonstrate its application in identifying consistent spatial 
trends within mouse brain replicates that are distinct across Bregma locations. We further apply 
CRAWDAD to characterize cell-type spatial relationships to HuBMAP SRO datasets of the human 
spleen to identify generally consistent spatial trends reflective of the organization of the red and 
white pulp but also reproducible patient-specific variation, though the sample sizes evaluated here 
limit our ability to make general significant conclusions. 





Figure 5. CRAWDAD characterize cell-type spatial relationships in the human spleen assayed by 
CODEX. a. Heatmap of marker protein expression for annotated cell types. b. UMAP reduced-
dimensional visualization of annotated cell-types. c. Spatial visualization of annotated cell-types 
in one representative tissue sectcih. P][f_ \[lm ]ill_mjih^ ni 250�g. ^. Pogg[ls pcmo[fct[ncih i`

the multi-scale cell-type spatial relationship analysis for tissue sections PKHL and XXCD from 
patient HBM966.VNKN.965. Cell types consistently colocalized in the white and red bulk are 
highlighted with small and large squares respectively. e. Variability of multi-scale cell-type spatial 
relationship trends calculated as the variance of the AUC values across samples. The multi-scale 
cell-type spatial relationship trend plots are shown for select cell-type pairs exhibiting f. low 
variability across different samples, g. high variability across patients but low variability within 
replicates, and h. high variability across samples including within patients. i. Subset of CD4+ 
Memory T cells near Follicle B cells. The number of CD4+ Memory T cells (n) and the proportion 
of subsets (left) and spatial visualization of subsets (right) in tissue sections PKHL and XXCD 
from patient HBM966.VNKN.965. j. Proportion of CD4+ Memory T cells near Follicle B cells 
over all CD4+ Memory T cells in each sample. 

Again, due to the limited sample size, we cannot draw statistically significant conclusions 
regarding patient-specific trends here. Additional validation would be needed to corroborate 
findings that is beyond the scope of the current manuscript. However, as new spatial omics 
technologies emerge, we anticipate that comparisons of a much larger number of samples will 
enable such significant conclusions. We anticipate the need of additional meta-analysis statistical 
niifm `il om_lm ni ^_lcp_ mn[ncmnc][f jiq_l `lig gofncjf_ ch`ilg[ncih ^_lcp_^ `lig AO?TB?Bzm

analysis. We have added to the discussion to emphasize provide further elaboration on how 
CRAWDAD can be applied in comparative scenarios as suggested by the reviewer: 

Line 342-354: 
We further apply CRAWDAD to characterize cell-type spatial relationships to HuBMAP SRO 
datasets of the human spleen to identify generally consistent spatial trends reflective of the 
organization of the red and white pulp but also reproducible patient-specific variation, though the 
sample sizes evaluated here limit our ability to make general significant conclusions. As atlasing 
efforts such as HuBMAP19, the Human Cell Atlas28, and others continue to profile the spatial 
organization of cells within tissues, we anticipate identifying significant spatial variation across 
axes of interest will become more feasible in the future, though additional scalable, comparative 
meta-analysis tools to integrate statistics from many samples across multiple studies in a manner 
that is robust to batch effects may be then needed. We expect that the incorporation of quantitative 
spatial trend metrics such as those provided by CRAWDAD will be useful in such meta-analyses 
to ultimately facilitate in the identification and characterization of cell-type colocalization 
relationships in complex tissues to advance our understanding of the relationship between cell-
type organization and tissue function. 

6. The definition of "cell type" significantly influences the method's output (e.g., inaccurate 
cell type identifications and granularity determination, etc.). The method can benefit from 
considering: (1) the cell type continuum in the gene expression space; (2) cases where cell 
typing is not perfectly accurate. This issue becomes particularly pronounced in cases such 
as Figure 3b, where the cell type boundary in the feature space is unclear. 



We thank the reviewer for this important comment. Indeed, our method relies on accurate cell-
type annotations. Besides, the granularity of those cell-type annotations will highly depend on the 
biological question of interest. Therefore, we recommend the user to apply methods currently 
available to better cluster the cells and to clean up cell type annotations, such as Clusteval 
[Taskesen, 2020] and NbClust [Charrad et al, Stat Softw 2014].  

