Supplementary Information

A Modular Approach to Catalytic Stereoselective Synthesis of Chiral 1,2-Diols and 1,3-Diols

Sheng Xu¹[†], Yuanyuan Ping¹[†], Yinyan Su¹[†], Haoyun Guo¹, Aowei Luo¹, Wangqing Kong^{1,2*}

¹The Institute for Advanced Studies and Hongyi Honor College, Wuhan University, 299 Bayi Road, Wuhan 430072, China

²Wuhan Institute of Photochemistry and Technology, 7 North Bingang Road, Wuhan 430083, China

†These authors contributed equally: Sheng Xu, Yuanyuan Ping and Yinyan Su

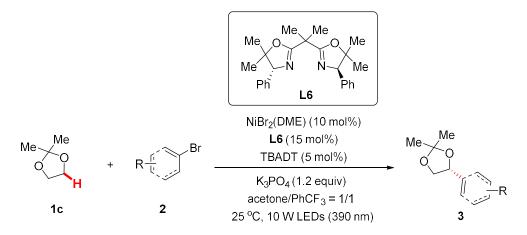
Email: wqkong@whu.edu.cn

Contents

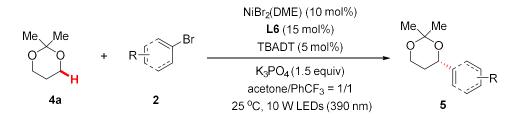
1.	General Information	S3
2.	General Procedures	S4
3.	Optimization of Reaction Conditions	S10
4.	Characterization Data of Products	S12
5.	Mechanistic Studies	S127
6.	Synthetic Applications	S142
7.	X-Ray Crystallographic Data	S154
8.	NMR Spectra	S182
9.	Supplementary References	S301

1. General Information

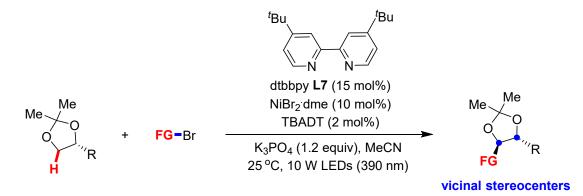
¹H NMR, ¹³C NMR and ¹⁹F NMR data were recorded with Bruker ADVANCE III (600 MHz) or JNM-ECZ400S/L1 (400 MHz) spectrometers. Chemical shifts are given in ppm. The spectra are calibrated to the residual ¹H and ¹³C signals of the solvents. Multiplicities are abbreviated as follows: singlet (s), doublet (d), triplet (t), quartet (q), doublet-doublet (dd), quintet (quint), septet (sept), multiplet (m), and broad (b). ¹⁹F NMR spectra were recorded using CFCl₃ as internal standard. Gas chromatography were determined with a SHIMADZU Nexis GC 2030 gas chromatography instrument with a FID detector. High-resolution mass spectra (HRMS) were recorded on Thermo Fisher Orbitrap Elite mass spectrometer. The photoreaction instrument (WPTEC-1020LC) was purchased from WATTCAS, China.


Unless otherwise stated, starting materials were purchased from commercial suppliers (Stream, Leyan.com, Energy Chemical and so on). All reactions dealing with air- or moisture-sensitive compounds were performed in the argon-filled glove box or by standard Schlenk techniques in oven-dried reaction vessels under argon atmosphere. Solvents were purchased in HPLC quality, degassed by purging thoroughly with argon and dried over activated molecular sieves of appropriate size. More sensitive compounds were stored in a desiccator or in a glove-box if required. Reactions were monitored by thin layer chromatography (TLC) using glass 0.25 mm silica gel plates. Compounds were visualized by UV-light at 254 nm and by dipping the plates in an aqueous potassium permanganate solution followed by heating. Flash column chromatography was performed over silica gel (200-400 mesh).

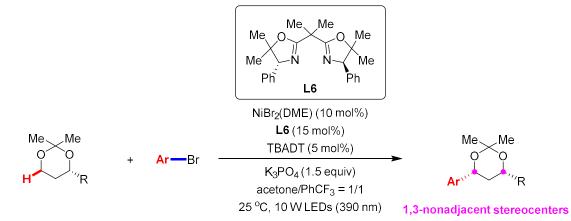
Supplementary Figure 1. The photoreaction instrument: WATTCAS WP-TEC-1020LC


2. General Procedures

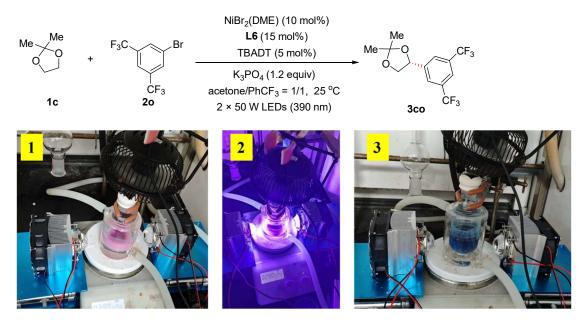
2.1 General procedure for the synthesis of 1-aryl-1,2-diols


An oven-dried 10-mL vial equipped with a PTFE-coated stir bar was charged with NiBr₂(dme) (6.1 mg, 0.02 mmol, 10 mol%), **L6** (11.7 mg, 0.03 mmol, 15 mol%) and anhydrous acetone (0.5 mL). This reaction mixture was stirred at room temperature for 1 hour in an argon-filled glovebox. TBADT (33.5 mg, 0.02 mmol, 5 mol%), aryl or alkenyl bromide **2** (0.2 mmol, 1 equiv), 2,2-dimethyl-1,3-dioxolane **1c** (102.1 mg, 1.0 mmol, 5 equiv), K_3PO_4 (50.9 mg, 0.24 mmol, 1.2 equiv) and PhCF₃ (0.5 mL) was then added. The reaction mixture was stirred and irradiated with a 10 W 390 nm LED lamp at 25 °C for 60 hours. The resulting mixture was removed from light, diluted with ethyl acetate and passed through a pad of celite. The celite plug was further washed with ethyl acetate. The combined solvent was then evaporated under reduced pressure, and the residue was purified by column chromatography on silica gel, eluting with hexane/EA (20/1~1/1) to afford the corresponding products **3**.

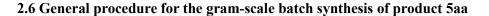
2.2 General procedure for the synthesis of 1-aryl-1,3-diols


An oven-dried 10-mL vial equipped with a PTFE-coated stir bar was charged with NiBr₂(dme) (6.1 mg, 0.02 mmol, 10 mol%), **L6** (11.7 mg, 0.03 mmol, 15 mol%) and anhydrous acetone (0.5 mL). This reaction mixture was stirred at room temperature for 1 hour in an argon-filled glovebox. TBADT (33.5 mg, 0.02 mmol, 5 mol%), aryl or alkenyl bromide **2** (0.2 mmol, 1 equiv), 2,2-dimethyl-1,3-dioxane **4a** (232.0 mg, 2.0 mmol, 10 equiv), K₃PO₄ (63.6 mg, 0.3 mmol, 1.5 equiv) and PhCF₃ (0.5 mL) was then added. The reaction mixture was stirred and irradiated with a 10 W 390 nm LED lamp at 25 °C for 60 hours. The resulting mixture was removed from light, diluted with ethyl acetate and passed through a pad of celite. The celite plug was further washed with ethyl acetate. The combined solvent was then evaporated under reduced pressure, and the residue was purified by column chromatography on silica gel, eluting with hexane/EA ($20/1 \sim 1/1$) to afford the corresponding products **5**.

2.3 General procedure for the synthesis of 1,2-syn-diols bearing vicinal stereocenters

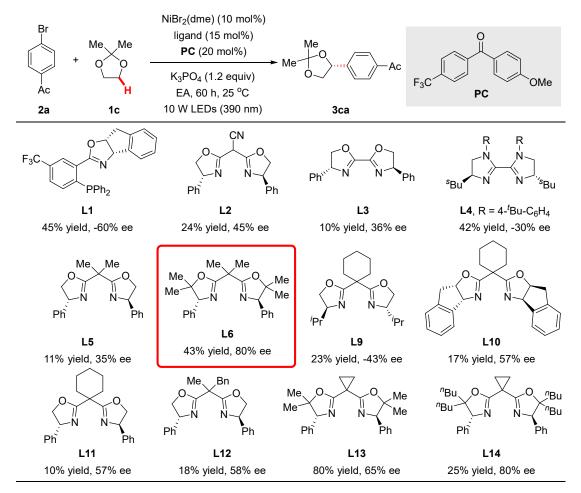

An oven-dried 10-mL vial equipped with a PTFE-coated stir bar was charged with NiBr₂(dme) (6.2 mg, 0.02 mmol, 10 mol%), dtbbpy (8.1 mg, 0.03 mmol, 15 mol%), TBADT (13.4 mg, 0.004 mmol, 2 mol%), electrophilic reagent (aryl bromide, alkenyl bromide, *gem*-difluoroalkene, or alkynyl bromide) (0.2 mmol, 1 equiv), acetonide-protected 1,2-diol (1.0 mmol, 5 equiv), K_3PO_4 (50.9 mg, 0.24 mmol, 1.2 equiv) and anhydrous MeCN (2 mL). The reaction mixture was stirred and irradiated with a 10 W 390 nm LED lamp at 25 °C for 60 hours. The resulting mixture was removed from light, diluted with ethyl acetate and passed through a pad of celite. The celite plug was further washed with ethyl acetate. The combined solvent was then evaporated under reduced pressure, and the residue was purified by column chromatography on silica gel, eluting with hexane/EA (20/1~1/1) to afford the corresponding products.

2.4 General procedure for the synthesis of 1,3-syn-diols bearing 1,3-nonadjacent stereocenters


An oven-dried 10-mL vial equipped with a PTFE-coated stir bar was charged with NiBr₂(dme) (6.2 mg, 0.02 mmol, 10 mol%), **L6** (11.7 mg, 0.03 mmol, 15 mol%), TBADT (33.5 mg, 0.02 mmol, 5 mol%), aryl bromides (0.2 mmol, 1 equiv), acetonide-protected 1,3-diol (0.6 mmol, 3 equiv), K_3PO_4 (42.4 mg, 0.2 mmol, 1.0 equiv) and anhydrous MeCN (1 mL) and anhydrous acetone (1 mL). The reaction mixture was stirred and irradiated with a 10 W 390 nm LED lamp at 25 °C for 60 hours. The resulting mixture was removed from light, diluted with ethyl acetate and passed through a pad of celite. The celite plug was further washed with ethyl acetate. The combined solvent was then evaporated under reduced pressure, and the residue was purified by column chromatography on silica gel, eluting with hexane/EA (20/1~1/1) to afford the corresponding products.

2.5 General procedure for the gram-scale batch synthesis of product 3co.

Supplementary Figure 2. Reaction process diagram


An oven-dried 100-mL vial equipped with a PTFE-coated stir bar was charged with NiBr₂(dme) (184.8 mg, 0.6 mmol, 10 mol%), **L6** (350.1 mg, 0.9 mmol, 15 mol%) and anhydrous acetone (15 mL). This reaction mixture was stirred at room temperature for 1 hour in an argon-filled glovebox. TBADT (777.6 mg, 0.3 mmol, 5 mol%), 1-bromo-3,5-bis(trifluoromethyl)benzene **20** (1.75 g, 6.0 mmol, 1 equiv), 2,2-dimethyl-1,3-dioxolane **1c** (3.06 g, 30.0 mmol, 5 equiv), K_3PO_4 (1.52 g, 7.2 mmol, 1.2 equiv) and PhCF₃ (15 mL) was then added. The reaction mixture was stirred and irradiated with a 2×50 W 390 nm LED lamp at 25 °C. The resulting mixture was removed from light, diluted with ethyl acetate and passed through a pad of celite. The celite plug was further washed with ethyl acetate. The combined solvent was then evaporated under reduced pressure, and the residue was purified by column chromatography on silica gel, eluting with hexane/EA (100/1~50/1) to afford the corresponding products **3co** (1.18 g, 63% yield, 90% ee).

An oven-dried 100-mL vial equipped with a PTFE-coated stir bar was charged with NiBr₂(dme) (307.9 mg, 1.0 mmol, 10 mol%), **L6** (583.5 mg, 1.5 mmol, 15 mol%) and anhydrous acetone (25 mL). This reaction mixture was stirred at room temperature for 1 hour in an argon-filled glovebox. TBADT (1.29 g, 0.5 mmol, 5 mol%), 1-(4-bromophenyl)ethan-1-one **2a** (1.98 g, 10.0 mmol, 1 equiv), 2,2-dimethyl-1,3-dioxane **4a** (5.81 g, 50.0 mmol, 5 equiv), K_3PO_4 (3.18 g, 15.0 mmol, 1.5 equiv) and PhCF₃ (25 mL) was then added. The reaction mixture was stirred and irradiated with a 2×50 W 390 nm LED lamp at 25 °C. The resulting mixture was removed from light, diluted with ethyl acetate and passed through a pad of celite. The celite plug was further washed with ethyl acetate. The combined solvent was then evaporated under reduced pressure, and the residue was purified by column chromatography on silica gel, eluting with hexane/EA (20/1~3/1) to afford the corresponding products **5aa** (1.49 g, 64% yield, 91% ee).

3. Optimization of Reaction Conditions

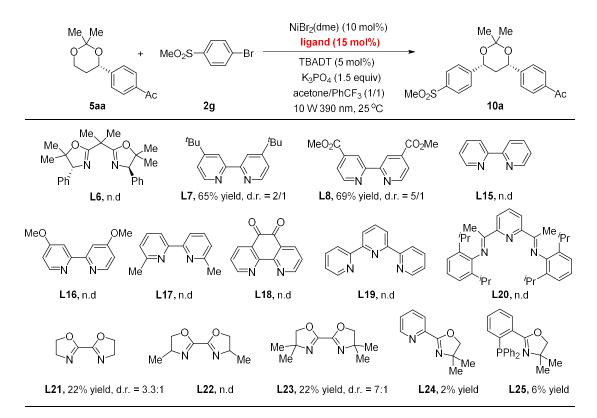


Table S1: Screening of chiral ligands

Reaction conditions: **2a** (0.20 mmol, 1 equiv), **1c** (1.0 mmol, 5 equiv), NiBr₂(dme) (10 mol%), ligand (15 mol%), **PC** (20 mol%), K₃PO₄ (1.2 equiv) in EA (1 mL) at 25 $^{\circ}$ C under irradiation of LEDs (10 W, 390 nm) for 60 h.

 Table S2: Optimization of reaction conditions for the diastereoselective C(sp³)-H

 arylation for the synthesis of 1,3-diaryl-1,3-syn-diols

Reaction conditions: **5aa** (2 mmol, 10 equiv), **2g** (0.2 mmol, 1 equiv), NiBr₂(dme) (10 mol%), ligand (15 mol%), TBADT (5 mol%), K₃PO₄ (1.5 equiv) in acetone/PhCF₃ (0.5/0.5 mL) at 25 $^{\circ}$ C under irradiation of LEDs (10 W, 390 nm) for 60 h.

4. Characterization data of products

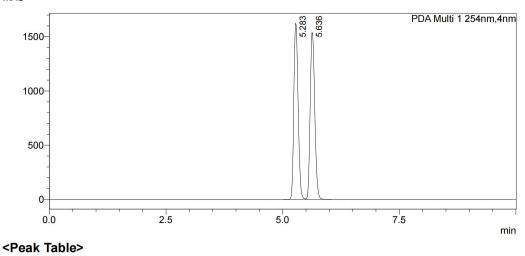
(R)-1-(4-(2,2-dimethyl-1,3-dioxolan-4-yl)phenyl)ethan-1-one (3ca)

Me Me

Chemical Formula: C₁₃H₁₆O₃ Exact Mass: 220.1099

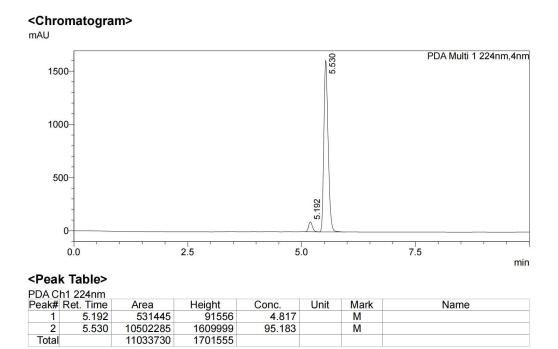
3ca was prepared according to general procedure **2.1** using NiBr₂•dme (6.6 mg, 0.02 mmol, 10 mol%), **L6** (11.7 mg, 0.03 mmol, 15 mol%), 1-(4-bromophenyl)ethan-1-one (40.0 mg, 0.20 mmol, 1 equiv), 2,2-dimethyl-1,3-dioxolane (102.1 mg, 1.0 mmol, 5 equiv), TBADT (33.5 mg, 0.02 mmol, 5 mol%), K₃PO₄ (51.2 mg, 0.24 mmol, 1.2 equiv) and anhydrous acetone/PhCF₃ (0.5 mL/0.5 mL) and was purified by silica gel column chromatography (PE/EA = 10/1) to obtain **3ca** as colorless oil (34.8 mg, 71% yield, 90% ee). $R_f = 0.4$ (PE/EA = 10/1).

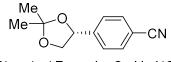
¹H NMR (600 MHz, CDCl₃) δ 8.07 – 7.89 (m, 2H), 7.63 – 7.36 (m, 2H), 5.14 (t, *J* = 7.1 Hz, 1H), 4.35 (dd, *J* = 8.2, 6.4 Hz, 1H), 3.69 (t, *J* = 8.0 Hz, 1H), 2.60 (s, 3H), 1.56 (s, 3H), 1.50 (s, 3H);


¹³C NMR (151 MHz, CDCl₃) δ 197.7, 144.8, 136.8, 128.6, 126.2, 110.2, 77.4, 71.4, 26.6, 26.5, 25.9;

The enantiomeric purity was established by HPLC analysis using a chiral column: AD-H column, 30 °C, "Hexane/^{*i*}Propanol = 80/20 as eluent, 224 nm, 1 mL/min. tR = 5.5 min (major), 5.2 min (minor).

HRMS: (APCI) calcd for C₁₃H₁₇O₃⁺[M+H]⁺ 221.1172; found 221.1168.


Optical Rotation: $[\alpha]_D^{21}$ -77.0 (c 0.2, ^{*i*}PrOH) for 90% ee.


PDA C	h1 254nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	5.283	10347060	1623451	0.000		M	
2	5.636	10516954	1539909	0.000		VM	
Total		20864014	3163360				

Supplementary Figure 4. HPLC spectrum of (R)-3ca

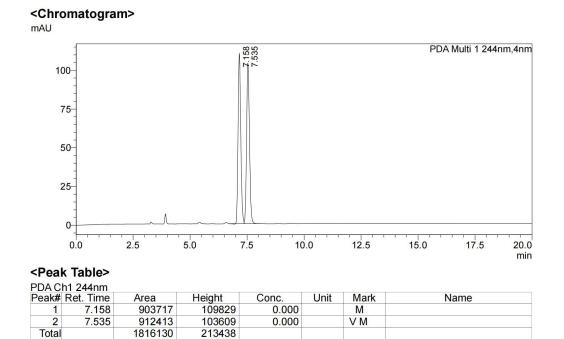
(R)-4-(2,2-dimethyl-1,3-dioxolan-4-yl)benzonitrile (3cb)

Chemical Formula: C₁₂H₁₃NO₂ Exact Mass: 203.0946

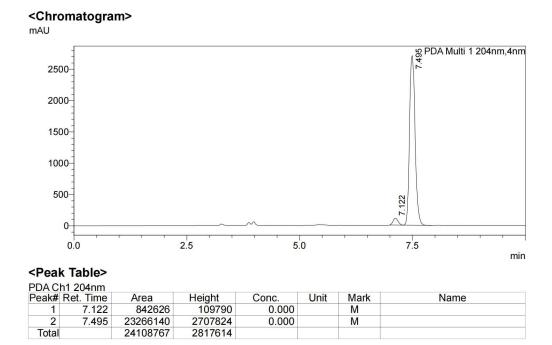
3cb was prepared according to general procedure **2.1** using NiBr₂•dme (6.6 mg, 0.02 mmol, 10 mol%), **L6** (11.7 mg, 0.03 mmol, 15 mol%), 4-bromobenzonitrile (36.4 mg, 0.20 mmol, 1 equiv), 2,2-dimethyl-1,3-dioxolane (102.1 mg, 1.0 mmol, 5 equiv), TBADT (33.5 mg, 0.02 mmol, 5 mol%), K₃PO₄ (51.2 mg, 0.24 mmol, 1.2 equiv) and anhydrous acetone/PhCF₃ (0.5 mL/0.5 mL) and was purified by silica gel column chromatography (PE/EA = 10/1) to obtain **3cb** as colorless oil (25.2 mg, 62% yield, 93% ee). $R_f = 0.5$ (PE/EA = 10/1).

The NMR data matched those reported in the literature.¹

¹H NMR (400 MHz, CDCl₃) δ 7.68 – 7.60 (m, 2H), 7.51 – 7.43 (m, 2H), 5.11 (t, J = 7.0 Hz,

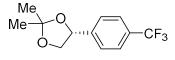

1H), 4.35 (dd, *J* = 8.3, 6.4 Hz, 1H), 3.66 (t, *J* = 7.9 Hz, 1H), 1.54 (s, 3H), 1.48 (s, 3H);

¹³C NMR (101 MHz, CDCl₃) δ 145.1, 132.5, 126.8, 118.8, 111.9, 110.5, 71.4, 26.5, 25.8;


The enantiomeric purity was established by HPLC analysis using a chiral column: AD-H column, 30 °C, "Hexane/^{*i*}Propanol = 95/5 as eluent, 204 nm, 1 mL/min. tR = 7.5 min (major), 7.1 min (minor).

HRMS: (APCI) calcd for C₁₂H₁₄NO₂⁺[M+H]⁺ 204.1019; found 204.1014.

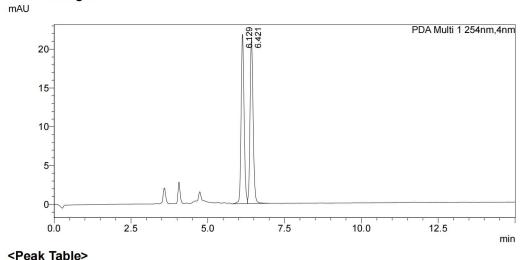
Optical Rotation: $[\alpha]_D^{21}$ -69.6 (c 0.1, ^{*i*}PrOH) for 93% ee.



Supplementary Figure 6. HPLC spectrum of (R)-3cb

(R)-2,2-dimethyl-4-(4-(trifluoromethyl)phenyl)-1,3-dioxolane (3cc)

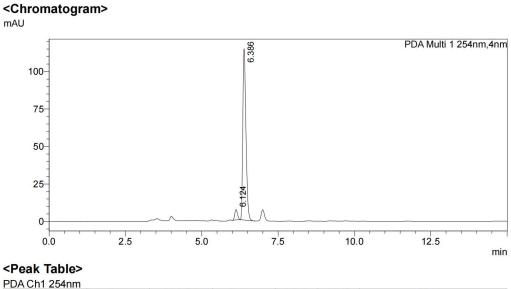
Chemical Formula: C₁₂H₁₃F₃O₂ Exact Mass: 246.0868


3cc was prepared according to general procedure **2.1** using NiBr₂•dme (6.6 mg, 0.02 mmol, 10 mol%), **L6** (11.7 mg, 0.03 mmol, 15 mol%), 1-bromo-4-(trifluoromethyl)benzene (45.0 mg, 0.20 mmol, 1 equiv), 2,2-dimethyl-1,3-dioxolane (102.1 mg, 1.0 mmol, 5 equiv), TBADT (33.5 mg, 0.02 mmol, 5 mol%), K₃PO₄ (51.2 mg, 0.24 mmol, 1.2 equiv) and anhydrous acetone/PhCF₃ (0.5 mL/0.5 mL) and was purified by silica gel column chromatography (PE/EA = 50/1) to obtain **3cb** as colorless oil (29.5 mg, 60% yield, 90% ee). $R_f = 0.5$ (PE/EA = 50/1). The NMR data matched those reported in the literature.²

¹H NMR (600 MHz, CDCl₃) δ 7.62 (d, *J* = 8.1 Hz, 2H), 7.48 (d, *J* = 8.0 Hz, 2H), 5.13 (t, *J* = 7.0 Hz, 1H), 4.36 (dd, *J* = 8.3, 6.3 Hz, 1H), 3.69 (t, *J* = 8.0 Hz, 1H), 1.56 (s, 3H), 1.50 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 143.5, 130.2 (q, *J* = 32.5 Hz), 126.3, 125.5 (q, *J* = 3.8 Hz), 124.1 (q, *J* = 272.0 Hz), 110.2, 77.2, 71.5, 26.5, 25.8;

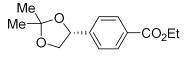
¹⁹F NMR (565 MHz, CDCl₃) δ -62.55.

The enantiomeric purity was established by HPLC analysis using a chiral column: OJ-H column, 30 °C, "Hexane/ⁱPropanol = 97/3 as eluent, 254 nm, 1 mL/min. tR = 6.4 min (major), 6.1 min (minor).


Optical Rotation: $[\alpha]_D^{22}$ -13.8 (c 0.2, ^{*i*}PrOH) for 90% ee.

<٢	е	ак	lab	le>
PD	Δ	Ch1	254	nm

Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	6.129	148004	21832	50.063		M	
2	6.421	147629	21404	49.937		VM	
Total		295633	43236				



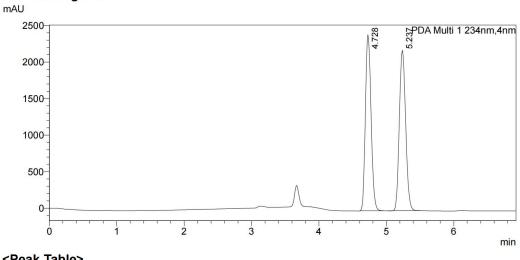
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	6.124	42694	6987	4.986		M	
2	6.386	813608	114233	95.014		M	
Total		856302	121220				

Supplementary Figure 8. HPLC spectrum of (*R*)-3cc

ethyl (R)-4-(2,2-dimethyl-1,3-dioxolan-4-yl)benzoate (3cd)

Chemical Formula: C₁₄H₁₈O₄ Exact Mass: 250.1205

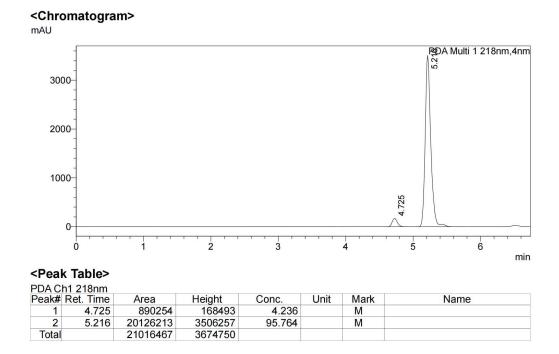
3cd was prepared according to general procedure **2.1** using NiBr₂•dme (6.6 mg, 0.02 mmol, 10 mol%), **L6** (11.7 mg, 0.03 mmol, 15 mol%), ethyl 4-bromobenzoate (45.8 mg, 0.20 mmol, 1 equiv), 2,2-dimethyl-1,3-dioxolane (102.1 mg, 1.0 mmol, 5 equiv), TBADT (33.5 mg, 0.02 mmol, 5 mol%), K₃PO₄ (51.2 mg, 0.24 mmol, 1.2 equiv) and anhydrous acetone/PhCF₃ (0.5 mL/0.5 mL) and was purified by silica gel column chromatography (PE/EA = 20/1) to obtain **3cd** as colorless oil (33.1 mg, 66% yield, 91% ee). $R_f = 0.5$ (PE/EA = 20/1).


¹H NMR (600 MHz, CDCl₃) δ 8.06 – 8.01 (m, 2H), 7.45 – 7.41 (m, 2H), 5.13 (dd, *J* = 7.8, 6.3 Hz, 1H), 4.39 (q, *J* = 7.1 Hz, 2H), 4.39 – 4.32 (m, 1H), 3.69 (t, *J* = 8.0 Hz, 1H), 1.56 (s, 3H), 1.50 (s, 3H), 1.40 (t, *J* = 7.1 Hz, 3H);

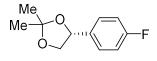
¹³C NMR (151 MHz, CDCl₃) δ 166.4, 144.4, 129.8, 125.9, 110.1, 77.4, 71.5, 61.0, 26.5, 25.9, 14.3;

HRMS: (APCI) calcd for $C_{14}H_{19}O_4^+[M+H]^+ 251.1278$; found 251.1284.

The enantiomeric purity was established by HPLC analysis using a chiral column: AD-H column, 30 °C, "Hexane/"Propanol = 85/15 as eluent, 218 nm, 1 mL/min. tR = 5.2 min (major), 4.7 min (minor).


Optical Rotation: $[\alpha]_D^{21}$ -85.3 (c 0.2, ^{*i*}PrOH) for 91% ee.

<٢	eak	lable>	•
PD	A Ch	1 234nm	


PDAU	11 2341111						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	4.728	14113093	2408052	0.000		M	
2	5.237	14315249	2196427	0.000		M	
Total		28428342	4604479				

Supplementary Figure 10. HPLC spectrum of (R)-3cd

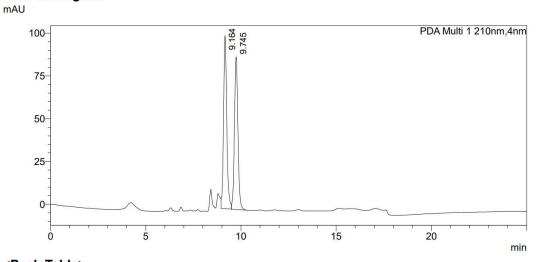
(R)-4-(4-fluorophenyl)-2,2-dimethyl-1,3-dioxolane (3ce)

Chemical Formula: C₁₁H₁₃FO₂ Exact Mass: 196.0900

3ce was prepared according to general procedure **2.1** using NiBr₂•dme (6.6 mg, 0.02 mmol, 10 mol%), **L6** (11.7 mg, 0.03 mmol, 15 mol%), 1-bromo-4-fluorobenzene (35.0 mg, 0.20 mmol, 1 equiv), 2,2-dimethyl-1,3-dioxolane (102.1 mg, 1.0 mmol, 5 equiv), TBADT (33.5 mg, 0.02 mmol, 5 mol%), K₃PO₄ (51.2 mg, 0.24 mmol, 1.2 equiv) and anhydrous acetone/PhCF₃ (0.5 mL/0.5 mL) and was purified by silica gel column chromatography (PE/EA = 50/1) to obtain **3ce** as colorless oil (17.9 mg, 47% yield, 84% ee). $R_f = 0.6$ (PE/EA = 50/1).

¹H NMR (600 MHz, CDCl₃) δ 7.38 – 7.31 (m, 2H), 7.08 – 6.99 (m, 2H), 5.05 (dd, J = 8.0, 6.2

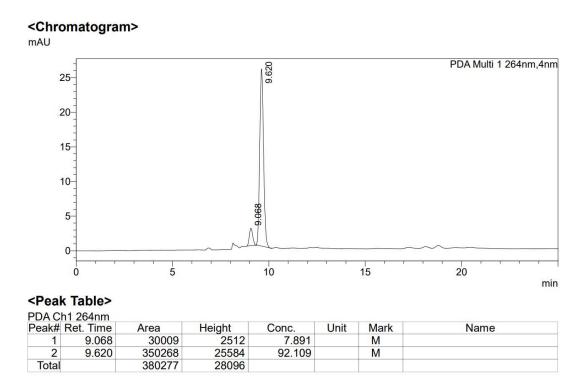
Hz, 1H), 4.29 (dd, *J* = 8.2, 6.2 Hz, 1H), 3.67 (t, *J* = 8.1 Hz, 1H), 1.55 (s, 3H), 1.48 (s, 3H);


¹³C NMR (151 MHz, CDCl₃) δ 162.6 (d, *J* = 246.2 Hz), 134.8 (d, *J* = 3.2 Hz), 128.0 (d, *J* = 8.2 Hz), 115.5 (d, *J* = 21.5 Hz), 109.8, 77.4, 71.7, 26.6, 25.9;

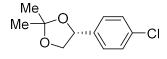
¹⁹F NMR (565 MHz, CDCl₃) δ -114.3.

HRMS: (ESI) calcd for C₁₁H₁₃FO₂Na⁺[M+Na]⁺ 219.0792; found 219.0790.

The enantiomeric purity was established by HPLC analysis using a chiral column: IA-H column, 30 °C, "Hexane/"Propanol = 99/1 as eluent, 264 nm, 0.5 mL/min. tR = 9.6 min (major), 9.1 min (minor).


Optical Rotation: $[\alpha]_D^{26}$ 3.1 (c 0.1, ^{*i*}PrOH) for 84% ee.

<Peak Table>

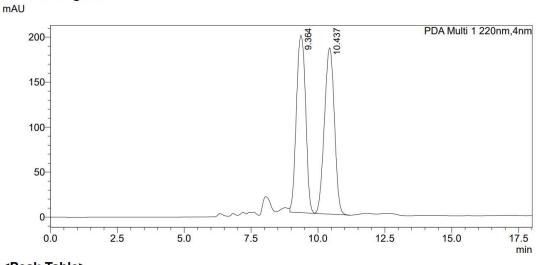

Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	9.164	1186724	101221	0.000		M	
2	9.745	1138413	89266	0.000		VM	
Total		2325137	190486				

Supplementary Figure 12. HPLC spectrum of (R)-3ce

(R)-4-(4-chlorophenyl)-2,2-dimethyl-1,3-dioxolane (3cf)

Chemical Formula: C₁₁H₁₃ClO₂ Exact Mass: 212.0604

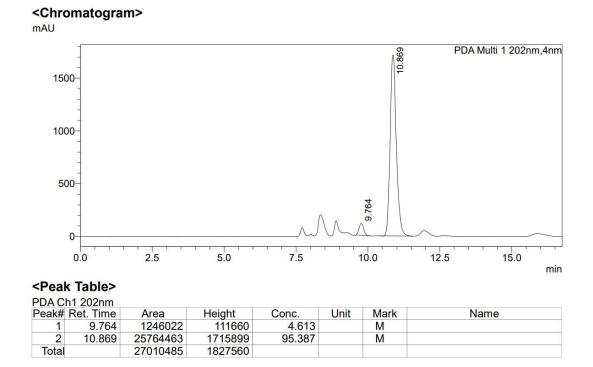
3cf was prepared according to general procedure **2.1** using NiBr₂•dme (6.6 mg, 0.02 mmol, 10 mol%), **L6** (11.7 mg, 0.03 mmol, 15 mol%), 1-bromo-4-chlorobenzene (38.2 mg, 0.20 mmol, 1 equiv), 2,2-dimethyl-1,3-dioxolane (102.1 mg, 1.0 mmol, 5 equiv), TBADT (33.5 mg, 0.02 mmol, 5 mol%), K₃PO₄ (51.2 mg, 0.24 mmol, 1.2 equiv) and anhydrous acetone/PhCF₃ (0.5 mL/0.5 mL) and was purified by silica gel column chromatography (PE/EA = 50/1) to obtain **3cf** as colorless oil (27.5 mg, 65% yield, 91% ee). $R_f = 0.6$ (PE/EA = 50/1).


The NMR data matched those reported in the literature.³

¹H NMR (600 MHz, CDCl₃) δ 7.35 – 7.28 (m, 4H), 5.05 (dd, *J* = 7.9, 6.2 Hz, 1H), 4.30 (dd, *J* = 8.2, 6.2 Hz, 1H), 3.66 (t, *J* = 8.1 Hz, 1H), 1.56 (s, 3H), 1.48 (s, 3H);

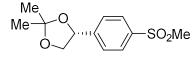
¹³C NMR (151 MHz, CDCl₃) δ 137.8, 133.8, 128.7, 127.5, 109.9, 77.3, 71.6, 26.6, 25.9;

The enantiomeric purity was established by HPLC analysis using a chiral column: IA-H column, 30 °C, "Hexane/"Propanol = 99/1 as eluent, 202 nm, 0.5 mL/min. tR = 10.9 min (major), 9.8 min (minor).


Optical Rotation: $[\alpha]_D^{21}$ -42.6 (c 0.2, ^{*i*}PrOH) for 91% ee.

<Peak Table>

Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	9.364	4720241	196939	0.000		M	
2	10.437	4807814	184770	0.000		VM	
Total		9528054	381710				



Supplementary Figure 14. HPLC spectrum of (R)-3cf

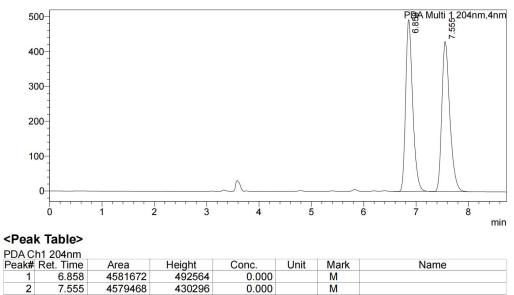
S23

(R)-2,2-dimethyl-4-(4-(methylsulfonyl)phenyl)-1,3-dioxolane (3cg)

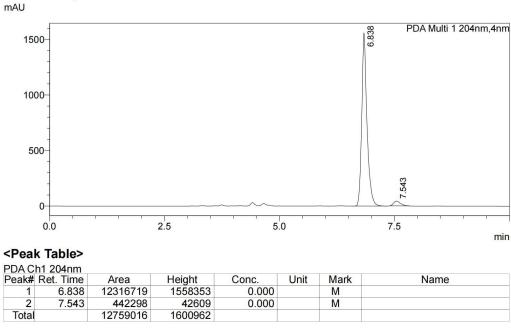
Chemical Formula: C₁₂H₁₆O₄S Exact Mass: 256.0769

3cg was prepared according to general procedure **2.1** using NiBr₂•dme (6.6 mg, 0.02 mmol, 10 mol%), **L6** (11.7 mg, 0.03 mmol, 15 mol%), 1-bromo-4-(methylsulfonyl)benzene (47.2 mg, 0.20 mmol, 1 equiv), 2,2-dimethyl-1,3-dioxolane (102.1 mg, 1.0 mmol, 5 equiv), TBADT (33.5 mg, 0.02 mmol, 5 mol%), K₃PO₄ (51.2 mg, 0.24 mmol, 1.2 equiv) and anhydrous acetone/PhCF₃ (0.5 mL/0.5 mL) and was purified by silica gel column chromatography (PE/EA = 4/1) to obtain **3cg** as white soild (35.8 mg, 70% yield, 93% ee). $R_f = 0.3$ (PE/EA = 5/1).

¹H NMR (600 MHz, CDCl₃) δ 7.97 – 7.92 (m, 2H), 7.59 – 7.55 (m, 2H), 5.16 (t, *J* = 7.0 Hz, 1H), 4.39 (dd, *J* = 8.3, 6.4 Hz, 1H), 3.70 (t, *J* = 7.9 Hz, 1H), 3.05 (s, 3H), 1.56 (s, 3H), 1.50 (s, 3H); 3H);


¹³C NMR (151 MHz, CDCl₃) δ 146.1, 140.1, 127.7, 126.9, 110.5, 77.0, 71.4, 44.6, 26.5, 25.8; HRMS: (APCI) calcd for C₁₂H₁₇O₄S⁺[M+H]⁺ 257.0842; found 257.0849.

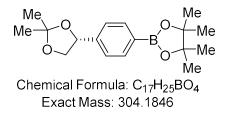
The enantiomeric purity was established by HPLC analysis using a chiral column: AD-H column, 30 °C, ^{*n*}Hexane/^{*i*}Propanol = 70/30 as eluent, 204 nm, 1 mL/min. tR = 6.8 min (major), 7.5 min (minor).


Optical Rotation: $[\alpha]_D^{21}$ -23.0 (c 0.2, ^{*i*}PrOH) for 93% ee.

Absolute stereochemistry was determined by X-ray crystallography analysis.