T_ b[p_ [^^_^ [ ^cm]ommcih ih nb_m_ fcgcn[ncihm, jlipc^_^ \_fiq `il nb_ l_pc_q_lzm ]ihp_hc_h]_:

Line 387-393: 
Third, since CRAWDAD takes annotated cell-type as input, the quality of the results directly 
depends on the quality of the annotation. Misannotated cell types could shift the proportions of 
other cell types inside spatial neighborhoods to alter the spatial relationships identified by 
CRAWDAD. Thus, cell-type annotations may be evaluated for robustness and cleaned if needed 
prior to CRAWDAD analysis31,32. Or alternatively, identified cell-type spatial relationships may 
be re-evaluated given multiple potential cell-type annotations to ensure the robustness of identified 
trends. 

7. The simulation is overly simplified and can be improved by designing multiple simulation 
studies, considering (1) a continuous cell state along the gene expression space, (2) mixed 
cell types in space, (3) inaccurate cell type identification, (4) noise in gene expression 
(Gaussian, Poisson), and (5) uneven spatial distributions. 

We thank the reviewer for this suggestion. To provide additional, more complex simulated data 
with mixtures of cell types in space and uneven spatial distributions, we created ten simulated 
datasets with self-enrichment patterns using a simulation approach previously described 
[Viladomat et al, Biometrica 2014]. Briefly, we used a Matern autocorrelation function to create 
two independent gaussian random fields. We binarize the gaussian random field to create two 
spatially separated cell-types. Due to the autocorrelation, each cell-type should be colocalized with 
itself and separated from the other cell type originated in the same gaussian field. Likewise, given 
the underlying independent gaussian random fields, cell-type pairs across the two independent 
instantiations should exhibit no spatial relationship. We repeated this process to generate ten 
datasets. In this manner, these new simulated datasets have distinct uneven spatial distributions 
and unique mixtures of cell types in space, presenting a substantial improvement to our previous 
simplified simulation.  

We were able to use these simulated datasets to benchmark CRAWDAD against other tools. We 
_p[fo[n_^ nb_ [\cfcns i` AO?TB?B, Ocjf_szm I [h^ Pkoc^js ch ^cmnchaocmbcha _hlc]bg_hn [h^

depletion between cell types. For this problem, we considered detecting the relationship 
(enrichment or depletion) as a positive result and not detecting it as a negative result. In this 
manner, we calculated the number of false positives for each tool. As nb_ Ocjf_szm I [h^ Pkoc^jszm

co-occurrence methods do not present a statistical threshold to detect significant relationships, to 
perform a fair comparison between our method and the others, we determined the cell-type 
relationships based on a relative comparison of the Z-score trends. The neighbor cell type which 
Z-score trend had the highest area under the curve (AUC) value the was considered enriched 



around the reference cell type, while the one with the lowest AUC value was considered depleted. 
Since there are only two true relationships for each cell type in our simulated datasets, this strategy 
is able to detect them even though it does not rely on a statistical threshold.  

Wezp_ [^^_^ the results for these simulations using this more complex simulation approach to the 
l_pcm_^ g[hom]lcjn, qcnb l_f_p[hn _r]_ljnm jlipc^_^ \_fiq `il nb_ l_pc_q_lzm ]ihp_hc_h]_: 

Lines 140-175: 
Qi `olnb_l \_h]bg[le [h^ ]igj[l_ AO?TB?Bzm `oh]ncih[fcns, q_ mcgof[n_^ [ p[lc_ns i` POM

datasets using a previously developed simulation framework11 (Methods). Briefly, we simulated 
cells by sampling from a uniform distribution to create x-y positions. We split the cells into two 
groups, and, for each group, we associated a value to each cell using independent, autocorrelated 
Gaussian random fields (Supp Fig 2a). We binarized the values, splitting the cells into two cell-
types based on the underlying simulated value (Supp Fig 2b). In this manner, we created a 
simulated dataset with four cell types (Supp Fig 2c) where we expect each cell-type to be enriched 
with itself due our use of spatially autocorrelated simulation values. Likewise, we can expect the 
two cell-types simulated from the same Gaussian random field to be spatially mutually exclusive 
and therefore identified to be separated. Additionally, we expect the cell-types from different 
random fields to exhibit no significant spatial relationship due to the Gaussian random fields being 
independent. We repeated this process to create a total of ten random simulated datasets.  