<Chromatogram> mAU

Total


9161140

922860

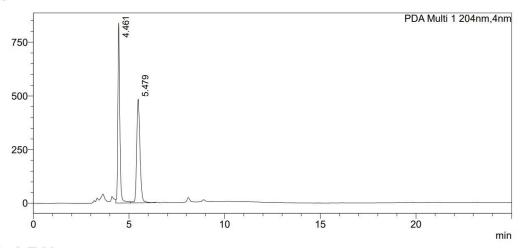
Supplementary Figure 16. HPLC spectrum of (R)-3cg

(R) - 2 - (4 - (2, 2 - dimethyl - 1, 3 - dioxolan - 4 - yl) phenyl) - 4, 4, 5, 5 - tetramethyl - 1, 3, 2 - dioxaborolane - 4, 4, 5, 5 - tetramethyl - 1, 3, 2 - dioxaborolane - 4, 4, 5, 5 - tetramethyl - 1, 3, 2 - dioxaborolane - 4, 4, 5, 5 - tetramethyl - 1, 3, 2 - dioxaborolane - 4, 4, 5, 5 - tetramethyl - 1, 3, 2 - dioxaborolane - 4, 4, 5, 5 - tetramethyl - 1, 3, 2 - dioxaborolane - 4, 4, 5, 5 - tetramethyl - 1, 3, 2 - dioxaborolane - 4, 4, 5, 5 - tetramethyl - 1, 3, 2 - dioxaborolane - 4, 4, 5, 5 - tetramethyl - 1, 3, 2 - dioxaborolane - 4, 4, 5, 5 - tetramethyl - 1, 3, 2 - dioxaborolane - 4, 4, 5, 5 - tetramethyl - 1, 3, 2 - dioxaborolane - 4, 4, 5, 5 - tetramethyl - 1, 5, 5 - tetramethy

(3ch)

3ch was prepared according to general procedure **2.1** using NiBr₂•dme (6.6 mg, 0.02 mmol, 10 mol%), **L6** (11.7 mg, 0.03 mmol, 15 mol%), 2-(4-bromophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (56.6 mg, 0.20 mmol, 1 equiv), 2,2-dimethyl-1,3-dioxolane (102.1 mg, 1.0 mmol, 5 equiv), TBADT (33.5 mg, 0.02 mmol, 5 mol%), K₃PO₄ (51.2 mg, 0.24 mmol, 1.2 equiv) and anhydrous acetone/PhCF₃ (0.5 mL/0.5 mL) and was purified by silica gel column chromatography (PE/EA = 10/1) to obtain **3ch** as colorless oil (34.0 mg, 58% yield, 88% ee). $R_f = 0.6$ (PE/EA = 10/1).

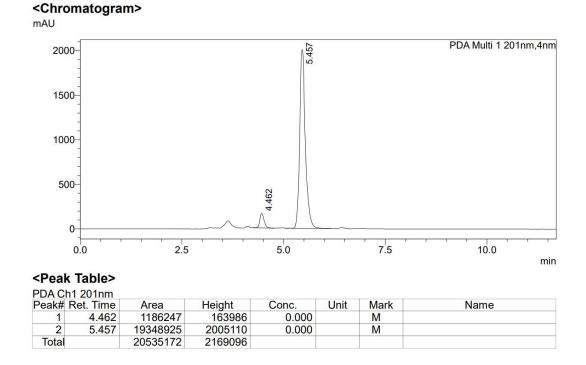
The NMR data matched those reported in the patent.⁴


¹H NMR (600 MHz, CDCl₃) δ 7.83 – 7.77 (m, 2H), 7.39 – 7.34 (m, 2H), 5.09 (dd, *J* = 8.0, 6.3 Hz, 1H), 4.31 (dd, *J* = 8.2, 6.3 Hz, 1H), 3.68 (t, *J* = 8.1 Hz, 1H), 1.55 (s, 3H), 1.49 (s, 3H), 1.34 (s, 12H);

¹³C NMR (151 MHz, CDCl₃) δ 142.3, 135.0, 125.4, 109.9, 83.8, 77.9, 71.6, 26.6, 26.0, 24.89, 24.87;

The enantiomeric purity was established by HPLC analysis using a chiral column: OJ-H column, 30 °C, ^{*n*}Hexane/^{*i*}Propanol = 90/10 as eluent, 201 nm, 1 mL/min. tR = 5.5 min (major), tR = 4.5 min (minor).

Optical Rotation: $[\alpha]_D^{21}$ -74.6 (c 0.1, ^{*i*}PrOH) for 88% ee.



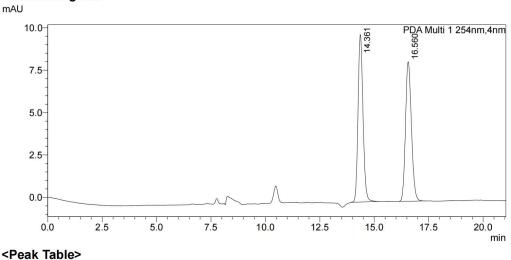
<Peak Table>

Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	4.461	5992477	837671	0.000		M	
2	5.479	5768843	481910	0.000		VM	
Total		11761320	1319580				

Supplementary Figure 18. HPLC spectrum of (R)-3ch

(R)-2,2-dimethyl-4-(4-(trifluoromethoxy)phenyl)-1,3-dioxolane (3ci)

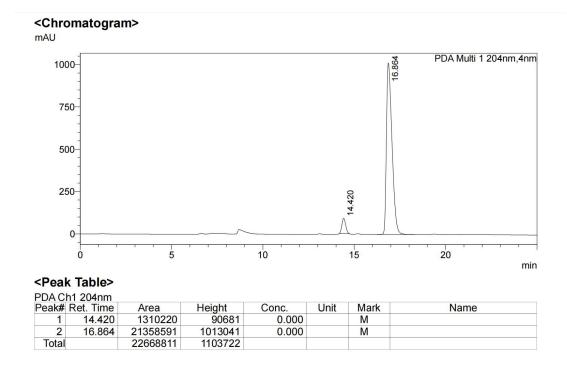
Chemical Formula: C₁₂H₁₃F₃O₃ Exact Mass: 262.0817


3ci was prepared according to general procedure **2.1** using NiBr₂•dme (6.6 mg, 0.02 mmol, 10 mol%), **L6** (11.7 mg, 0.03 mmol, 15 mol%), 1-bromo-4-(trifluoromethoxy)benzene (48.2 mg, 0.20 mmol, 1 equiv), 2,2-dimethyl-1,3-dioxolane (102.1 mg, 1.0 mmol, 5 equiv), TBADT (33.5 mg, 0.02 mmol, 5 mol%), K₃PO₄ (51.2 mg, 0.24 mmol, 1.2 equiv) and anhydrous acetone/PhCF₃ (0.5 mL/0.5 mL) and was purified by silica gel column chromatography (PE/EA = 50/1) to obtain **3ci** as colorless oil (28.8 mg, 55% yield, 88% ee). R_f = 0.6 (PE/EA = 50/1). ¹H NMR (600 MHz, CDCl₃) δ 7.42 – 7.37 (m, 2H), 7.23 – 7.18 (m, 2H), 5.07 (dd, *J* = 7.8, 6.2 Hz, 1H), 4.31 (dd, *J* = 8.3, 6.3 Hz, 1H), 3.69 (t, *J* = 8.1 Hz, 1H), 1.55 (s, 3H), 1.48 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 148.9 (q, *J* = 2.1 Hz), 138.0, 127.6, 121.1, 120.5 (q, *J* = 257.1 Hz), 110.0, 77.2, 71.6, 26.6, 25.8;

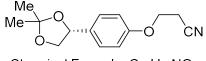
¹⁹F NMR (565 MHz, CDCl₃) δ -57.92.

HRMS: (ESI) calcd for C₁₂H₁₃F₃O₃Na⁺[M+Na]⁺285.0709; found 285.0703.

The enantiomeric purity was established by HPLC analysis using a chiral column: OJ-H column, 30 °C, "Hexane/ⁱPropanol = 99/1 as eluent, 204 nm, 0.5 mL/min. tR = 16.9 min (major), 14.4 min (minor).


Optical Rotation: $[\alpha]_D^{21}$ -66.5 (c 0.1, ^{*i*}PrOH) for 88% ee.

<p< th=""><th>еак</th><th>lable></th></p<>	еак	lable>
PD	A Ch1	254nm

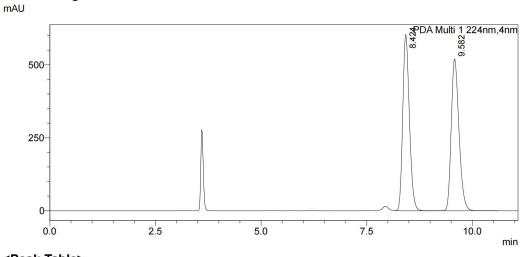

PDACI	11 Z34nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	14.361	156999	9884	0.000		M	
2	16.560	155577	8229	0.000			
Total		312577	18112				

Supplementary Figure 20. HPLC spectrum of (R)-3ci

(R)-3-(4-(2,2-dimethyl-1,3-dioxolan-4-yl)phenoxy)propanenitrile (3cj)

Chemical Formula: C₁₄H₁₇NO₃ Exact Mass: 247.1208

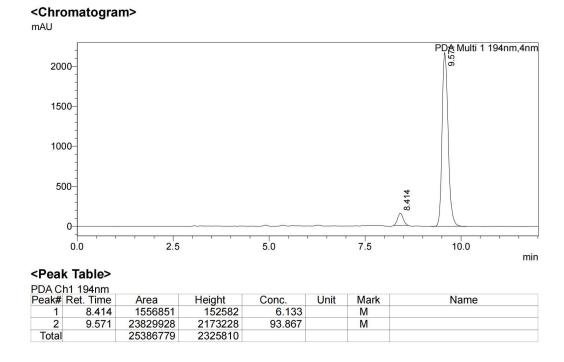
3cj was prepared according to general procedure **2.1** using NiBr₂•dme (6.6 mg, 0.02 mmol, 10 mol%), **L6** (11.7 mg, 0.03 mmol, 15 mol%), 3-(4-bromophenoxy)propanenitrile (45.2 mg, 0.20 mmol, 1 equiv), 2,2-dimethyl-1,3-dioxolane (102.1 mg, 1.0 mmol, 5 equiv), TBADT (33.5 mg, 0.02 mmol, 5 mol%), K₃PO₄ (51.2 mg, 0.24 mmol, 1.2 equiv) and anhydrous acetone/PhCF₃ (0.5 mL/0.5 mL) and was purified by silica gel column chromatography (PE/EA = 5/1) to obtain **3cj** as colorless oil (28.2 mg, 57% yield, 88% ee). $R_f = 0.5$ (PE/EA = 4/1).


¹H NMR (600 MHz, CDCl₃) δ 7.35 – 7.28 (m, 2H), 6.92 – 6.87 (m, 2H), 5.02 (dd, J = 8.1, 6.1 Hz, 1H), 4.26 (dd, J = 8.2, 6.1 Hz, 1H), 4.19 (t, J = 6.4 Hz, 2H), 3.68 (t, J = 8.2 Hz, 1H), 2.82 (t, J = 6.4 Hz, 2H), 1.54 (s, 3H), 1.47 (s, 3H);

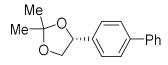
¹³C NMR (151 MHz, CDCl₃) δ 157.6, 132.3, 127.8, 117.1, 114.8, 109.6, 77.6, 71.7, 62.7, 26.7, 26.0, 18.6;

HRMS: (ESI) calcd for $C_{14}H_{17}O_3Na^+[M+Na]^+270.1101$; found 270.1102.

The enantiomeric purity was established by HPLC analysis using a chiral column: AD-H column, 30 °C, "Hexane/"Propanol = 85/15 as eluent, 194 nm, 1 mL/min. tR = 9.6 min (major), 8.4 min (minor).


Optical Rotation: $[\alpha]_D^{21}$ -34.2 (c 0.1, ^{*i*}PrOH) for 88% ee.

<Peak Table> PDA Ch1 224nm

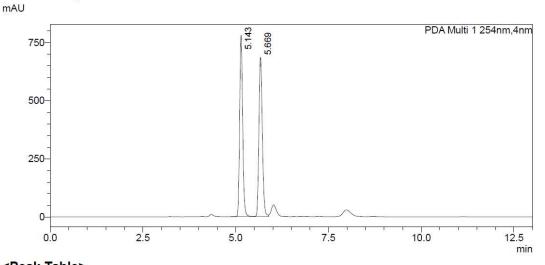

PDAC	111 22411111						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	8.424	6632110	604114	0.000			
2	9.582	6646896	520481	0.000		V	
Total		13279007	1124595				

Supplementary Figure 22. HPLC spectrum of (R)-3cj

(*R*)-4-([1,1'-biphenyl]-4-yl)-2,2-dimethyl-1,3-dioxolane (3ck)

Chemical Formula: C₁₇H₁₈O₂ Exact Mass: 254.1307

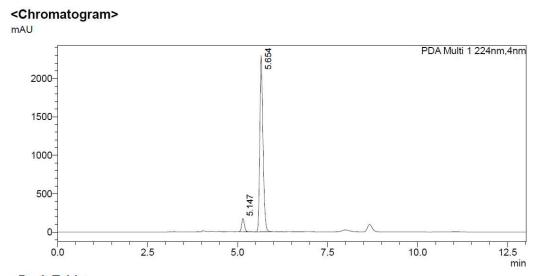
3ck was prepared according to general procedure **2.1** using NiBr₂•dme (6.6 mg, 0.02 mmol, 10 mol%), **L6** (11.7 mg, 0.03 mmol, 15 mol%), 4-bromo-1,1'-biphenyl (46.6 mg, 0.20 mmol, 1 equiv), 2,2-dimethyl-1,3-dioxolane (102.1 mg, 1.0 mmol, 5 equiv), TBADT (33.5 mg, 0.02 mmol, 5 mol%), K₃PO₄ (51.2 mg, 0.24 mmol, 1.2 equiv) and anhydrous acetone/PhCF₃ (0.5 mL/0.5 mL) and was purified by silica gel column chromatography (PE/EA = 50/1) to obtain **3ck** as colorless oil (25.9 mg, 51% yield, 87% ee). $R_f = 0.6$ (PE/EA = 50/1).


¹H NMR (400 MHz, CDCl₃) δ 7.65 – 7.54 (m, 4H), 7.44 (dd, *J* = 7.9, 5.8 Hz, 4H), 7.39 – 7.32 (m, 1H), 5.13 (dd, *J* = 8.1, 6.2 Hz, 1H), 4.34 (dd, *J* = 8.2, 6.2 Hz, 1H), 3.77 (t, *J* = 8.1 Hz, 1H), 1.58 (s, 3H), 1.51 (s, 3H);

¹³C NMR (101 MHz, CDCl₃) δ 141.0, 140.8, 138.0, 128.8, 127.34, 127.30, 127.1, 126.7, 109.8, 77.7, 71.6, 26.6, 26.0;

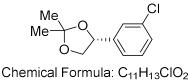
HRMS: (ESI) calcd for C₁₇H₁₈O₂Na⁺[M+Na]⁺277.1199; found 277.1201.

The enantiomeric purity was established by HPLC analysis using a chiral column: OD-H column, 30 °C, "Hexane/^{*i*}Propanol = 95/5 as eluent, 224 nm, 1 mL/min. tR = 5.7 min (major), 5.1 min (minor).


Optical Rotation: $[\alpha]_D^{21}$ -9.3 (c 0.1, ^{*i*}PrOH) for 87% ee.

<Peak Table>

Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	5.143	4421879	781757	0.000		M	
2	5.669	4336987	684667	0.000		M	
Total		8758866	1466423				



<Peak Table> PDA Ch1 224nm

Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	5.147	943643	171998	0.000		M	
2	5.654	13839170	2296924	0.000		M	
Total		14782813	2468921				

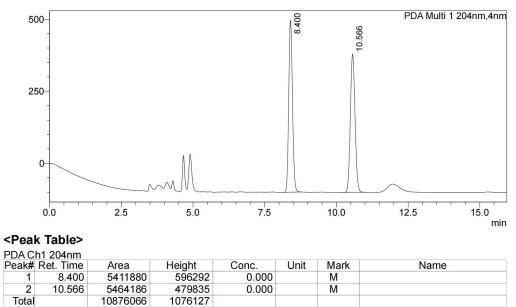
Supplementary Figure 24. HPLC spectrum of (R)-3ck

(R)-4-(3-chlorophenyl)-2,2-dimethyl-1,3-dioxolane (3cl)

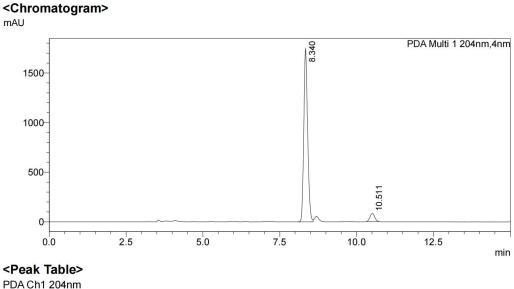
Exact Mass: 212.0604

3cl was prepared according to general procedure **2.1** using NiBr₂•dme (6.6 mg, 0.02 mmol, 10 mol%), **L6** (11.7 mg, 0.03 mmol, 15 mol%), 1-bromo-3-chlorobenzene (38.2 mg, 0.20 mmol, 1 equiv), 2,2-dimethyl-1,3-dioxolane (102.1 mg, 1.0 mmol, 5 equiv), TBADT (33.5 mg, 0.02 mmol, 5 mol%), K₃PO₄ (51.2 mg, 0.24 mmol, 1.2 equiv) and anhydrous acetone/PhCF₃ (0.5 mL/0.5 mL) and was purified by silica gel column chromatography (PE/EA = 50/1) to obtain **3cl** as colorless oil (27.1 mg, 64% yield, 89% ee). $R_f = 0.6$ (PE/EA = 50/1).

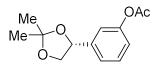
The NMR data matched those reported in the patent.⁵


¹H NMR (600 MHz, CDCl₃) δ 7.37 (d, *J* = 2.1 Hz, 1H), 7.30 – 7.25 (m, 2H), 7.25 – 7.21 (m, 1H), 5.04 (dd, *J* = 7.8, 6.3 Hz, 1H), 4.31 (dd, *J* = 8.3, 6.3 Hz, 1H), 3.68 (t, *J* = 8.0 Hz, 1H), 1.55 (s, 3H), 1.48 (s, 3H);

¹³C NMR (151 MHz, CDCl₃) δ 141.4, 134.5, 129.8, 128.2, 126.3, 124.3, 110.1, 77.2, 71.5, 26.5, 25.9;


The enantiomeric purity was established by HPLC analysis using a chiral column: OJ-H column, 30 °C, "Hexane/"Propanol = 97/3 as eluent, 204 nm, 1 mL/min. tR = 8.3 min (major), 10.5 min (minor).

Optical Rotation: $[\alpha]_D^{21}$ -87.3 (c 0.1, ^{*i*}PrOH) for 89% ee.



Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	8.340	15108454	1747968	94.614		M	
2	10.511	860128	81625	5.386		M	
Total		15968582	1829592				

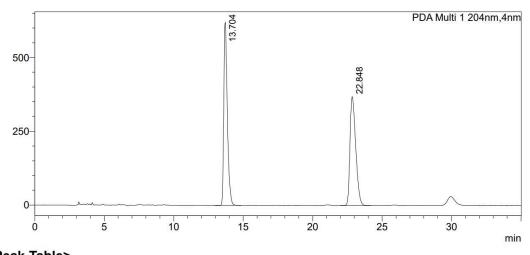
Supplementary Figure 26. HPLC spectrum of (*R*)-3cl

(R)-3-(2,2-dimethyl-1,3-dioxolan-4-yl)phenyl acetate (3cm)

Chemical Formula: C₁₃H₁₆O₄ Exact Mass: 236.1049

3cm was prepared according to general procedure **2.1** using NiBr₂•dme (6.6 mg, 0.02 mmol, 10 mol%), **L6** (11.7 mg, 0.03 mmol, 15 mol%), 3-bromophenyl acetate (43.0 mg, 0.20 mmol, 1 equiv), 2,2-dimethyl-1,3-dioxolane (102.1 mg, 1.0 mmol, 5 equiv), TBADT (33.5 mg, 0.02 mmol, 5 mol%), K₃PO₄ (51.2 mg, 0.24 mmol, 1.2 equiv) and anhydrous acetone/PhCF₃ (0.5 mL/0.5 mL) and was purified by silica gel column chromatography (PE/EA = 10/1) to obtain **3cm** as colorless oil (24.5 mg, 52% yield, 85% ee). $R_f = 0.5$ (PE/EA = 10/1).

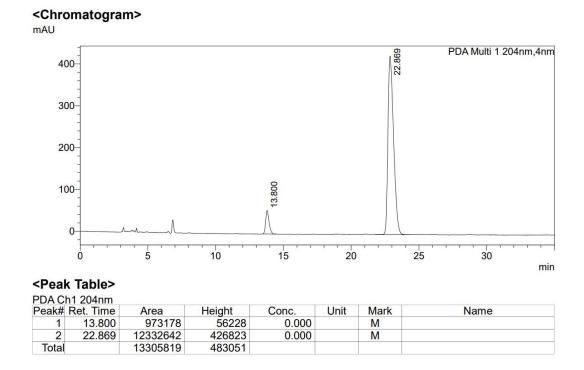
¹H NMR (600 MHz, CDCl₃) δ 7.36 (t, J = 7.9 Hz, 1H), 7.22 (ddt, J = 7.7, 1.6, 0.8 Hz, 1H), 7.11 (t, J = 2.0 Hz, 1H), 7.03 (ddd, J = 8.1, 2.4, 1.0 Hz, 1H), 5.07 (dd, J = 7.9, 6.2 Hz, 1H), 4.31 (dd, J = 8.2, 6.2 Hz, 1H), 3.71 (t, J = 8.1 Hz, 1H), 2.30 (s, 3H), 1.54 (s, 3H), 1.48 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 169.4, 150.9, 141.1, 129.6, 123.5, 121.2, 119.3, 109.9, 77.3,


71.5, 26.5, 25.9, 21.1;

HRMS: (ESI) calcd for $C_{13}H_{17}O_4^+[M+H]^+ 237.1121$; found 237.1126.

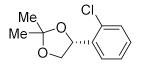
The enantiomeric purity was established by HPLC analysis using a chiral column: OJ-H column, 30 °C, ^{*n*}Hexane/^{*i*}Propanol = 90/10 as eluent, 204 nm, 1 mL/min. tR = 22.9 min (major), 13.8 min (minor).

Optical Rotation: $[\alpha]_D^{21}$ -39.1 (c 0.1, ^{*i*}PrOH) for 85% ee.



<Peak Table>

	Ret. Time	Area	Heiaht	Conc.	Unit	Mark	Name
1	13.704	10944673	620832	0.000	•	M	
2	22.848	10555364	368577	0.000		M	
Total		21500037	989409				



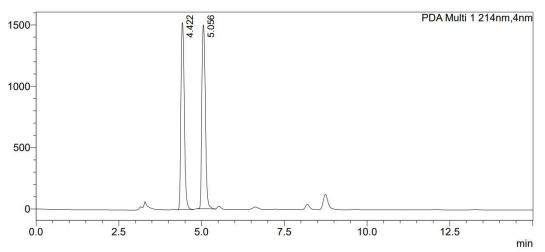
Supplementary Figure 28. HPLC spectrum of (*R*)-3cm

S37

(R)-4-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolane (3cn)

Chemical Formula: C₁₁H₁₃ClO₂ Exact Mass: 212.0604

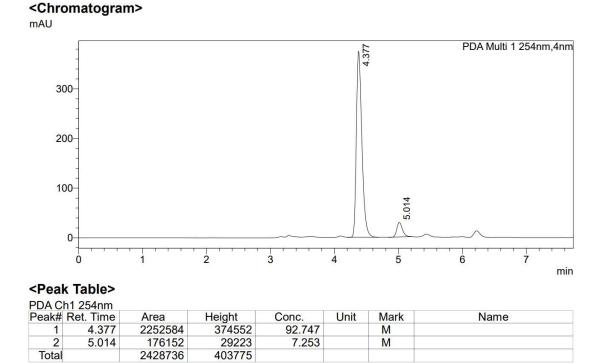
3cn was prepared according to general procedure **2.1** using NiBr₂•dme (6.6 mg, 0.02 mmol, 10 mol%), **L6** (11.7 mg, 0.03 mmol, 15 mol%), 1-bromo-2-chlorobenzene (38.2 mg, 0.20 mmol, 1 equiv), 2,2-dimethyl-1,3-dioxolane (102.1 mg, 1.0 mmol, 5 equiv), TBADT (33.5 mg, 0.02 mmol, 5 mol%), K₃PO₄ (51.2 mg, 0.24 mmol, 1.2 equiv) and anhydrous acetone/PhCF₃ (0.5 mL/0.5 mL) and was purified by silica gel column chromatography (PE/EA = 50/1) to obtain **3cn** as colorless oil (25.9 mg, 61% yield, 85% ee). $R_f = 0.6$ (PE/EA = 50/1).


The NMR data matched those reported in the patent.⁶

¹H NMR (600 MHz, CDCl₃) δ 7.63 (dd, J = 7.9, 1.7 Hz, 1H), 7.33 (dd, J = 7.9, 1.3 Hz, 1H), 7.29 (td, J = 7.5, 1.3 Hz, 1H), 7.22 (td, J = 7.6, 1.8 Hz, 1H), 5.42 (t, J = 6.9 Hz, 1H), 4.54 (dd, J = 8.3, 6.6 Hz, 1H), 3.64 (dd, J = 8.3, 7.3 Hz, 1H), 1.57 (s, 3H), 1.51 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 138.0, 131.7, 129.2, 128.7, 127.0, 126.7, 109.7, 74.9, 70.4, 26.4,

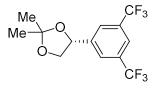
25.7;

The enantiomeric purity was established by HPLC analysis using a chiral column: OJ-H column, 30 °C, "Hexane/ⁱPropanol = 97/3 as eluent, 254 nm, 1 mL/min. tR = 4.4 min (major), 5.0 min (minor).



<Peak Table>

eak# F	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	4.422	10913055	1525021	49.639		M	
2	5.056	11071977	1500461	50.361		M	
Total		21985033	3025483				



Supplementary Figure 30. HPLC spectrum of (R)-3cn

S39

(R)-4-(3,5-bis(trifluoromethyl)phenyl)-2,2-dimethyl-1,3-dioxolane (3co)

Chemical Formula: C₁₃H₁₂F₆O₂ Exact Mass: 314.0741

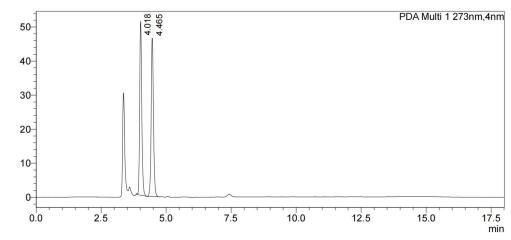
3co was prepared according to general procedure **2.1** using NiBr₂•dme (6.6 mg, 0.02 mmol, 10 mol%), **L6** (11.7 mg, 0.03 mmol, 15 mol%), 1-bromo-3,5-bis(trifluoromethyl)benzene (58.6 mg, 0.20 mmol, 1 equiv), 2,2-dimethyl-1,3-dioxolane (102.1 mg, 1.0 mmol, 5 equiv), TBADT (33.5 mg, 0.02 mmol, 5 mol%), K₃PO₄ (51.2 mg, 0.24 mmol, 1.2 equiv) and anhydrous acetone/PhCF₃ (0.5 mL/0.5 mL) and was purified by silica gel column chromatography (PE/EA = 50/1) to obtain **3co** as colorless oil (41.4 mg, 66% yield, 91% ee). $R_f = 0.6$ (PE/EA = 50/1). ¹H NMR (600 MHz, CDCl₃) δ 7.86 – 7.76 (m, 3H), 5.18 (t, *J* = 6.9 Hz, 1H), 4.41 (dd, *J* = 8.4,

6.4 Hz, 1H), 3.72 (dd, *J* = 8.3, 7.4 Hz, 1H), 1.57 (s, 3H), 1.50 (s, 3H);

¹³C NMR (151 MHz, CDCl₃) δ 142.5, 131.9 (q, *J* = 33.3 Hz), 126.2 (q, *J* = 3.9 Hz), 123.2 (q, *J*

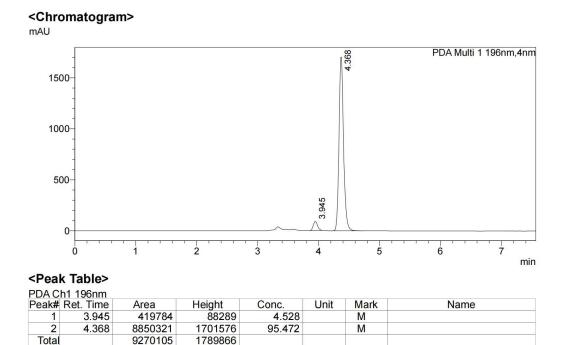
= 272.7 Hz), 121.9 (p, *J* = 3.9 Hz), 110.7, 76.5, 71.3, 26.4, 25.7;

¹⁹F NMR (565 MHz, CDCl₃) δ -62.93.

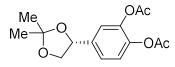

HRMS: (APCI) calcd for $C_{13}H_{13}F_6O_2^+[M+H]^+ 315.0814$; found 315.0811.

The enantiomeric purity was established by HPLC analysis using a chiral column: OJ-H column, 30 °C, ^{*n*}Hexane/^{*i*}Propanol = 97/3 as eluent, 196 nm, 1 mL/min. tR = 4.4 min (major), 3.9 min (minor).

Optical Rotation: $[\alpha]_D^{21}$ -12.0 (c 0.4, ^{*i*}PrOH) for 91% ee.



<Peak Table>

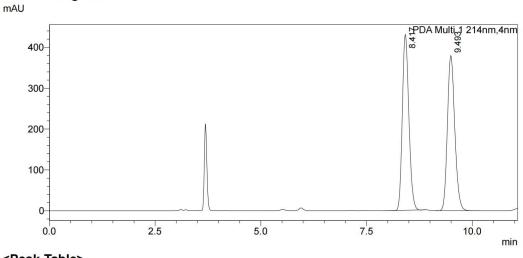

Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	4.018	285000	51093	0.000		M	
2	4.465	287260	46499	0.000		M	
Total		572260	97592				

Supplementary Figure 32. HPLC spectrum of (R)-3co

(*R*)-4-(2,2-dimethyl-1,3-dioxolan-4-yl)-1,2-phenylene diacetate (3cp)

Chemical Formula: C₁₅H₁₈O₆ Exact Mass: 294.1103

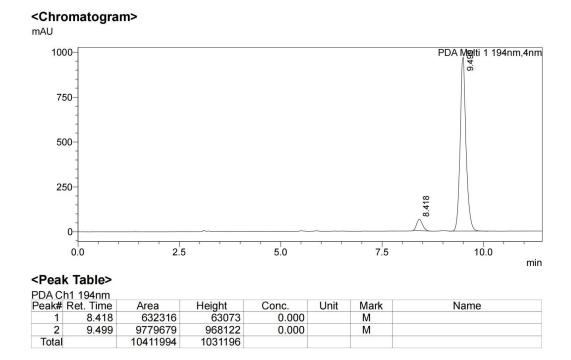
3cp was prepared according to general procedure **2.1** using NiBr₂•dme (6.6 mg, 0.02 mmol, 10 mol%), **L6** (11.7 mg, 0.03 mmol, 15 mol%), 4-bromo-1,2-phenylene diacetate (54.6 mg, 0.20 mmol, 1 equiv), 2,2-dimethyl-1,3-dioxolane (102.1 mg, 1.0 mmol, 5 equiv), TBADT (33.5 mg, 0.02 mmol, 5 mol%), K₃PO₄ (51.2 mg, 0.24 mmol, 1.2 equiv) and anhydrous acetone/PhCF₃ (0.5 mL/0.5 mL) and was purified by silica gel column chromatography (PE/EA = 5/1) to obtain **3cp** as colorless oil (28.2 mg, 48% yield, 88% ee). $R_f = 0.4$ (PE/EA = 5/1).


¹H NMR (600 MHz, CDCl₃) δ 7.23 (ddd, J = 8.3, 2.1, 0.6 Hz, 1H), 7.21 (d, J = 2.0 Hz, 1H), 7.17 (d, J = 8.3 Hz, 1H), 5.05 (dd, J = 7.8, 6.2 Hz, 1H), 4.30 (dd, J = 8.3, 6.2 Hz, 1H), 3.71 (t, J = 8.0 Hz, 1H), 2.29 (s, 3H), 2.28 (s, 3H), 1.53 (s, 3H), 1.47 (s, 3H);

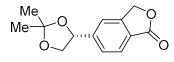
¹³C NMR (151 MHz, CDCl₃) δ 168.3, 168.2, 142.1, 141.6, 138.3, 124.2, 123.5, 121.2, 110.0, 77.0, 71.4, 26.6, 25.9, 20.67, 20.66;

HRMS: (ESI) calcd for C₁₅H₁₈O₆Na⁺[M+Na]⁺317.0996; found 317.0988.

The enantiomeric purity was established by HPLC analysis using a chiral column: AD-H column, 30 °C, "Hexane/^{*i*}Propanol = 90/10 as eluent, 194 nm, 1 mL/min. tR = 9.5 min (major), 8.4 min (minor).


Optical Rotation: $[\alpha]_D^{21}$ -18.3 (c 0.1, ^{*i*}PrOH) for 88% ee.

<Peak Table>


Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	8.417	4604975	430001	0.000		M	
2	9.493	4629495	379569	0.000		M	
Total		9234470	809571				

Supplementary Figure 34. HPLC spectrum of (*R*)-3cp

(R)-5-(2,2-dimethyl-1,3-dioxolan-4-yl)isobenzofuran-1(3H)-one (3cq)

Chemical Formula: C₁₃H₁₄O₄ Exact Mass: 234.0892

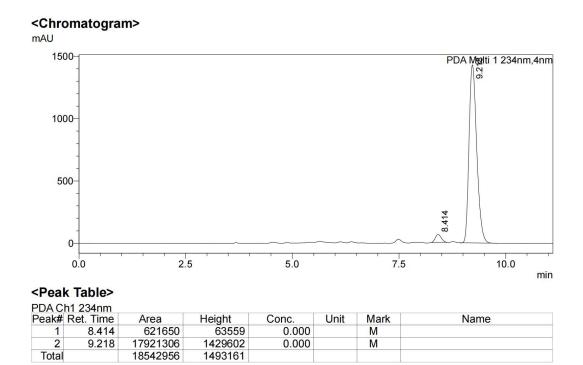
3cq was prepared according to general procedure **2.1** using NiBr₂•dme (6.6 mg, 0.02 mmol, 10 mol%), **L6** (11.7 mg, 0.03 mmol, 15 mol%), 5-bromoisobenzofuran-1(3*H*)-one (42.6 mg, 0.20 mmol, 1 equiv), 2,2-dimethyl-1,3-dioxolane (102.1 mg, 1.0 mmol, 5 equiv), TBADT (33.5 mg, 0.02 mmol, 5 mol%), K₃PO₄ (51.2 mg, 0.24 mmol, 1.2 equiv) and anhydrous acetone/PhCF₃ (0.5 mL/0.5 mL) and was purified by silica gel column chromatography (PE/EA = 3/1) to obtain **3cq** as colorless oil (25.3 mg, 54% yield, 93% ee). $R_f = 0.4$ (PE/EA = 3/1).

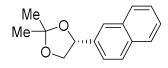
¹H NMR (600 MHz, CDCl₃) δ 7.91 (d, *J* = 7.9 Hz, 1H), 7.56 – 7.53 (m, 1H), 7.50 (dd, *J* = 7.8, 1.3 Hz, 1H), 5.33 (d, *J* = 2.0 Hz, 2H), 5.23 – 5.18 (m, 1H), 4.40 (dd, *J* = 8.3, 6.4 Hz, 1H), 3.70 (dd, *J* = 8.3, 7.6 Hz, 1H), 1.58 (s, 3H), 1.51 (s, 3H);

¹³C NMR (151 MHz, CDCl₃) δ 170.8, 147.2, 146.6, 127.0, 126.0, 125.5, 119.4, 110.4, 77.3, 71.5, 69.6, 26.5, 25.8;

HRMS: (ESI) calcd for $C_{13}H_{15}O_4^+[M+H]^+ 235.0965$; found 235.0966.

The enantiomeric purity was established by HPLC analysis using a chiral column: AD-H column, 30 °C, "Hexane/"Propanol = 85/15 as eluent, 234 nm, 1 mL/min. tR = 9.2 min (major), 8.4 min (minor).


Optical Rotation: $[\alpha]_D^{21}$ -22.8 (c 0.1, ^{*i*}PrOH) for 93% ee.


	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	8.433	23803164	2015849	0.000		M	
2	9.224	24654673	2012991	0.000		VM	
Total		48457838	4028840				

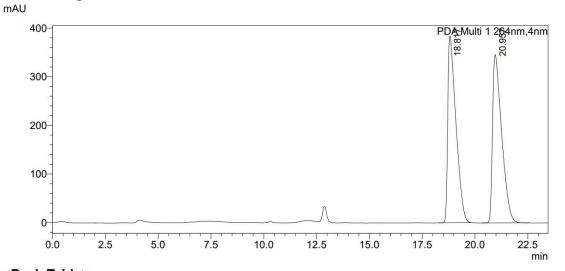
Supplementary Figure 36. HPLC spectrum of (R)-3cq

(R)-2,2-dimethyl-4-(naphthalen-2-yl)-1,3-dioxolane (3cr)

Chemical Formula: C₁₅H₁₆O₂ Exact Mass: 228.1150

3cr was prepared according to general procedure **2.1** using NiBr₂•dme (6.6 mg, 0.02 mmol, 10 mol%), **L6** (11.7 mg, 0.03 mmol, 15 mol%), 2-bromonaphthalene (41.4 mg, 0.20 mmol, 1 equiv), 2,2-dimethyl-1,3-dioxolane (102.1 mg, 1.0 mmol, 5 equiv), TBADT (33.5 mg, 0.02 mmol, 5 mol%), K₃PO₄ (51.2 mg, 0.24 mmol, 1.2 equiv) and anhydrous acetone/PhCF₃ (0.5 mL/0.5 mL) and was purified by silica gel column chromatography (PE/EA = 50/1) to obtain **3cr** as colorless oil (20.5 mg, 45% yield, 86% ee). $R_f = 0.5$ (PE/EA = 50/1).

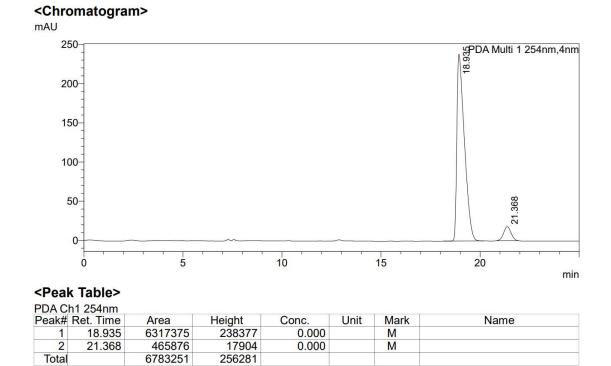
The NMR data matched those reported in the literature.⁷


¹H NMR (600 MHz, CDCl₃) δ 7.88 – 7.82 (m, 4H), 7.52 – 7.46 (m, 3H), 5.26 (dd, J = 8.0, 6.3

Hz, 1H), 4.39 (dd, *J* = 8.2, 6.3 Hz, 1H), 3.81 (t, *J* = 8.1 Hz, 1H), 1.63 (s, 3H), 1.55 (s, 3H);

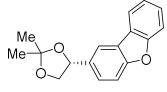
¹³C NMR (151 MHz, CDCl₃) δ 136.5, 133.24, 133.23, 128.5, 128.0, 127.8, 126.3, 126.1, 125.3, 123.9, 109.9, 78.1, 71.6, 26.7, 26.0;

The enantiomeric purity was established by HPLC analysis using a chiral column: OJ-H column, 30 °C, "Hexane/ⁱPropanol = 99/1 as eluent, 254 nm, 0.5 mL/min. tR = 18.9 min (major), 21.4 min (minor).


Optical Rotation: $[\alpha]_D^{21}$ -45.1 (c 0.1, ^{*i*}PrOH) for 86% ee.

<Peak Table>

Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	18.817	10289767	383793	0.000		M	
2	20.957	10393042	346126	0.000		M	
Total		20682809	729919				



Supplementary Figure 38. HPLC spectrum of (R)-3cr

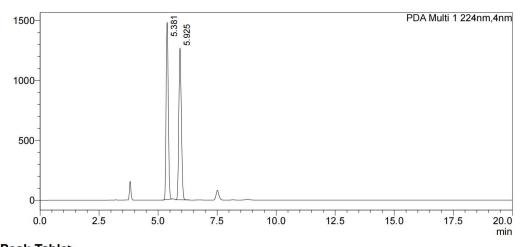
S47

(R)-2-(2,2-dimethyl-1,3-dioxolan-4-yl)dibenzo[b,d]furan (3cs)

Chemical Formula: C₁₇H₁₆O₃ Exact Mass: 268.1099

3cs was prepared according to general procedure **2.1** using NiBr₂•dme (6.6 mg, 0.02 mmol, 10 mol%), **L6** (11.7 mg, 0.03 mmol, 15 mol%), 2-bromodibenzo[*b*,*d*]furan (49.4 mg, 0.20 mmol, 1 equiv), 2,2-dimethyl-1,3-dioxolane (102.1 mg, 1.0 mmol, 5 equiv), TBADT (33.5 mg, 0.02 mmol, 5 mol%), K₃PO₄ (51.2 mg, 0.24 mmol, 1.2 equiv) and anhydrous acetone/PhCF₃ (0.5 mL/0.5 mL) and was purified by silica gel column chromatography (PE/EA = 50/1) to obtain **3cs** as colorless oil (27.3 mg, 51% yield, 88% ee). $R_f = 0.5$ (PE/EA = 50/1).