We used these simulated datasets to benchmark and compare CRAWDAD with two other spatial 
l_f[ncihmbcj [h[fsmcm g_nbi^m nb[n [fmi ]ihmc^_l mj[nc[f f_hanb m][f_m, Ocjf_szm I Alimm12 and 
Pkoc^jszm ]i-occurrence implementation of the approach described in Tosti et al.13 Although all 
evaluated methods perform cell-type enrichment analysis across length scales, their definition of 
f_hanb m][f_m ^c``_lm. @lc_`fs, Ocjf_szm I Alimm _p[fo[n_m gofncjf_ f_hanb m][f_m \s ch]l_[mcha nb_

neighborhood size while comparing the cell-type proportion in the neighborhood to the global 
jlijilncih. Mh nb_ inb_l b[h^, Pkoc^jszm ]i-occurrence implementation evaluates multiple length 
scales by increasing the size of an annulus neighborhood and calculating the conditional 
jli\[\cfcns i` nb_ h_cab\il ]_ff nsj_m acp_h nb_ l_`_l_h]_ ]_ff nsj_. Gh [^^cncih, [m Ocjf_szm I Alimm

[h^ Pkoc^jszm ]i-occurrence implementation do not present a threshold to determine statistical 
significance, for comparative purposes, we ijn_^ ni [mm_mm _[]b g_nbi^zm [\cfcns ni ^cmnchaocmb

between cell-type spatial enrichment and depletion. Specifically, given a reference cell type, we 
considered a method as achieving a true positive prediction if the cell type identified with the most 
enriched relationship trend was itself. Alternatively, we also considered a method as achieving a 
true positive prediction if the cell type identified with the most depleted relationship trend was the 
other cell type from the same Gaussian random field. We identified the cell-type with the most 
enriched and most depleted spatial trend using their area under the trend curve value (Methods). 
Using this approach, we evaluated all four cell types across all ten simulated datasets using all 
three methods (Supp Fig 2d). Based on this simulation framework, we obtained a true positive rate 
i` 0.95 `il AO?TB?B, 0.86 `il Pkoc^jszm ]i-i]]oll_h]_ cgjf_g_hn[ncih, [h^ 0.8 `il Ocjf_szm

K Cross. In this manner, cell-type spatial relationships identified by CRAWDAD can more 
accurately distinguish between cell-type spatial enrichment and depletion compared to other 
evaluated methods based on simulated data. 



Supplementary Figure 2. Creation of the simulated dataset. a. Two independent Gaussian random 
fields with uniformly sampled spatial positions representing 1000 cells. b. These spatial positions 
[l_ [mmcah_^ [ ]_ff nsj_ \[m_^ ih nb_ l[h^ig `c_f^zm p[fo_. ]. @inb `c_f^m [l_ ]ig\ch_^ ni a_h_l[n_

one dataset with 4 cell-types. d. Relationships trends obtained by each method using cell-type A 
as the reference cell-type. 

Additionally, we explained how the simulation was created in the methods: 

Lines 536-545: 
Simulating SRO data using Gaussian random fields 
To create the simulated datasets with self-enrichment patterns, we followed the procedure 
previously described11. First, we simulate the position of 2000 cells by sampling from a uniform 
distribution ranging from 0 to 1 for both x and y axis. Then, we randomly split the cells in two 
groups of 1000 instances each. Using the Matern function with nugget variance of 0.1, shape 
parameter of 0.5, and smoothness parameter of 0.3, we created a covariance function to generate 
a Gaussian random field for each group. We binarize each field by assigning positive cells to one 
cell type [h^ h_a[ncp_ ]_ffm ni nb_ inb_l. Dch[ffs, q_ g_la_ \inb aliojm [h^ m][f_^ nb_ ]_ffmz

positions to 1000 microns. To generate all the ten datasets, we repeated this process using a 
different random seed for each. 