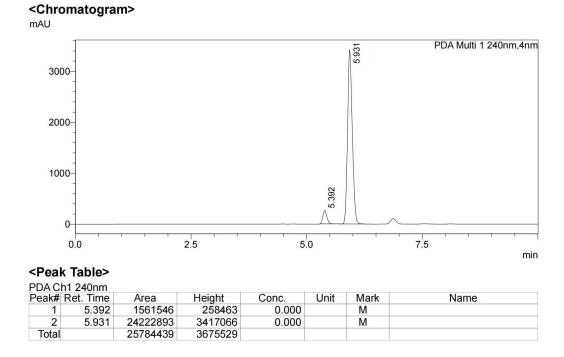
¹H NMR (600 MHz, CDCl₃) δ 8.00 – 7.93 (m, 2H), 7.60 – 7.53 (m, 2H), 7.48 – 7.44 (m, 2H), 7.37 – 7.33 (m, 1H), 5.25 (dd, *J* = 8.1, 6.2 Hz, 1H), 4.38 (dd, *J* = 8.3, 6.2 Hz, 1H), 3.80 (t, *J* = 8.2 Hz, 1H), 1.63 (s, 3H), 1.54 (s, 3H);


¹³C NMR (151 MHz, CDCl₃) δ 156.6, 156.0, 133.6, 127.3, 125.5, 124.5, 124.0, 122.8, 120.7, 118.5, 111.8, 111.7, 109.8, 78.1, 72.0, 26.8, 26.0;

HRMS: (ESI) calcd for C₁₇H₁₆O₃Na⁺[M+Na]⁺291.0992; found 291.0988.

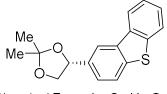
The enantiomeric purity was established by HPLC analysis using a chiral column: AD-H column, 30 °C, "Hexane/^{*i*}Propanol = 95/5 as eluent, 240 nm, 1 mL/min. tR = 5.9 min (major), 5.4 min (minor).

Optical Rotation: $[\alpha]_D^{21}$ -44.1 (c 0.1, ^{*i*}PrOH) for 88% ee.



<Peak Table> PDA Ch1 224nm

PDAC	n i 224nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	5.381	9342078	1478076	0.000		M	
2	5.925	9537838	1264020	0.000		M	
Tota		18879916	2742096				


Supplementary Figure 39. HPLC spectrum of racemic-3cs

Supplementary Figure 40. HPLC spectrum of (R)-3cs

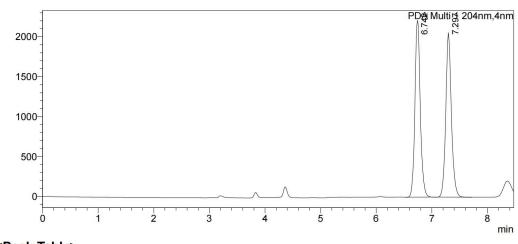
S49

(R)-4-(dibenzo[b,d]thiophen-2-yl)-2,2-dimethyl-1,3-dioxolane (3ct)

Chemical Formula: C₁₇H₁₆O₂S Exact Mass: 284.0871

3ct was prepared according to general procedure **2.1** using NiBr₂•dme (6.6 mg, 0.02 mmol, 10 mol%), **L6** (11.7 mg, 0.03 mmol, 15 mol%), 2-bromodibenzo[*b*,*d*]thiophene (52.6 mg, 0.20 mmol, 1 equiv), 2,2-dimethyl-1,3-dioxolane (102.1 mg, 1.0 mmol, 5 equiv), TBADT (33.5 mg, 0.02 mmol, 5 mol%), K₃PO₄ (51.2 mg, 0.24 mmol, 1.2 equiv) and anhydrous acetone/PhCF₃ (0.5 mL/0.5 mL) and was purified by silica gel column chromatography (PE/EA = 50/1) to obtain **3ct** as colorless oil (31.8 mg, 56% yield, 90% ee). $R_f = 0.5$ (PE/EA = 50/1).

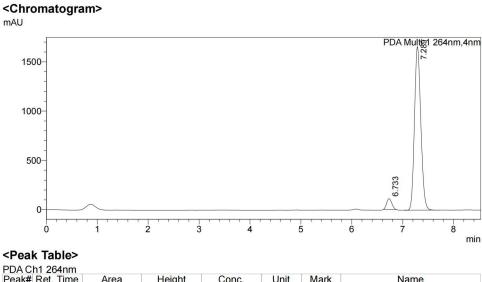
¹H NMR (600 MHz, CDCl₃) δ 8.21 – 8.15 (m, 2H), 7.89 – 7.82 (m, 2H), 7.49 – 7.44 (m, 3H), 5.27 (dd, *J* = 8.0, 6.2 Hz, 1H), 4.40 (dd, *J* = 8.3, 6.3 Hz, 1H), 3.81 (t, *J* = 8.2 Hz, 1H), 1.64 (s, 3H), 1.56 (s, 3H);


¹³C NMR (151 MHz, CDCl₃) δ 139.9, 139.2, 135.7, 135.6, 135.3, 126.9, 124.9, 124.4, 123.0, 122.9, 121.7, 119.3, 109.9, 78.1, 71.9, 26.7, 26.0;

HRMS: (ESI) calcd for C₁₇H₁₆O₂SNa⁺[M+Na]⁺ 307.0763; found 307.0763.

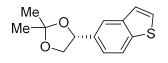
The enantiomeric purity was established by HPLC analysis using a chiral column: AD-H column, 30 °C, "Hexane/^{*i*}Propanol = 95/5 as eluent, 264 nm, 1 mL/min. tR = 7.3 min (major), 6.7 min (minor).

Optical Rotation: $[\alpha]_D^{21}$ -90.4 (c 0.1, ^{*i*}PrOH) for 90% ee.



<Peak Table>

PDACI	n1 204nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	6.742	14770591	2211955	0.000		M	
2	7.297	14425664	2058569	0.000		M	
Total		29196255	4270524				



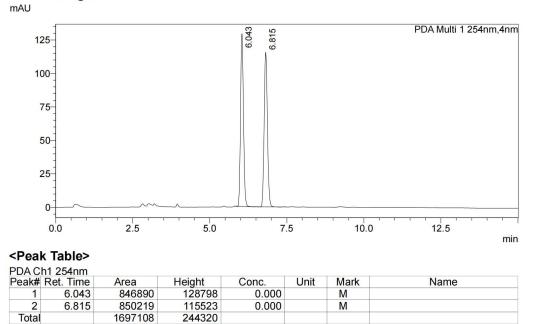
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	6.733	766878	109228	0.000		M	
2	7.289	14404275	1659312	0.000		M	
Total		15171153	1768540				

Supplementary Figure 42. HPLC spectrum of (*R*)-3ct

(R)-4-(benzo[b]thiophen-5-yl)-2,2-dimethyl-1,3-dioxolane (3cu)

Chemical Formula: C₁₃H₁₄O₂S Exact Mass: 234.0715

3cu was prepared according to general procedure **2.1** using NiBr₂•dme (6.6 mg, 0.02 mmol, 10 mol%), **L6** (11.7 mg, 0.03 mmol, 15 mol%), 5-bromobenzo[*b*]thiophene (42.6 mg, 0.20 mmol, 1 equiv), 2,2-dimethyl-1,3-dioxolane (102.1 mg, 1.0 mmol, 5 equiv), TBADT (33.5 mg, 0.02 mmol, 5 mol%), K₃PO₄ (51.2 mg, 0.24 mmol, 1.2 equiv) and anhydrous acetone/PhCF₃ (0.5 mL/0.5 mL) and was purified by silica gel column chromatography (PE/EA = 50/1) to obtain **3cu** as colorless oil (24.8 mg, 53% yield, 89% ee). $R_f = 0.5$ (PE/EA = 50/1).

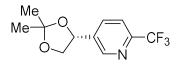

¹H NMR (600 MHz, CDCl₃) δ 7.87 (d, *J* = 8.3 Hz, 1H), 7.83 (d, *J* = 1.6 Hz, 1H), 7.46 (d, *J* = 5.4 Hz, 1H), 7.37 – 7.31 (m, 2H), 5.21 (dd, *J* = 8.0, 6.2 Hz, 1H), 4.35 (dd, *J* = 8.2, 6.2 Hz, 1H), 3.76 (t, *J* = 8.1 Hz, 1H), 1.59 (s, 3H), 1.57 (s, 3H);

¹³C NMR (151 MHz, CDCl₃) δ 139.8, 139.4, 135.3, 127.1, 123.8, 122.7, 122.5, 121.3, 109.8, 78.1, 71.9, 26.7, 26.0;

HRMS: (ESI) calcd for $C_{13}H_{14}O_2SNa^+[M+Na]^+ 257.0607$; found 257.0609.

The enantiomeric purity was established by HPLC analysis using a chiral column: OD-H column, 30 °C, "Hexane/^{*i*}Propanol = 95/5 as eluent, 210 nm, 1 mL/min. tR = 6.6 min (major), 5.8 min (minor).

Optical Rotation: $[\alpha]_D^{21}$ -31.2 (c 0.1, ^{*i*}PrOH) for 89% ee.



Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	5.794	1434693	221567	5.542		M	
2	6.557	24454942	3331979	94.458		M	
Total		25889635	3553546				

Supplementary Figure 44. HPLC spectrum of (R)-3cu

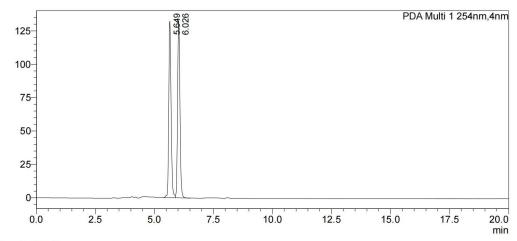
(*R*)-5-(2,2-dimethyl-1,3-dioxolan-4-yl)-2-(trifluoromethyl)pyridine (3cv)

Chemical Formula: C₁₁H₁₂F₃NO₂ Exact Mass: 247.0820

3cv was prepared according to general procedure **2.1** using NiBr₂•dme (6.6 mg, 0.02 mmol, 10 mol%), **L6** (11.7 mg, 0.03 mmol, 15 mol%), 5-bromo-2-(trifluoromethyl)pyridine (45.2 mg, 0.20 mmol, 1 equiv), 2,2-dimethyl-1,3-dioxolane (102.1 mg, 1.0 mmol, 5 equiv), TBADT (33.5 mg, 0.02 mmol, 5 mol%), K₃PO₄ (51.2 mg, 0.24 mmol, 1.2 equiv) and anhydrous acetone/PhCF₃ (0.5 mL/0.5 mL) and was purified by silica gel column chromatography (PE/EA = 5/1) to obtain **3cv** as colorless oil (30.1 mg, 61% yield, 91% ee). $R_f = 0.6$ (PE/EA = 5/1).

¹H NMR (600 MHz, CDCl₃) δ 8.71 (d, *J* = 2.1 Hz, 1H), 7.90 (dd, *J* = 8.2, 2.1 Hz, 1H), 7.69 (d, *J* = 8.1 Hz, 1H), 5.19 (t, *J* = 6.8 Hz, 1H), 4.42 (dd, *J* = 8.4, 6.5 Hz, 1H), 3.77 – 3.71 (m, 1H), 1.56 (s, 3H), 1.50 (s, 3H);

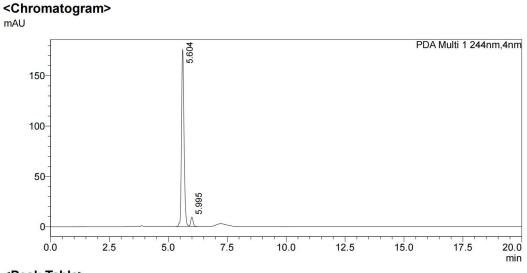
¹³C NMR (151 MHz, CDCl₃) δ 148.1, 147.9 (q, *J* = 34.7 Hz), 138.7, 135.0, 121.5 (q, *J* = 274.8 Hz), 120.4 (q, *J* = 3.0 Hz), 110.7, 75.0, 71.2, 26.4, 25.6;


¹⁹F NMR (565 MHz, CDCl₃) δ -67.88.

HRMS: (APCI) calcd for $C_{11}H_{13}F_3NO_2^+[M+H]^+$ 248.0893; found 248.0887.

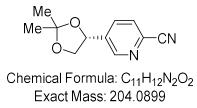
The enantiomeric purity was established by HPLC analysis using a chiral column: OJ-H column, $30 \,^{\circ}$ C, *"*Hexane/*"*Propanol = 85/15 as eluent, 244 nm, 1 mL/min. tR = 5.6 min (major), 6.0 min (minor).

Optical Rotation: $[\alpha]_D^{22}$ -46.0 (c 0.1, ^{*i*}PrOH) for 91% ee.



<Peak Table>

PDAC	n1 254nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	5.649	908522	132154	0.000		M	
2	6.026	902400	132669	0.000		VM	
Total		1810922	264823				



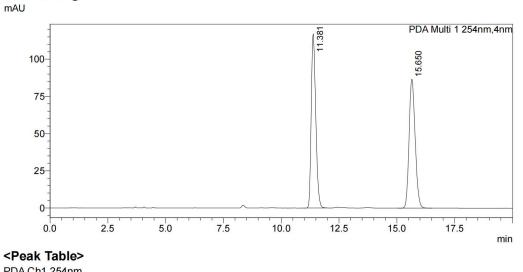
<Peak Table>

PDAC	n1 244nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	5.604	1315765	175897	0.000		M	
2	5.995	63849	9384	0.000		VM	
Total		1379614	185281				

Supplementary Figure 46. HPLC spectrum of (R)-3cv

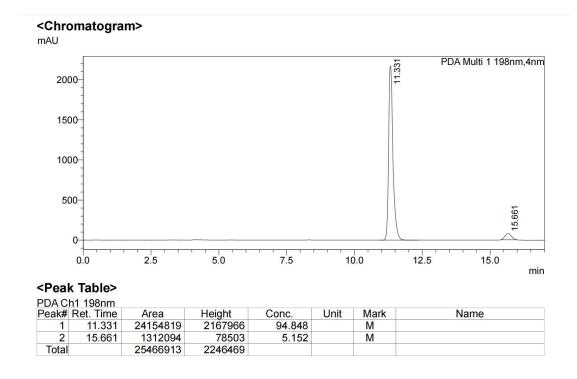
(R)-5-(2,2-dimethyl-1,3-dioxolan-4-yl)picolinonitrile (3cw)

3cw was prepared according to general procedure **2.1** using NiBr₂•dme (6.6 mg, 0.02 mmol, 10 mol%), **L6** (11.7 mg, 0.03 mmol, 15 mol%), 5-bromopicolinonitrile (36.6 mg, 0.20 mmol, 1 equiv), 2,2-dimethyl-1,3-dioxolane (102.1 mg, 1.0 mmol, 5 equiv), TBADT (33.5 mg, 0.02 mmol, 5 mol%), K₃PO₄ (51.2 mg, 0.24 mmol, 1.2 equiv) and anhydrous acetone/PhCF₃ (0.5 mL/0.5 mL) and was purified by silica gel column chromatography (PE/EA = 3/1) to obtain **3cw** as colorless oil (30.6 mg, 75% yield, 90% ee). $R_f = 0.6$ (PE/EA = 3/1).

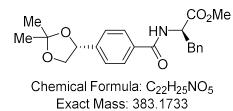

¹H NMR (600 MHz, CDCl₃) δ 8.68 (d, J = 2.2 Hz, 1H), 7.85 (dd, J = 8.0, 2.2 Hz, 1H), 7.70 (d, J = 7.9 Hz, 1H), 5.16 (t, J = 6.8 Hz, 1H), 4.40 (dd, J = 8.4, 6.5 Hz, 1H), 3.71 (dd, J = 8.5, 7.1 Hz, 1H), 1.54 (s, 3H), 1.48 (s, 3H);

¹³C NMR (151 MHz, CDCl₃) δ 149.2, 139.5, 134.6, 133.3, 128.3, 117.1, 110.8, 75.0, 71.0, 26.4, 25.6;

HRMS: (APCI) calcd for $C_{11}H_{13}N_2O_2^+[M+H]^+ 205.0972$; found 205.0967.


The enantiomeric purity was established by HPLC analysis using a chiral column: OJ-H column, 30 °C, "Hexane/"Propanol = 80/20 as eluent, 198 nm, 1 mL/min. tR = 11.3 min (major), 15.7 min (minor).

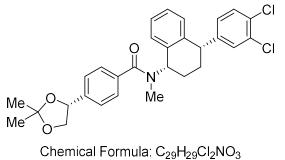
Optical Rotation: $[\alpha]_D^{21}$ -71.7 (c 0.2, ^{*i*}PrOH) for 90% ee.


PDAC	n1 254nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	11.381	1586685	117038	0.000		M	
2	15.650	1587833	86625	0.000		M	
Total		3174518	203662				

Supplementary Figure 48. HPLC spectrum of (*R*)-3cw

methyl (4-((R)-2,2-dimethyl-1,3-dioxolan-4-yl)benzoyl)-D-phenylalaninate (3cx)

3cx was prepared according to general procedure **2.1** using NiBr₂•dme (6.6 mg, 0.02 mmol, 10 mol%), **L6** (11.7 mg, 0.03 mmol, 15 mol%), methyl (4-bromobenzoyl)-*D*-phenylalaninate (72.4 mg, 0.20 mmol, 1 equiv), 2,2-dimethyl-1,3-dioxolane (102.1 mg, 1.0 mmol, 5 equiv), TBADT (33.5 mg, 0.02 mmol, 5 mol%), K₃PO₄ (51.2 mg, 0.24 mmol, 1.2 equiv) and anhydrous acetone/PhCF₃ (0.5 mL/0.5 mL) and was purified by silica gel column chromatography (PE/EA = 3/1) to obtain **3cx** as colorless oil (55.2 mg, 72% yield, d.r. > 19/1). R_f = 0.4 (PE/EA = 3/1). ¹H NMR (600 MHz, CDCl₃) δ 7.74 – 7.68 (m, 2H), 7.42 – 7.38 (m, 2H), 7.30 – 7.26 (m, 2H), 7.26 – 7.22 (m, 1H), 7.14 – 7.10 (m, 2H), 6.62 (d, *J* = 7.5 Hz, 1H), 5.12 – 5.05 (m, 2H), 4.32 (dd, *J* = 8.2, 6.3 Hz, 1H), 3.76 (s, 3H), 3.67 (t, *J* = 8.0 Hz, 1H), 3.28 (dd, *J* = 13.9, 5.8 Hz, 1H), 3.21 (dd, *J* = 13.9, 5.5 Hz, 1H), 1.54 (s, 3H), 1.48 (s, 3H);


¹³C NMR (151 MHz, CDCl₃) δ 172.1, 166.5, 143.4, 135.8, 133.5, 129.3, 128.7, 127.3, 127.2, 126.3, 110.1, 77.3, 71.5, 53.5, 52.5, 37.9, 26.5, 25.9;

HRMS: (APCI) calcd for C₂₂H₂₆NO₅⁺[M+H]⁺ 384.1804; found 384.1800.

Optical Rotation: $[\alpha]_D^{21}$ 50.1 (c 0.2, ^{*i*}PrOH).

N-((1S,4S)-4-(3,4-dichlorophenyl)-1,2,3,4-tetrahydronaphthalen-1-yl)-4-((R)-2,2-

dimethyl-1,3-dioxolan-4-yl)-N-methylbenzamide (3cy)

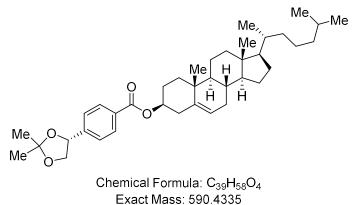
Exact Mass: 509.1524

3cy was prepared according to general procedure **2.1** using NiBr₂•dme (6.6 mg, 0.02 mmol, 10 mol%), **L6** (11.7 mg, 0.03 mmol, 15 mol%), 4-bromo-*N*-((1*S*,4*S*)-4-(3,4-dichlorophenyl)-1,2,3,4-tetrahydronaphthalen-1-yl)-*N*-methylbenzamide (97.8 mg, 0.20 mmol, 1 equiv), 2,2-dimethyl-1,3-dioxolane (102.1 mg, 1.0 mmol, 5 equiv), TBADT (33.5 mg, 0.02 mmol, 5 mol%), K₃PO₄ (51.2 mg, 0.24 mmol, 1.2 equiv) and anhydrous acetone/PhCF₃ (0.5 mL/0.5 mL) and was purified by silica gel column chromatography (PE/EA = 3/1) to obtain **3cy** as colorless oil (55.0 mg, 54% yield, d.r. > 19/1). $R_f = 0.5$ (PE/EA = 3/1).