We also explained how the methods were compared in the methods: 

Lines 547-553: 
Comparing methods using simulated data 
To benchmark CRAWDAD without relying on a significance threshold we performed a relative 
comparison between the relationship trends. We classified a cell-type as enriched in the 
neighborhood of the reference cell type if it had the trend with the highest area under the curve 
(AUC) value in the reference cell-type trend plot. Likewise, we classified a cell type as depleted 
if it had the most negative AUC value. We focused on measolcha _[]b g_nbi^zm ][j[]cns ni

distinguish trends, not the ability to identify statistically significant results. 

8. We found the case study on Slide-seq data in Figure 2 unreliable. Slide-seq (V1/V2) is 
known to capture parts of multiple or partial cells for each spot, leading to unrealistic cell 
type and spatial localisation. It appears that the proposed method does not consider this. 

The reviewer is correct that Slide-seq does not provide true single-cell resolution. As such, the 
results will need to be interpreted with this in consideration. We have now further clarified this in 
the results section: 

Lines 182-188: 
Because Slide-m_kS2 om_m 10�g \[l]i^_^ \_[^m ni jli`cf_ nb_ a_h_ _rjl_mmcih qcnbch ncmmo_m ch [

spatially resolved manner, spatially resolved measurements may not necessarily correspond to 
single cells. However, given that a typical animal cell is also roughly 10-20�g ch mct_15, we 
assumed here that the observed spatial position and cell-type assignments associated with each 
bead generally reflects the spatial position and cell-type annotations of the cell within the 
immediate vicinity of that bead. As such, we treat Slide-seqV2 beads with non-doublet RCTD 
annotations as effectively single cells for CRAWDAD analysis. 

We have further added to the discussion a note on potential applications to spot-based Visium 
data, which has an even coarser resolution. Again, while CRAWDAD can be run on data from 
these technologies, it will be important to interpret the results in the context of the data. We 
provide the excerpt of the discussion in response to Comment #7. 

9. Furthermore, for the Slide-seq case, it is valuable to see the proposed method's output align 
with known biology. However, for a method paper, there should be a quantitative 
comparison between the proposed method and others. 

We thank the reviewer for the suggestion and added a quantitative comparison to the paper, as 
described in response to Comment #7. Additionally, we updated Fig 2 to highlight the trends 
calculated for each method given a specific cell type pair and extended the results section: 

Lines 196-207: 
?^^cncih[ffs, q_ [jjfc_^ Ocjf_szm I Alimm (Dca 2^) [h^ Pkoc^jszm ]i-occurrence implementation 
(Fig 2e) to the same dataset. We find that these other methods do not as clearly distinguish these 



expected cell-type spatial relationships. Specifically, when analyzing cell-type spatial 
relationships with Purkinje neurons as the reference cell-nsj_, q_ hin_ nb[n AO?TB?Bzm V-score 
trend for Bergmann glia increases as the length scale increases, crossing the upper significance 
threshold and defining an enrichment of Bergmann glia among the neighborhood of Purkinje 
h_olihm [m _rj_]n_^ (Dca 2]). Jce_qcm_, AO?TB?Bzm V-score trend for oligodendrocytes 
decreases as the length scale increases, crossing the lower significance threshold and defining a 
depletion of oligodendrocytes among the neighborhood of Purkinje neurons as expected (Fig 2c). 
These two cell-type trends are further distinct from other cell-types in the cerebellum. This clear 
separation between these two cell-type trends is not observed in the other evaluated spatial analysis 
methods (Fig 2d-e). 

Lines 214-216: 
Again, such differences between cell-type spatial relationships are difficult to discern using on 
other evaluated spatial analysis methods (Fig 2i-j). 



Figure 2. CRAWDAD characterizes cell-type spatial relationships in the mouse cerebellum 
assayed by Slide-seqV2 and the mouse embryo assayed by seq-FISH. a. Spatial visualization of 
cell type annotations from RCTD in the cerebellum. Scale bars correspond to 250�g. \. Pogg[ls

visualization all cell-type spatial relationships in the cerebellum data. Select cell types highlighted 
to correspond with (c-e). c-e. The multi-scale spatial relationship trend plot for Purkinje neurons 



as the reference cell type for (c) AO?TB?B, (^) Ocjf_szm I Alimm [h^ (_) Pkoc^js ]i-occurrence 
implementation of Tosti et al. with neighboring cell-types Bergmann glia and Oligodendrocytes 
highlighted in red and blue respectively. All other neighboring cell-types in grey. f. Spatial 
visuafct[ncih i` [hhin[n_^ ]_ff nsj_m ch nb_ _g\lsi ^[n[. P][f_ \[lm ]ill_mjih^ ni 250�g. a.

Summary visualization all cell-type spatial relationships in the embryo data. Select cell types 
highlighted to correspond with (h-j). h-j. The multi-scale cell-type spatial relationship trend plot 
`il Ch^inb_fcog ]_ffm [m nb_ l_`_l_h]_ ]_ff nsj_ `il (b) AO?TB?B, (c) Ocjf_szm I Alimm [h^ (d)

Squidpy co-occurrence implementation of Tosti et al. with neighboring cell-types Cardiomyocytes 
and Lateral plate mesoderm highlighted in red and blue respectively. All other neighboring cell-
types in grey. 

10. In Figure S2d-f, it is unclear why CRAWDAD is superior to Squidpy and Ripley based on 
the figure. The author should clearly define what the golden standard ground truth is for 
each dataset to determine which method is better. Similar issues arises in Figure S2g-I and 
Figure S2j-l. Please establish a more solid and comprehensive benchmarking analysis in 
the manuscript. 

We appreciate the opportunity to clarify the difference between CRAWDAD, Ocjf_szm I Alimm, 
and the spatial co-occurrence method developed by Tosti et al and implemented in Squidpy. As 
explained in response to Comment #9, CRAWDAD allows a clearer distinction between the 
colocalization and separation of two cell types in the mouse cerebellum and mouse embryo. Based 
on the new simulation framework described in response to Comment 7 as suggested by the 
reviewer, CRAWDAD also achieves a superior true positive rate (0.95 for CRAWDAD, 0.86 for 
Pkoc^jszm ]i-i]]oll_h]_ cgjf_g_hn[ncih, [h^ 0.8 `il Ocjf_szm Cross K) in terms of distinguishing 
between cell-type colocalization relationships. We believe these comparisons using both real and 
simulated spatial datasets now provide a solid and comprehensive benchmarking analysis as 
suggested by the reviewer. We have moved the comparison figures from the supplement to the 
main figure 2 as addressed in Comment #9 above to better emphasize these differences. We also 
updated the description of each tool in the methods section for further clarification: 

Lines 648-658: 
Ripley’s Cross-K Analysis
Ocjf_szm Alimm I `oh]ncih ^l[qm [ ]cl]of[l h_cab\ilbii^ [lioh^ _[]b l_`_l_h]_ ]_ff, ]iohnm nb_

number of cells of each type inside this region, and divide it by the cell-type density. This value is 
compared to the theoretical K. The multi-scale aspect of this analysis comes from varying the 
neighborhood size. Additionally, cells in the border of the tissue will consider areas that do not 
present any cell, requiring the application of border correction methods to mitigate this effect. 
We used the spatstat (version 3.0-6) package38 ni ]igjon_ ^c``_l_hn Ocjf_szm Alimm-K values for 
each pairwise combination of cell types. To compare with the theoretical K and perform border 
correction, we subtracted the theoretical K for a Poisson homogeneous processes from the isotropic 
_^a_ ]ill_]n_^ Ocjf_szm Alimm-K. For consistency in visualization, we set the maximum radius size 
to be the same as the maximum length scale evaluated in CRAWDAD. 

Lines 666-673: 
Squidpy’s Co-occurrence Probability 



Squidpy10 implements the co-occurrence probability method originally presented in Tosti et al.13 
The function works by drawing annular neighborhoods around each cell of the reference cell type. 
Then, it calculates the probability of a cell type being enriched in that region. The multi-scale 
aspect of this analysis comes from varying the neighborhood size.  

Using Squidpy (version 1.2.3) and its co_occurrence function, we calculated the co-occurrence 
probability of clusters for each cell type. For consistency in visualization, we set the maximum 
distance to be the same as the maximum length scale evaluated in CRAWDAD. 