¹H NMR (600 MHz, CDCl₃) δ 7.54 – 7.46 (m, 2H), 7.47 – 7.39 (m, 2H), 7.36 – 7.27 (m, 3H), 7.25 – 7.05 (m, 2H), 7.01 – 6.94 (m, 1H), 6.89 – 6.74 (m, 1H), 6.08 – 5.10 (m, 1H), 5.09 – 4.91 (m, 1H), 4.37 – 4.28 (m, 1H), 4.26 – 4.09 (m, 1H), 3.73 – 3.64 (m, 1H), 2.92 – 2.64 (m, 3H), 2.41 – 1.77 (m, 4H), 1.58 – 1.45 (m, 6H);

¹³C NMR (151 MHz, CDCl₃) δ 172.5, 172.2, 147.0, 146.7, 141.98, 140.8, 138.4, 137.9, 136.3, 135.7, 135.6, 132.5, 132.3, 131.1, 131.0, 130.7, 130.6, 130.3, 130.2, 130.1, 128.12, 128.07, 127.94, 127.93, 127.8, 127.6, 127.5, 127.3, 127.27, 127.25, 126.7, 126.51, 126.49, 126.3, 110.03, 110.00, 77.5, 71.61, 71.56, 58.6, 52.8, 43.1, 42.7, 33.1, 30.1, 20.0, 28.9, 26.6, 25.92, 25.86, 22.6, 21.2;

HRMS: (ESI) calcd for $C_{29}H_{30}Cl_2NO_3^+[M+H]^+ 510.1597$; found 510.1591.


Optical Rotation: $[\alpha]_D^{21}$ -79.8 (c 0.1, ^{*i*}PrOH).

Absolute stereochemistry was determined through analogy with 3cg.

(3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-((R)-6-methylheptan-2-yl)-

2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1*H*-cyclopenta[*a*]phenanthren-3-yl 4-

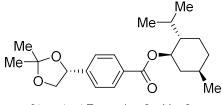
((R)-2,2-dimethyl-1,3-dioxolan-4-yl)benzoate (3cz)

3cz was prepared according to general procedure **2.1** using NiBr₂•dme (6.6 mg, 0.02 mmol, 10

mol%), **L6** (11.7 mg, 0.03 mmol, 15 mol%), (3*S*,8*S*,9*S*,10*R*,13*R*,14*S*,17*R*)-10,13-dimethyl-17-((*R*)-6-methylheptan-2-yl)-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1*H*-cyclopenta [*a*]phenanthren-3-yl 4-bromobenzoate (114.1 mg, 0.20 mmol, 1 equiv), 2,2-dimethyl-1,3dioxolane (102.1 mg, 1.0 mmol, 5 equiv), TBADT (33.5 mg, 0.02 mmol, 5 mol%), K₃PO₄ (51.2 mg, 0.24 mmol, 1.2 equiv) and anhydrous acetone/PhCF₃ (0.5 mL/0.5 mL) and was purified by silica gel column chromatography (PE/EA = 10/1) to obtain **3cz** as colorless oil (68.4 mg, 58% yield, d.r. > 19/1). $R_f = 0.6$ (PE/EA = 10/1).

¹H NMR (600 MHz, CDCl₃) δ 8.06 – 7.99 (m, 2H), 7.45 – 7.38 (m, 2H), 5.43 – 5.39 (m, 1H), 5.12 (dd, *J* = 7.8, 6.3 Hz, 1H), 4.89 – 4.81 (m, 1H), 4.33 (dd, *J* = 8.2, 6.3 Hz, 1H), 3.67 (t, *J* = 8.1 Hz, 1H), 2.46 (d, *J* = 7.7 Hz, 2H), 2.05 – 1.96 (m, 3H), 1.94 – 1.89 (m, 1H), 1.87 – 1.80 (m, 1H), 1.77 – 1.70 (m, 1H), 1.61 – 1.43 (m, 12H), 1.41 – 1.30 (m, 3H), 1.29 – 1.08 (m, 8H), 1.06 (s, 3H), 1.04 – 0.95 (m, 3H), 0.92 (d, *J* = 6.5 Hz, 3H), 0.87 (d, *J* = 2.7 Hz, 3H), 0.86 (d, *J* = 2.7 Hz, 3H), 0.69 (s, 3H);

¹³C NMR (151 MHz, CDCl₃) δ 165.7, 144.3, 139.6, 130.5, 129.8, 125.9, 122.8, 110.1, 77.5, 74.7, 71.5, 56.7, 56.2, 50.1, 42.3, 39.8, 39.5, 38.2, 37.0, 36.7, 36.2, 35.8, 32.0, 31.9, 28.3, 28.0, 27.9, 26.5, 25.9, 24.3, 23.9, 22.9, 22.6, 21.1, 19.4, 18.7, 11.9.


HRMS: (APCI) calcd for C₃₉H₅₉O₄⁺[M+H]⁺ 591.4408; found 591.4390.

Optical Rotation: $[\alpha]_D^{21}$ -93.0 (c 0.1, ^{*i*}PrOH).

4-((*R*)-2,2-dimethyl-1,3-dioxolan-4-yl)

(1*R*,2*S*,5*R*)-2-isopropyl-5-methylcyclohexyl

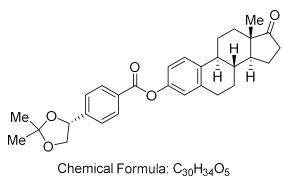
benzoate (3caa)

Chemical Formula: C₂₂H₃₂O₄ Exact Mass: 360.2301

3caa was prepared according to general procedure **2.1** using NiBr₂•dme (6.6 mg, 0.02 mmol, 10 mol%), **L6** (11.7 mg, 0.03 mmol, 15 mol%), (1*R*,2*S*,5*R*)-2-isopropyl-5-methylcyclohexyl 4bromobenzoate (67.8 mg, 0.20 mmol, 1 equiv), 2,2-dimethyl-1,3-dioxolane (102.1 mg, 1.0 mmol, 5 equiv), TBADT (33.5 mg, 0.02 mmol, 5 mol%), K₃PO₄ (51.2 mg, 0.24 mmol, 1.2 equiv) and anhydrous acetone/PhCF₃ (0.5 mL/0.5 mL) and was purified by silica gel column chromatography (PE/EA = 10/1) to obtain **3caa** as colorless oil (48.2 mg, 67% yield, d.r. > 19/1). R_f = 0.6 (PE/EA = 10/1).

¹H NMR (600 MHz, CDCl₃) δ 8.05 – 8.01 (m, 2H), 7.45 – 7.39 (m, 2H), 5.12 (dd, *J* = 7.8, 6.3 Hz, 1H), 4.95 – 4.89 (m, 1H), 4.33 (dd, *J* = 8.3, 6.3 Hz, 1H), 3.67 (t, *J* = 8.0 Hz, 1H), 2.14 – 2.09 (m, 1H), 1.98 – 1.90 (m, 1H), 1.75 – 1.68 (m, 2H), 1.54 (s, 5H), 1.49 (s, 3H), 1.17 – 1.06 (m, 2H), 0.91 (t, *J* = 7.3 Hz, 7H), 0.78 (d, *J* = 6.9 Hz, 3H);

¹³C NMR (151 MHz, CDCl₃) δ 165.8, 144.4, 130.5, 129.9, 125.9, 110.1, 77.4, 74.9, 71.5, 47.3, 41.0, 34.3, 31.5, 26.53, 26.49, 25.9, 23.7, 22.1, 20.8, 16.5;


HRMS: (ESI) calcd for C₂₂H₃₃O₄⁺[M+H]⁺ 361.2373; found 361.2365.

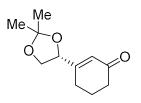
Optical Rotation: $[\alpha]_D^{21}$ -218.2 (c 0.2, ^{*i*}PrOH).

Absolute stereochemistry was determined through analogy with 3cg.

(8R,9S,13S,14S)-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6H-

cyclopenta[a]phenanthren-3-yl 4-((R)-2,2-dimethyl-1,3-dioxolan-4-yl)benzoate (3cab)

Exact Mass: 474.2406


3cab was prepared according to general procedure **2.1** using NiBr₂•dme (6.6 mg, 0.02 mmol, 10 mol%), **L6** (11.7 mg, 0.03 mmol, 15 mol%), (8*R*,9*S*,13*S*,14*S*)-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6*H*-cyclopenta[*a*]phenanthren-3-yl 4-bromobenzoate (90.6 mg, 0.20 mmol, 1 equiv), 2,2-dimethyl-1,3-dioxolane (102.1 mg, 1.0 mmol, 5 equiv), TBADT (33.5 mg, 0.02 mmol, 5 mol%), K₃PO₄ (51.2 mg, 0.24 mmol, 1.2 equiv) and anhydrous acetone/PhCF₃ (0.5 mL/0.5 mL) and was purified by silica gel column chromatography (PE/EA = 3/1) to obtain **3cab** as colorless oil (61.6 mg, 65% yield, d.r. > 19/1). R_f = 0.4 (PE/EA = 4/1). ¹H NMR (600 MHz, CDCl₃) δ 8.21 – 8.15 (m, 2H), 7.53 – 7.48 (m, 2H), 7.33 (dd, *J* = 8.6, 1.1 Hz, 1H), 6.98 (dd, *J* = 8.5, 2.6 Hz, 1H), 6.94 (d, *J* = 2.5 Hz, 1H), 5.17 (dd, *J* = 7.7, 6.4 Hz, 1H), 4.37 (dd, *J* = 8.2, 6.4 Hz, 1H), 3.71 (t, *J* = 8.0 Hz, 1H), 2.96 – 2.90 (m, 2H), 2.54 – 2.48 (m, 1H), 2.45 – 2.40 (m, 1H), 2.35 – 2.28 (m, 1H), 2.18 – 2.11 (m, 1H), 2.09 – 2.00 (m, 2H), 2.00 – 1.95 (m, 1H), 1.66 – 1.60 (m, 2H), 1.59 – 1.43 (m, 10H), 0.92 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 220.9, 165.2, 148.8, 145.3, 138.1, 137.5, 130.5, 129.3, 126.5,

126.1, 121.7, 118.9, 110.2, 77.4, 71.5, 50.5, 48.0, 44.2, 38.0, 35.9, 31.6, 29.5, 26.5, 26.4, 25.9, 25.8, 21.6, 13.9;

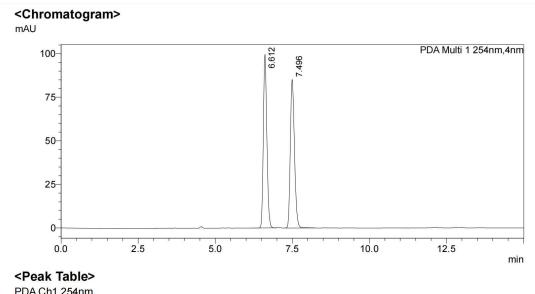
HRMS: (ESI) calcd for C₃₀H₃₅O₅⁺[M+H]⁺ 475.2479; found 475.2473.

Optical Rotation: $[\alpha]_D^{21}$ 103.8 (c 0.2, ^{*i*}PrOH).

(*R*)-3-(2,2-dimethyl-1,3-dioxolan-4-yl)cyclohex-2-en-1-one (3cac)

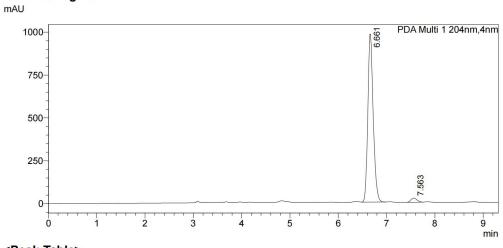
Chemical Formula: C₁₁H₁₆O₃ Exact Mass: 196.1099

3cac was prepared according to general procedure **2.1** using NiBr₂•dme (6.6 mg, 0.02 mmol, 10 mol%), **L6** (11.7 mg, 0.03 mmol, 15 mol%), 3-bromocyclohex-2-en-1-one (35.0 mg, 0.20 mmol, 1 equiv), 2,2-dimethyl-1,3-dioxolane (102.1 mg, 1.0 mmol, 5 equiv), TBADT (33.5 mg, 0.02 mmol, 5 mol%), K₃PO₄ (51.2 mg, 0.24 mmol, 1.2 equiv) and anhydrous acetone/PhCF₃ (0.5 mL/0.5 mL) and was purified by silica gel column chromatography (PE/EA = 4/1) to obtain **3cac** as colorless oil (16.5 mg, 42% yield, 95% ee). $R_f = 0.5$ (PE/EA = 4/1).


¹H NMR (600 MHz, CDCl₃) δ 6.13 (q, *J* = 1.5 Hz, 1H), 4.63 (t, *J* = 7.0 Hz, 1H), 4.23 (dd, *J* = 8.3, 6.9 Hz, 1H), 3.72 – 3.68 (m, 1H), 2.41 (td, *J* = 6.2, 1.1 Hz, 2H), 2.29 (qd, *J* = 6.1, 1.6 Hz, 2H), 2.06 – 2.00 (m, 2H), 1.46 (s, 3H), 1.42 (s, 3H);

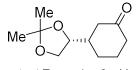
¹³C NMR (151 MHz, CDCl₃) δ 199.5, 161.7, 124.9, 110.4, 77.7, 68.5, 37.8, 26.1, 25.5, 25.4, 22.6;

HRMS: (APCI) calcd for $C_{11}H_{17}O_3^+[M+H]^+$ 197.1172; found 197.1170.


The enantiomeric purity was established by HPLC analysis using a chiral column: AD-H column, 30 °C, "Hexane/"Propanol = 90/10 as eluent, 204 nm, 1 mL/min. tR = 6.7 min (major), 7.6 min (minor).

Optical Rotation: $[\alpha]_D^{21}$ -14.5 (c 0.1, ^{*i*}PrOH) for 95% ee.

	111 2041111					1	
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	6.612	785869	99509	0.000		M	
2	7.496	797401	85242	0.000		M	
Tota		1583269	184750				

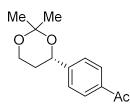


<Peak Table>

Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	6.661	7538653	980038	0.000		M	
2	7.563	198822	23528	0.000		M	
Total		7737475	1003566				

Supplementary Figure 50. HPLC spectrum of (R)-3cac

(R)-3-((R)-2,2-dimethyl-1,3-dioxolan-4-yl)cyclohexan-1-one (3cad)



Chemical Formula: C₁₁H₁₈O₃ Exact Mass: 198.1256

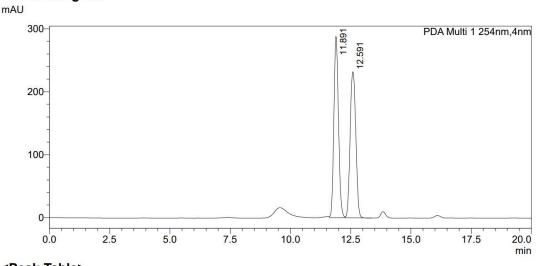
An oven-dried 10-mL Schlenk equipped with a PTFE-coated stir bar was charged with 5% Pd/C (36.6 mg, 0.018 mmol, 15 mol%) and **3cac** (19.6 mg, 0.10 mmol, 1 equiv) in toluene (1 mL) and $CH_2Cl_2(1 \text{ mL})$. The reaction mixture was stirred under H_2 atmosphere (10 bar) at 25 °C for 24 hours. The mixture was filtered through Celite and the filtrate was condensed. The residue was purified by silica gel column chromatography (PE/EtOAc = 5/1) to obtain **3cad** as colorless oil (17.4 mg, 88%, d.r. > 20:1).

¹H NMR (600 MHz, CDCl₃) δ 4.05 – 3.98 (m, 1H), 3.92 (q, *J* = 6.8 Hz, 1H), 3.67 – 3.60 (m, 1H), 2.39 (ddd, *J* = 13.9, 5.6, 2.9 Hz, 1H), 2.33 – 2.24 (m, 2H), 2.11 (dtd, *J* = 20.4, 13.6, 2.6 Hz, 3H), 1.92 (dtd, *J* = 14.9, 7.1, 3.5 Hz, 1H), 1.72 – 1.60 (m, 1H), 1.53 – 1.43 (m, 1H), 1.40 (s, 3H), 1.35 (s, 3H);

¹³C NMR (151 MHz, CDCl₃) δ 210.5, 109.1, 78.8, 67.3, 44.1, 42.4, 41.4, 27.2, 26.5, 25.4, 24.9; HRMS: (ESI) calcd for C₁₁H₁₉O₃⁺[M+H]⁺ 199.1329; found 199.1328. (S)-1-(4-(2,2-dimethyl-1,3-dioxan-4-yl)phenyl)ethan-1-one (5aa)

Chemical Formula: C₁₄H₁₈O₃ Exact Mass: 234.1256

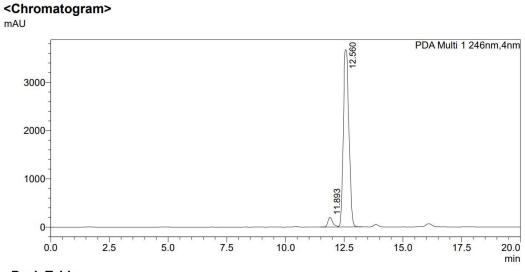
5aa was prepared according to general procedure **2.2** using NiBr₂•dme (6.2 mg, 0.02 mmol, 10 mol%), **L6** (11.7 mg, 0.03 mmol, 15 mol%), anhydrous acetone (0.5 mL), 1-(4-bromophenyl)ethan-1-one (39.8 mg, 0.20 mmol, 1 equiv), TBADT (33.5 mg, 0.02 mmol, 5 mol%), 2,2-dimethyl-1,3-dioxane **4a** (232.4 mg, 2.0 mmol, 10 equiv), K₃PO₄ (63.6 mg, 0.3 mmol, 1.5 equiv) and PhCF₃ (0.5 mL) and was purified by silica gel column chromatography (PE/EtOAc = 10/1) to obtain **5aa** as colorless oil (29.0 mg, 62% yield, 91% ee).


¹H NMR (600 MHz, CDCl₃) δ 7.96 – 7.94 (m, 2H), 7.49 – 7.46 (m, 2H), 5.00 (dd, *J* = 11.7, 2.8 Hz, 1H), 4.15 (td, *J* = 12.2, 2.7 Hz, 1H), 3.94 (ddd, *J* = 11.8, 5.3, 1.6 Hz, 1H), 2.60 (s, 3H), 1.90 – 1.81 (m, 1H), 1.75 – 1.67 (m, 1H), 1.58 (s, 3H), 1.51 (s, 3H);

¹³C NMR (151 MHz, CDCl₃) δ 197.8, 147.7, 136.4, 128.6, 125.9, 98.9, 70.9, 60.0, 33.4, 30.0, 26.6, 19.2;

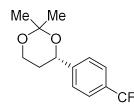
HRMS: (APCI) calcd for $C_{14}H_{19}O_3^+[M+H]^+$ 235.1329; found 235.1320.

The enantiomeric purity was established by HPLC analysis using a chiral column: AD-H column, $30 \,^{\circ}$ C, "Hexane/"Propanol = 90/10 as eluent, 246 nm, 1 mL/min. tR = 12.6 min (major), 11.9 min (minor).


Optical Rotation: $[\alpha]_D^{24}$ -7.5 (c 0.2, ^{*i*}PrOH) for 91% ee.

<Peak Table>

Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	11.891	3811874	288191	0.000		M	
2	12.591	3806980	232106	0.000		VM	
Total		7618853	520297				



<Peak Table>

Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	11.893	2822812	201075	4.432		M	
2	12.560	60875398	3673934	95.568		VM	
Total		63698210	3875009				

Supplementary Figure 52. HPLC spectrum of (S)-5aa

(S)-2,2-dimethyl-4-(4-(trifluoromethyl)phenyl)-1,3-dioxane (5ac)

Chemical Formula: C₁₃H₁₅F₃O₂ Exact Mass: 260.1024

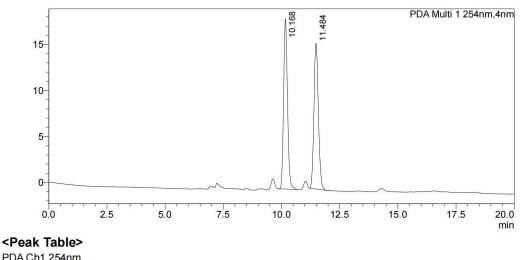
5ac was prepared according to general procedure **2.2** using NiBr₂•dme (6.2 mg, 0.02 mmol, 10 mol%), **L6** (11.7 mg, 0.03 mmol, 15 mol%), anhydrous acetone (0.5 mL), 1-bromo-4- (trifluoromethyl)benzene (45.0 mg, 0.20 mmol, 1 equiv), TBADT (33.5 mg, 0.02 mmol, 5 mol%), 2,2-dimethyl-1,3-dioxane **4a** (232.4 mg, 2.0 mmol, 10 equiv), K₃PO₄ (63.6 mg, 0.3 mmol, 1.5 equiv) and PhCF₃ (0.5 mL) and was purified by silica gel column chromatography (PE/EtOAc = 50/1) to obtain **5ac** as colorless oil (21.8 mg, 42% yield, 95% ee).