However, we emphasize that these tools do perform different spatial quantifications. Briefly, 
Ocjf_szm I Alimm ]l_[n_m ]cl]of[l h_cab\ilbii^ i` increasing sizes around the reference cell type 
and compares the cell-type proportions calculated in each of them to the proportion in the whole 
tissue, providing only a global analysis. Of note, Ocjf_szm I g[s a_h_l[n_ [lnc`[]nm ih]_ nb_

neighborhood size considers spaces outside the tissue area. In Rev Fig 1a, we illustrate how these 
neighborhoods are created for one of the cells and how they can encompass areas outside the 
sample. Squidpy co-occurrence focuses on identifying cell types that are more probable to be 
together when investigating annulus regions around the reference cell. In Squidpyzm default co-
occurrence application, it first calculates the maximum and minimum distance between cells and 
divide their difference into regular intervals (Rev Fig 1b). Then, for each interval, it will create an 
annulus neighborhood around cells of the reference cell type, as illustrated for one cell in Rev Fig 
1c. Lastly, it will calculate probability of the neighbor cell type conditional on the cell-type over 
the expected probability for that neighborhood size. In contrast, CRAWDAD identifies spatial 
relationships at multiple scales by shuffling cells using grids of different sizes. We hope this helps 
clarify the difference between these methods. As such, we anticipate which tool cm xmoj_lcily g[s

vary depending on the intended task. As we have demonstrated, CRAWDAD offers improved 
performance in terms of distinguishing between spatially colocalized and separated cell-types.  



Reviewer Figure 1. O_jl_m_hn[ncih i` nb_ qile`fiq i` Ocjf_szm I Alimm [h^ nb_ Pkoc^jszm

implementation of the Toti et all co-occurrence function. a. Circular neighborhoods drawn around 
nqi i` nb_ ]_ffm i` nb_ l_`_l_h]_ ]_ff nsj_ ch nb_ Ocjf_szm I Alimm [h[fsmcm. b. Calculation of the 
gchcgog [h^ g[rcgog ^cmn[h]_m \_nq__h ]_ffm ni ]l_[n_ nb_ h_cab\ilbii^ chn_lp[fm ch Pkoc^jszm

co-occurrence implementation. c. Two annular neighborhoods draw around one cell of the 
l_`_l_h]_ ]_ff nsj_ ch Pkoc^jszm ]i-occurrence implementation. 

11. A comparison of running time and memory usage against other related tools is necessary. 

We thank the reviewer for the suggestion. However, in CRAWDAD, runtime and memory usage 
are greatly affected by user defined parameters such as the number of permutations, the number 
of scales, number of cores, etc. Therefore, as runtime and memory usage of our tool will largely 
depend on these user choices, we do not believe a comparison will provide a useful reference for 
readers.  

Instead, we have updated our CRAWDAD software website to include runtime estimates for 
example analyses using real spatial omics datasets such as those included in this manuscript (ex. 
https://jef.works/CRAWDAD/2_seqfish). We hope this will provide users with a more realistic 
sense of possible runtimes. A screenshot of the CRAWDAD software website is provided below 
`il nb_ l_pc_q_lzm l_`_l_h]_:





12. I am not sure if this be necessary element for a Nat Comm paper. Unique biological insights 
brought by the proposed method are lacking. The author should demonstrate how, by using 
CRAWDAD, individuals can identify previously unknown biological discoveries that 
cannot be identified by similar tools (such as Squidpy). 

As explained in the response to Comment #10, CRAWDAD essentially performs a different 
[h[fsmcm nb[h Ocjf_szm I Alimm [h^ nb_ ]i-occurrence method. Therefore, the results presented by 
CRAWDAD are unique and not obtained with the other tools. As we have now demonstrated in 
Fig 2, certain cell-type spatial relationships are only discernable through CRAWDAD analysis. 
Likewise, unlike other methods, CRAWDAD can be used to compare spatial relationships across 
different samples and identify relationships that change across conditions, as seen in new Figs 4-
5. 

In general, the application of CRAWDAD to identify unique biological insights that are previously 
unknown is currently an active area of research in the lab. We emphasize that these insights will 
demand additional validation through orthogonal experimental follow-up prior to dissemination. 
We will look forward to sharing these results as a part of future publications with the broader 
scientific community.  

Minor Comments 
1. Consider splitting complex sentences, such as Line 44-48, into multiple sentences for 

improved clarity. 

We thank the reviewer for the suggestion and have revised complex sentences 
accordingly.  