¹H NMR (600 MHz, CDCl₃) δ 7.54 (d, *J* = 8.0 Hz, 2H), 7.42 (d, *J* = 8.0 Hz, 2H), 4.92 (dd, *J* = 11.8, 2.7 Hz, 1H), 4.07 (td, *J* = 12.2, 2.6 Hz, 1H), 3.87 (dd, *J* = 11.9, 5.2 Hz, 1H), 1.78 (qd, *J* = 12.5, 5.2 Hz, 1H), 1.65 – 1.60 (m, 1H), 1.51 (s, 3H), 1.44 (s, 3H);

¹³C NMR (151 MHz, CDCl₃) δ 146.4, 129.8 (q, *J* = 32.3 Hz), 126.2, 125.4 (q, *J* = 3.8 Hz), 124.2

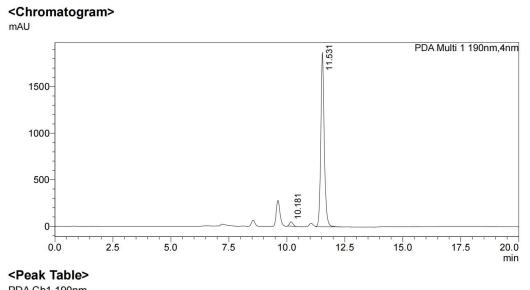
(q, *J* = 271.9 Hz), 98.9, 70.8, 60.0, 33.4, 30.0, 19.2;

¹⁹F NMR (565 MHz, CDCl₃) δ -62.50.

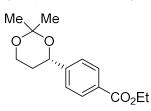

HRMS: (ESI) calcd for $C_{13}H_{16}F_3O_2^+[M+H]^+$ 261.1097; found 261.1102.

The enantiomeric purity was established by HPLC analysis using a chiral column: OJ-H column,

30 °C, "Hexane/ⁱPropanol = 98/2 as eluent, 190 nm, 0.5 mL/min. tR = 11.5 min (major), 10.2 min (minor).


Optical Rotation: $[\alpha]_D^{24}$ -18.8 (c 0.1, ^{*i*}PrOH) for 95% ee.

FDAG	2341111						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	10.168	214332	18516	0.000		M	
2	11.484	211341	15843	0.000		M	
Total		425674	34359				



PDA C	h1 190nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	10.181	489420	47266	0.000		M	
2	11.531	19508985	1874902	0.000		M	
Total		19998405	1922169				

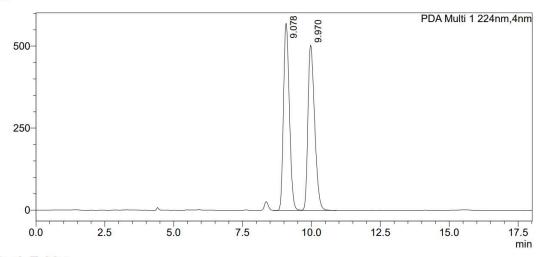
Supplementary Figure 54. HPLC spectrum of (S)-5ac

ethyl (S)-4-(2,2-dimethyl-1,3-dioxan-4-yl)benzoate (5ad)

Chemical Formula: C₁₅H₂₀O₄ Exact Mass: 264.1362

5ad was prepared according to general procedure **2.2** using NiBr₂•dme (6.2 mg, 0.02 mmol, 10 mol%), **L6** (11.7 mg, 0.03 mmol, 15 mol%), anhydrous acetone (0.5 mL), ethyl 4-bromobenzoate (45.8 mg, 0.20 mmol, 1 equiv), TBADT (33.5 mg, 0.02 mmol, 5 mol%), 2,2-dimethyl-1,3-dioxane **4a** (232.4 mg, 2.0 mmol, 10 equiv), K_3PO_4 (63.6 mg, 0.3 mmol, 1.5 equiv) and PhCF₃ (0.5 mL) and was purified by silica gel column chromatography (PE/EtOAc = 15/1) to obtain **5ad** as colorless oil (21.1 mg, 40% yield, 91% ee).

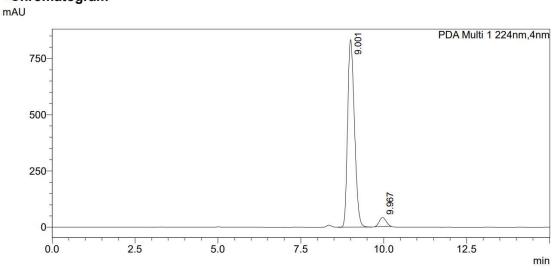
¹H NMR (600 MHz, CDCl₃) δ 7.95 (d, *J* = 8.2 Hz, 2H), 7.37 (d, *J* = 8.0 Hz, 2H), 4.92 (dd, *J* = 11.6, 2.7 Hz, 1H), 4.30 (q, *J* = 7.2 Hz, 2H), 4.07 (td, *J* = 12.2, 2.5 Hz, 1H), 3.86 (dd, *J* = 11.9, 5.1 Hz, 1H), 1.78 (qd, *J* = 12.5, 5.2 Hz, 1H), 1.62 – 1.57 (m, 1H), 1.55 (s, 3H), 1.44 (s, 3H), 1.32 (t, *J* = 7.2 Hz, 3H);


¹³C NMR (151 MHz, CDCl₃) δ 166.5, 147.4, 129.8 129.7 125.7 98.9 71.0, 61.0, 60.0, 33.4, 30.0, 19.2, 14.3;

HRMS: (APCI) calcd for $C_{15}H_{21}O_4^+[M+H]^+$ 265.1434; found 265.1434.

The enantiomeric purity was established by HPLC analysis using a chiral column: OJ-H column, 30 °C, "Hexane/ⁱPropanol = 95/5 as eluent, 224 nm, 1 mL/min. tR = 9.0 min (major), 9.9 min (minor).

Optical Rotation: $[\alpha]_D^{24}$ -41.6 (c 0.1, ^{*i*}PrOH) for 91% ee.



<Peak Table>

	n1 224nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	9.078	8492705	570304	0.000		M	
2	9.970	8549454	503686	0.000		VM	
Total		17042158	1073990				

<Chromatogram>

<Peak Table>

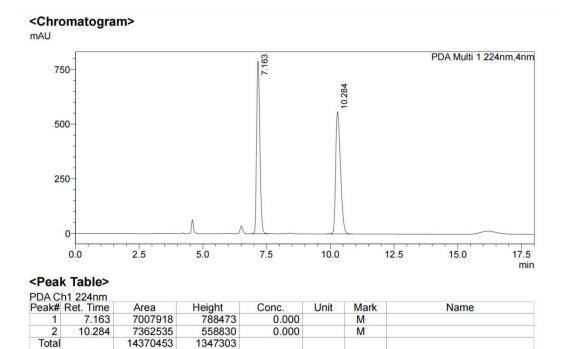
eak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	9.001	11959963	833786	0.000		M	
2	9.967	575323	40062	0.000		M	
Total		12535286	873848				

Supplementary Figure 56. HPLC spectrum of (S)-5ad

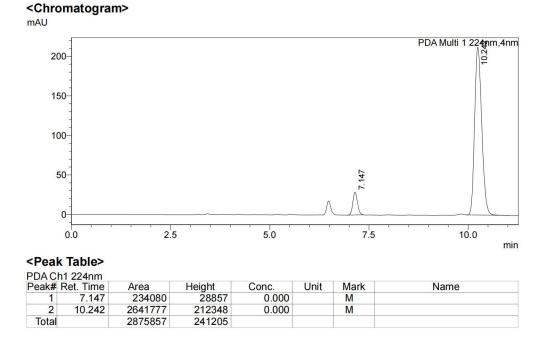
(S)-4-(4-chlorophenyl)-2,2-dimethyl-1,3-dioxane (5af)

Exact Mass: 226.0761

5af was prepared according to general procedure **2.2** using NiBr₂•dme (6.2 mg, 0.02 mmol, 10 mol%), **L6** (11.7 mg, 0.03 mmol, 15 mol%), anhydrous acetone (0.5 mL), 1-bromo-4-chlorobenzene (38.2 mg, 0.20 mmol, 1 equiv), TBADT (33.5 mg, 0.02 mmol, 5 mol%), 2,2-dimethyl-1,3-dioxane **4a** (232.4 mg, 2.0 mmol, 10 equiv), K₃PO₄ (63.6 mg, 0.3 mmol, 1.5 equiv) and PhCF₃ (0.5 mL) and was purified by silica gel column chromatography (PE/EtOAc = 50/1) to obtain **5af** as colorless oil (28.5 mg, 63% yield, 84% ee).

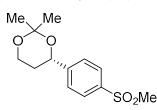

¹H NMR (600 MHz, CDCl₃) δ 7.24 (d, *J* = 1.7 Hz, 4H), 4.83 (dt, *J* = 11.9, 2.2 Hz, 1H), 4.08 – 4.01 (m, 1H), 3.88 – 3.82 (m, 1H), 1.82 – 1.72 (m, 1H), 1.62 – 1.55 (m, 1H), 1.50 (s, 3H), 1.42 (s, 3H);

¹³C NMR (151 MHz, CDCl₃) δ 141.0, 133.2, 128.6, 127.3, 98.9, 70.8, 60.0, 33.5, 30.1, 19.2;


HRMS: (APCI) calcd for $C_{12}H_{16}ClO_2^+[M+H]^+ 227.0833$; found 227.0827.

The enantiomeric purity was established by HPLC analysis using a chiral column: OJ-H column, 30 °C, ^{*n*}Hexane/^{*i*}Propanol = 97/3 as eluent, 224 nm, 1 mL/min. tR = 10.2 min (major), 7.1 min (minor).

Optical Rotation: $[\alpha]_D^{26}$ -5.7 (c 0.1, ^{*i*}PrOH) for 84% ee.



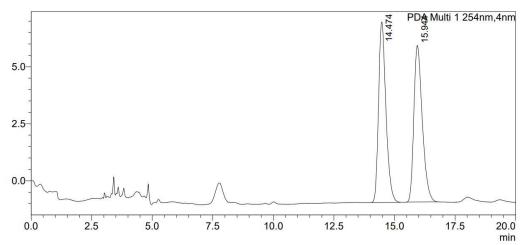
Supplementary Figure 58. HPLC spectrum of (S)-5af

(S)-2,2-dimethyl-4-(4-(methylsulfonyl)phenyl)-1,3-dioxane (5ag)

Chemical Formula: C₁₃H₁₈O₄S Exact Mass: 270.0926

5ag was prepared according to general procedure **2.2** using NiBr₂•dme (6.2 mg, 0.02 mmol, 10 mol%), **L6** (11.7 mg, 0.03 mmol, 15 mol%), anhydrous acetone (0.5 mL), 1-bromo-4- (methylsulfonyl)benzene (47.0 mg, 0.20 mmol, 1 equiv), TBADT (33.5 mg, 0.02 mmol, 5 mol%), 2,2-dimethyl-1,3-dioxane **4a** (232.4 mg, 2.0 mmol, 10 equiv), K₃PO₄ (63.6 mg, 0.3 mmol, 1.5 equiv) and PhCF₃ (0.5 mL) and was purified by silica gel column chromatography (PE/EtOAc = 2/1) to obtain **5ag** as white solid (36.7 mg, 68% yield, 92% ee).

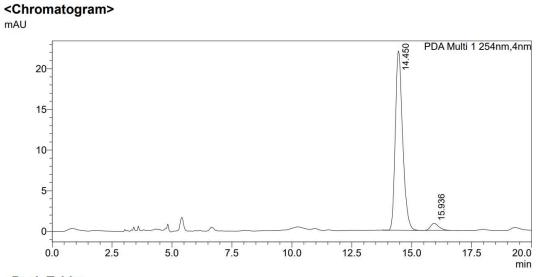
¹H NMR (600 MHz, CDCl₃) δ 7.95 – 7.91 (m, 2H), 7.59 (d, *J* = 8.1 Hz, 2H), 5.03 (dd, *J* = 11.7, 2.8 Hz, 1H), 4.15 (td, *J* = 12.2, 2.8 Hz, 1H), 3.95 (ddd, *J* = 11.8, 5.2, 1.6 Hz, 1H), 3.03 (s, 3H), 1.88 – 1.80 (m, 1H), 1.75 – 1.70 (m, 1H), 1.58 (s, 3H), 1.51 (s, 3H);


¹³C NMR (151 MHz, CDCl₃) δ 148.7, 139.6, 127.6, 126.8, 99.0, 70.7, 59.9, 44.6, 33.4, 30.0, 19.2;

HRMS: (APCI) calcd for C₁₃H₁₉O₄S⁺[M+H]⁺271.0999; found 271.1002.

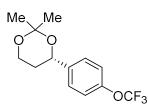
The enantiomeric purity was established by HPLC analysis using a chiral column: AD-H column, $30 \,^{\circ}$ C, "Hexane/"Propanol = 90/10 as eluent, 254 nm, 1 mL/min. tR = 14.5 min (major), 15.9 min (minor).

Optical Rotation: $[\alpha]_D^{22}$ -38.5 (c 0.2, MeCN) for 92% ee.



<Peak Table>

Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	14.474	167364	7916	50.177			
2	15.944	166185	6869	49.823			
Total		333549	14785				



<Peak Table>

	h1 254nm Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	14.450	468617	22024	0.000		M	
2	15.936	20145	857	0.000		M	
Total		488762	22881				

Supplementary Figure 60. HPLC spectrum of (S)-5ag

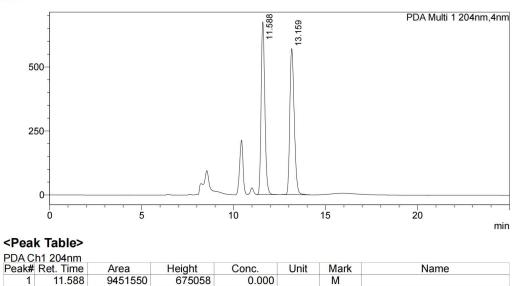
(S)-2,2-dimethyl-4-(4-(trifluoromethoxy)phenyl)-1,3-dioxane (5ai)

Chemical Formula: C₁₃H₁₅F₃O₃ Exact Mass: 276.0973

5ai was prepared according to general procedure **2.2** using NiBr₂•dme (6.2 mg, 0.02 mmol, 10 mol%), **L6** (11.7 mg, 0.03 mmol, 15 mol%), anhydrous acetone (0.5 mL), 1-bromo-4- (trifluoromethoxy)benzene (48.2 mg, 0.20 mmol, 1 equiv), TBADT (33.5 mg, 0.02 mmol, 5 mol%), 2,2-dimethyl-1,3-dioxane **4a** (232.4 mg, 2.0 mmol, 10 equiv), K₃PO₄ (63.6 mg, 0.3 mmol, 1.5 equiv) and PhCF₃ (0.5 mL) and was purified by silica gel column chromatography (PE/EtOAc = 40/1) to obtain **5ai** as colorless oil (21.5 mg, 39% yield, 89% ee).

¹H NMR (600 MHz, CDCl₃) δ 7.43 – 7.39 (m, 2H), 7.20 (d, *J* = 8.3 Hz, 2H), 4.94 (dd, *J* = 11.7, 2.7 Hz, 1H), 4.13 (td, *J* = 12.2, 2.7 Hz, 1H), 3.93 (ddd, *J* = 11.9, 5.4, 1.6 Hz, 1H), 1.87 (qd, *J* = 12.5, 5.3 Hz, 1H), 1.67 (dq, *J* = 13.2, 2.3 Hz, 1H), 1.58 (s, 3H), 1.50 (s, 3H);

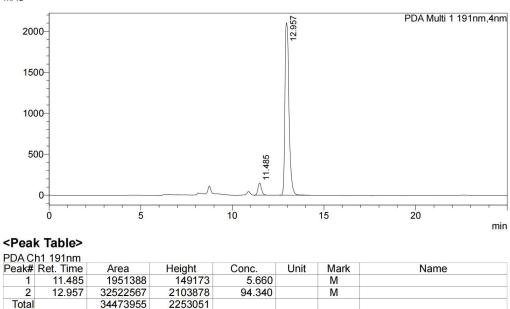
¹³C NMR (151 MHz, CDCl₃) δ 148.5 (q, *J* = 1.5 Hz), 141.2, 127.4, 121.1, 120.5 (q, *J* = 256.9 Hz), 98.9, 70.8, 60.0, 33.5, 30.1, 19.2;


¹⁹F NMR (565 MHz, CDCl₃) δ -57.89

HRMS: (APCI) calcd for $C_{13}H_{16}F_3O_3^+[M+H]^+$ 277.1046; found 277.1048.

The enantiomeric purity was established by HPLC analysis using a chiral column: OJ-H column, 30 °C, "Hexane/^{*i*}Propanol = 99/1 as eluent, 191 nm, 0.5 mL/min. tR = 13.0 min (major), 11.5 min (minor).

Optical Rotation: $[\alpha]_D^{23}$ -28.4 (c 0.1, ^{*i*}PrOH) for 89% ee.



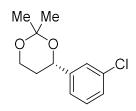
0.000

Μ

<Chromatogram> mAU

13.159

2 Total 9526754


18978304

570771

1245828

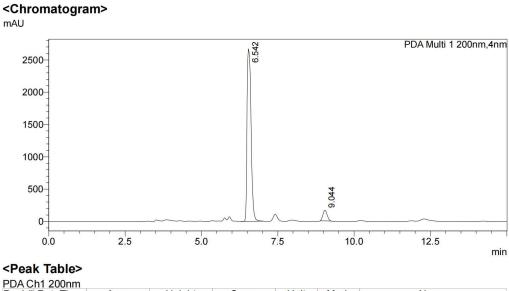
Supplementary Figure 62. HPLC spectrum of (S)-5ai

(S)-4-(3-chlorophenyl)-2,2-dimethyl-1,3-dioxane (5al)

Chemical Formula: C₁₂H₁₅ClO₂ Exact Mass: 226.0761

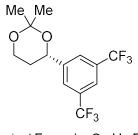
5al was prepared according to general procedure **2.2** using NiBr₂•dme (6.2 mg, 0.02 mmol, 10 mol%), **L6** (11.7 mg, 0.03 mmol, 15 mol%), anhydrous acetone (0.5 mL), 1-bromo-3-chlorobenzene (38.2 mg, 0.20 mmol, 1 equiv), TBADT (33.5 mg, 0.02 mmol, 5 mol%), 2,2-dimethyl-1,3-dioxane **4a** (232.4 mg, 2.0 mmol, 10 equiv), K₃PO₄ (63.6 mg, 0.3 mmol, 1.5 equiv) and PhCF₃ (0.5 mL) and was purified by silica gel column chromatography (PE/EtOAc = 50/1) to obtain **5al** as colorless oil (28.0 mg, 62% yield, 88% ee).

¹H NMR (600 MHz, CDCl₃) δ 7.39 (t, *J* = 1.9 Hz, 1H), 7.27 – 7.22 (m, 3H), 4.91 (dd, *J* = 11.7, 2.8 Hz, 1H), 4.12 (td, *J* = 12.2, 2.7 Hz, 1H), 3.93 (ddd, *J* = 11.8, 5.3, 1.6 Hz, 1H), 1.90 – 1.81 (m, 1H), 1.67 (dtd, *J* = 13.2, 2.7, 1.6 Hz, 1H), 1.57 (s, 3H), 1.50 (s, 3H);


¹³C NMR (151 MHz, CDCl₃) δ 144.5, 134.4, 129.7, 127.7, 126.2, 124.0, 98.9, 70.8, 60.0, 33.4, 30.0, 19.2;

HRMS: (APCI) calcd for $C_{12}H_{16}ClO_2^+[M+H]^+ 227.0833$; found 227.0827.

The enantiomeric purity was established by HPLC analysis using a chiral column: OJ-H column, 30 °C, "Hexane/ⁱPropanol = 97/3 as eluent, 200 nm, 1 mL/min. tR = 6.5 min (major), 9.0 min (minor).



Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	6.542	24402983	2667852	0.000		M	
2	9.044	1595680	164710	0.000		M	
Total		25998663	2832562				

Supplementary Figure 64. HPLC spectrum of (S)-5al

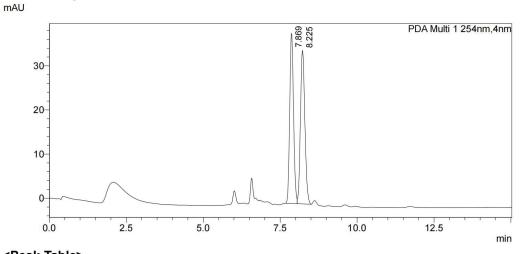
(S)-4-(3,5-bis(trifluoromethyl)phenyl)-2,2-dimethyl-1,3-dioxane (5ao)

Chemical Formula: C₁₄H₁₄F₆O₂ Exact Mass: 328.0898

5ao was prepared according to general procedure **2.2** using NiBr₂•dme (6.2 mg, 0.02 mmol, 10 mol%), **L6** (11.7 mg, 0.03 mmol, 15 mol%), anhydrous acetone (0.5 mL), 1-bromo-3,5-bis(trifluoromethyl)benzene (58.6 mg, 0.20 mmol, 1 equiv), TBADT (33.5 mg, 0.02 mmol, 5 mol%), 2,2-dimethyl-1,3-dioxane **4a** (232.4 mg, 2.0 mmol, 10 equiv), K₃PO₄ (63.6 mg, 0.3 mmol, 1.5 equiv) and PhCF₃ (0.5 mL) and was purified by silica gel column chromatography (PE/EtOAc = 50/1) to obtain **5ao** as colorless oil (38.0 mg, 58% yield, 93% ee).

¹H NMR (600 MHz, CDCl₃) δ 7.83 (d, *J* = 1.6 Hz, 2H), 7.79 (s, 1H), 5.06 (dd, *J* = 11.6, 3.0 Hz, 1H), 4.15 (td, *J* = 12.1, 2.9 Hz, 1H), 3.96 (ddd, *J* = 11.9, 5.2, 1.7 Hz, 1H), 1.84 (dtd, *J* = 13.1,

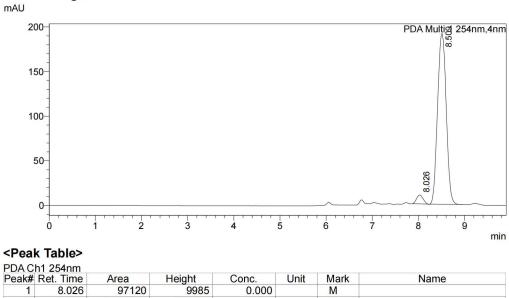
11.9, 5.2 Hz, 1H), 1.76 (dtd, *J* = 13.2, 2.9, 1.7 Hz, 1H), 1.58 (s, 3H), 1.53 (s, 3H);


¹³C NMR (151 MHz, CDCl₃) δ 145.0, 131.7 (q, *J* = 33.2 Hz), 126.1 (q, *J* = 4.9, 4.1 Hz), 123.3 (q, *J* = 272.5 Hz), 121.5 (p, *J* = 3.9 Hz), 99.2, 70.2, 59.8, 33.3, 29.9, 19.1;

¹⁹F NMR (575 MHz, CDCl₃) δ -62.82.

HRMS: (APCI) calcd for $C_{14}H_{15}F_6O_2^+[M+H]^+$ 329.0971; found 329.0962.

The enantiomeric purity was established by HPLC analysis using a chiral column: OD-H column, 30 °C, "Hexane/'Propanol = 99/1 as eluent, 254 nm, 0.5 mL/min. tR = 8.5 min (major), 8.0 min (minor).


Optical Rotation: $[\alpha]_D^{25}$ -121.6 (c 0.1, ^{*i*}PrOH) for 93% ee.

<Peak Table> PDA Ch1 254nm

FDAG	2341111						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	7.869	331433	38530	0.000		M	
2	8.225	347239	34744	0.000		VM	
Total		678672	73274				

<Chromatogram>

8.026

8.509

1

2

Total

97120

2494123

2591243

9985

191390

201375

Supplementary Figure 66. HPLC spectrum of (S)-5ao

0.000

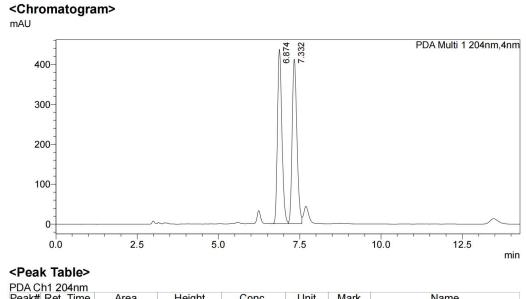
М

Μ

(S)-5-(2,2-dimethyl-1,3-dioxan-4-yl)isobenzofuran-1(3H)-one (5aq)

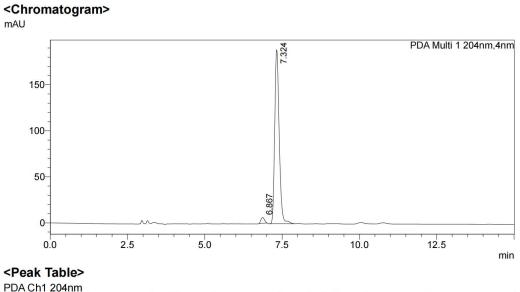
Chemical Formula: C₁₄H₁₆O₄ Exact Mass: 248.1049

5aq was prepared according to general procedure **2.2** using NiBr₂•dme (6.2 mg, 0.02 mmol, 10 mol%), **L6** (11.7 mg, 0.03 mmol, 15 mol%), anhydrous acetone (0.5 mL), 5-bromoisobenzofuran-1(3H)-one (42.6 mg, 0.20 mmol, 1 equiv), TBADT (33.5 mg, 0.02 mmol, 5 mol%), 2,2-dimethyl-1,3-dioxane **4a** (232.4 mg, 2.0 mmol, 10 equiv), K₃PO₄ (63.6 mg, 0.3 mmol, 1.5 equiv) and PhCF₃ (0.5 mL) and was purified by silica gel column chromatography (PE/EtOAc = 5/1) to obtain **5aq** as colorless oil (21.3 mg, 43% yield, 95% ee).


¹H NMR (600 MHz, CDCl₃) δ 7.82 (d, *J* = 7.9 Hz, 1H), 7.50 (s, 1H), 7.42 (d, *J* = 7.8 Hz, 1H), 5.25 (s, 2H), 5.02 – 4.98 (m, 1H), 4.09 (tt, *J* = 12.2, 2.0 Hz, 1H), 3.88 (dd, *J* = 11.9, 5.2 Hz, 1H), 1.77 (qd, *J* = 12.3, 5.1 Hz, 1H), 1.67 (d, *J* = 3.3 Hz, 1H), 1.52 (s, 3H), 1.45 (s, 3H);

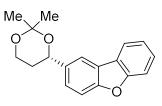
¹³C NMR (151 MHz, CDCl₃) δ 171.0, 149.4, 147.2, 126.9, 125.8, 125.0, 119.3, 99.0, 71.0, 69.7, 59.9, 33.6, 30.0, 19.2;

HRMS: (ESI) calcd for $C_{14}H_{17}O_4^+[M+H]^+$ 249.1121; found 249.1123.


The enantiomeric purity was established by HPLC analysis using a chiral column: AD-H column, 30 °C, "Hexane/^{*i*}Propanol = 80/20 as eluent, 204 nm, 1 mL/min. tR = 7.3 min (major), 6.9 min (minor).

Optical Rotation: $[\alpha]_D^{23}$ -4.5 (c 0.1, ^{*i*}PrOH) for 95% ee.

Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	6.874	4162748	436518	0.000		Μ	
2	7.332	4191976	412056	0.000		VM	
Tota	l	8354724	848574				



	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	6.867	50969	6335	0.000		M	
2	7.324	1905729	188916	0.000		M	
Total		1956698	195251				

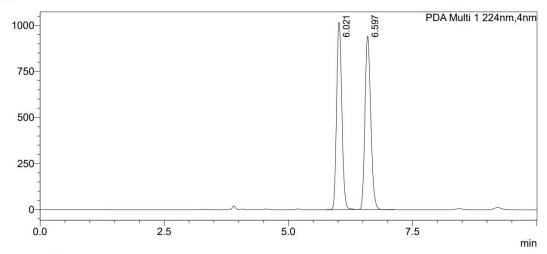
Supplementary Figure 68. HPLC spectrum of (S)-5aq

(S)-2-(2,2-dimethyl-1,3-dioxan-4-yl)dibenzo[b,d]furan (5as)

Chemical Formula: C₁₈H₁₈O₃ Exact Mass: 282.1256

5as was prepared according to general procedure **2.2** using NiBr₂•dme (6.2 mg, 0.02 mmol, 10 mol%), **L6** (11.7 mg, 0.03 mmol, 15 mol%), anhydrous acetone (0.5 mL), 2-bromodibenzo[b,d]furan (49.4 mg, 0.20 mmol, 1 equiv), TBADT (33.5 mg, 0.02 mmol, 5 mol%), 2,2-dimethyl-1,3-dioxane **4a** (232.4 mg, 2.0 mmol, 10 equiv), K₃PO₄ (63.6 mg, 0.3 mmol, 1.5 equiv) and PhCF₃ (0.5 mL) and was purified by silica gel column chromatography (PE/EtOAc = 20/1) to obtain **5as** as colorless oil (26.0 mg, 46% yield, 82% ee).

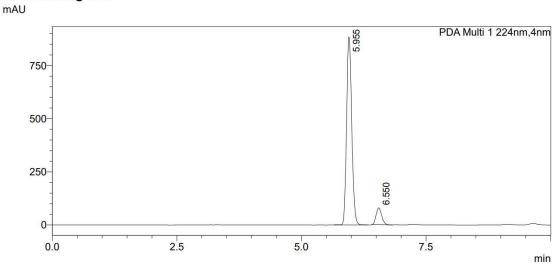
¹H NMR (600 MHz, CDCl₃) δ 7.99 (d, J = 1.8 Hz, 1H), 7.98 – 7.95 (m, 1H), 7.55 (dd, J = 12.2, 8.3 Hz, 2H), 7.48 – 7.44 (m, 2H), 7.34 (td, J = 7.5, 1.0 Hz, 1H), 5.10 (dd, J = 11.7, 2.8 Hz, 1H), 4.19 (td, J = 12.2, 2.6 Hz, 1H), 3.98 (ddd, J = 11.8, 5.3, 1.5 Hz, 1H), 2.04 – 1.97 (m, 1H), 1.76 (dtd, J = 13.3, 2.7, 1.5 Hz, 1H), 1.63 (s, 3H), 1.55 (s, 3H);


¹³C NMR (151 MHz, CDCl₃) δ 156.6, 155.7, 137.2, 127.2, 127.1, 125.4, 124.3, 124.2, 122.7, 120.8, 118.2, 111.7, 111.5, 99.0, 71.6, 60.3, 34.0, 30.2, 19.3;

HRMS: (APCI) calcd for $C_{18}H_{19}O_3^+[M+H]^+ 283.1329$; found 283.1321.

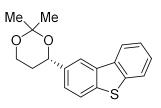
The enantiomeric purity was established by HPLC analysis using a chiral column: AD-H column, 30 °C, "Hexane/^{*i*}Propanol = 97/3 as eluent, 224 nm, 1 mL/min. tR = 5.9 min (major), 6.6 min (minor).

Optical Rotation: $[\alpha]_D^{21}$ -6.0 (c 0.1, ^{*i*}PrOH) for 82% ee.



<Peak Table>

PDA C	h1 224nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	6.021	7401953	1015779	0.000		M	
2	6.597	7644467	940212	0.000		M	
Total		15046420	1955991				


<Chromatogram>

<Peak Table>

	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	5.955	6350160	884044	0.000		M	
2	6.550	617246	79281	0.000		M	
Total		6967406	963325				

Supplementary Figure 70. HPLC spectrum of (S)-5as

(S)-4-(dibenzo[b,d]thiophen-2-yl)-2,2-dimethyl-1,3-dioxane (5at)

Chemical Formula: C₁₈H₁₈O₂S Exact Mass: 298.1028

5at was prepared according to general procedure **2.2** using NiBr₂•dme (6.2 mg, 0.02 mmol, 10 mol%), **L6** (11.7 mg, 0.03 mmol, 15 mol%), anhydrous acetone (0.5 mL), 2-bromodibenzo[b,d]thiophene (52.6 mg, 0.20 mmol, 1 equiv), TBADT (33.5 mg, 0.02 mmol, 5 mol%), 2,2-dimethyl-1,3-dioxane **4a** (232.4 mg, 2.0 mmol, 10 equiv), K₃PO₄ (63.6 mg, 0.3 mmol, 1.5 equiv) and PhCF₃ (0.5 mL) and was purified by silica gel column chromatography (PE/EtOAc = 20/1) to obtain **5at** as colorless oil (27.4 mg, 46% yield, 91% ee).

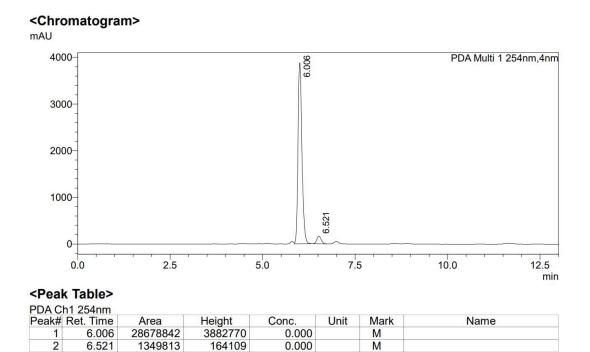
¹H NMR (600 MHz, CDCl₃) δ 8.17 (d, *J* = 3.0 Hz, 2H), 7.86 – 7.79 (m, 2H), 7.46 (ddd, *J* = 12.5, 6.4, 1.6 Hz, 3H), 5.11 (dd, *J* = 11.7, 2.8 Hz, 1H), 4.18 (td, *J* = 12.1, 2.6 Hz, 1H), 3.99 – 3.94 (m, 1H), 2.00 (qd, *J* = 12.5, 3.3 Hz, 1H), 1.75 (dq, *J* = 13.2, 2.3 Hz, 1H), 1.63 (s, 3H), 1.56 (s, 3H);

¹³C NMR (151 MHz, CDCl₃) δ 139.8, 139.0, 138.7, 135.7, 135.5, 126.8, 125.0, 124.4, 122.9, 122.8, 121.7, 119.0, 99.0, 71.6, 60.2, 33.9, 30.2, 19.3;

HRMS: (APCI) calcd for C₁₈H₁₉O₂S⁺[M+H]⁺ 299.1100; found 299.1092.

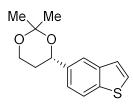
The enantiomeric purity was established by HPLC analysis using a chiral column: OD-H column, 30 °C, "Hexane/"Propanol = 90/10 as eluent, 254 nm, 1 mL/min. tR = 6.0 min (major), 6.5 min (minor).

Optical Rotation: $[\alpha]_D^{23}$ -29.6 (c 0.1, ^{*i*}PrOH) for 91% ee.



DDA Chi 254pm

Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	5.977	13666505	1753924	0.000		M	
2	6.460	13736060	1596837	0.000		VM	
Total		27402565	3350761				


Supplementary Figure 72. HPLC spectrum of (S)-5at

30028654

4046878

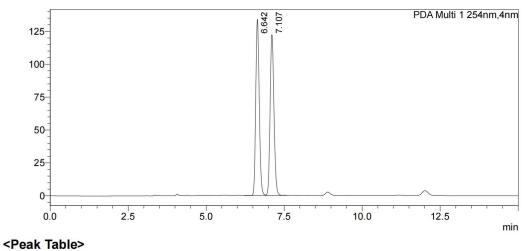
Total

(S)-4-(benzo[b]thiophen-5-yl)-2,2-dimethyl-1,3-dioxane (5au)

Chemical Formula: C₁₄H₁₆O₂S Exact Mass: 248.0871

5au was prepared according to general procedure **2.2** using NiBr₂•dme (6.2 mg, 0.02 mmol, 10 mol%), **L6** (11.7 mg, 0.03 mmol, 15 mol%), anhydrous acetone (0.5 mL), 5-bromobenzo[b]thiophene (42.6 mg, 0.20 mmol, 1 equiv), TBADT (33.5 mg, 0.02 mmol, 5 mol%), 2,2-dimethyl-1,3-dioxane **4a** (232.4 mg, 2.0 mmol, 10 equiv), K₃PO₄ (63.6 mg, 0.3 mmol, 1.5 equiv) and PhCF₃ (0.5 mL) and was purified by silica gel column chromatography (PE/EtOAc = 20/1) to obtain **5au** as colorless oil (22.8 mg, 46% yield, 89% ee).

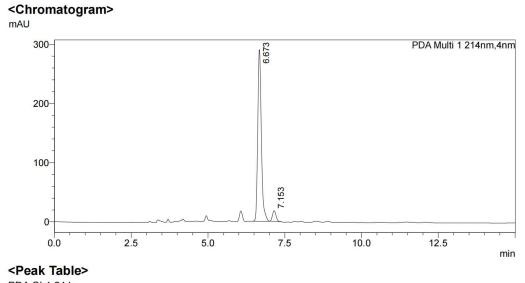
¹H NMR (600 MHz, CDCl₃) δ 7.87 – 7.84 (m, 2H), 7.44 (d, *J* = 5.4 Hz, 1H), 7.37 (dd, *J* = 8.2, 1.7 Hz, 1H), 7.33 (d, *J* = 5.4 Hz, 1H), 5.06 (dd, *J* = 11.7, 2.7 Hz, 1H), 4.17 (td, *J* = 12.2, 2.7 Hz, 1H), 3.96 (ddd, *J* = 11.8, 5.3, 1.6 Hz, 1H), 2.02 – 1.93 (m, 1H), 1.73 (dtd, *J* = 13.3, 2.7, 1.5 Hz, 1H), 1.53 (s, 3H);


¹³C NMR (151 MHz, CDCl₃) δ 139.8, 139.0, 138.7, 126.8, 123.9, 122.6, 122.5, 120.9, 98.9, 71.6, 60.2, 33.8, 30.2, 19.3;

HRMS: (APCI) calcd for C₁₄H₁₇O₂S⁺[M+H]⁺ 249.0944; found 249.0940.

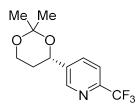
The enantiomeric purity was established by HPLC analysis using a chiral column: OD-H column, 30 °C, "Hexane/^{*i*}Propanol = 98/2 as eluent, 214 nm, 1 mL/min. tR = 6.7 min (major), 7.2 min (minor).

Optical Rotation: $[\alpha]_D^{25}$ -2.6 (c 0.1, ^{*i*}PrOH) for 89% ee.



PDA Ch1 254nm

PDACI	11 Z54nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	6.642	1044580	133912	0.000		M	
2	7.107	1048090	122271	0.000		VM	
Total		2092670	256183				



PDA C	h1 214nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	6.673	2362741	290245	94.341		M	
2	7.153	141736	17831	5.659		M	
Total		2504478	308075				

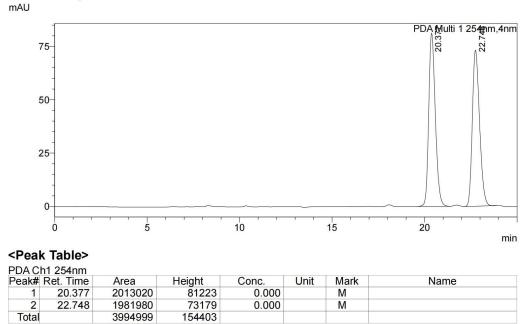
Supplementary Figure 74. HPLC spectrum of (S)-5au

(S)-5-(2,2-dimethyl-1,3-dioxan-4-yl)-2-(trifluoromethyl)pyridine (5av)

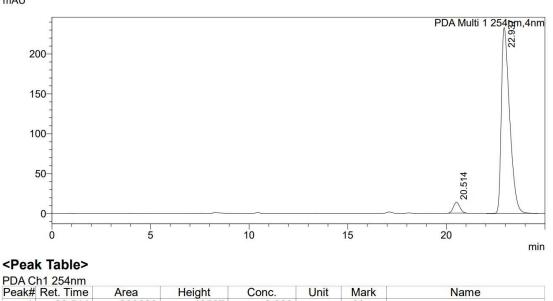
Chemical Formula: C₁₂H₁₄F₃NO₂ Exact Mass: 261.0977

5av was prepared according to general procedure **2.2** using NiBr₂•dme (6.2 mg, 0.02 mmol, 10 mol%), **L6** (11.7 mg, 0.03 mmol, 15 mol%), anhydrous acetone (0.5 mL), 5-bromo-2-(trifluoromethyl)pyridine (45.2 mg, 0.20 mmol, 1 equiv), TBADT (33.5 mg, 0.02 mmol, 5 mol%), 2,2-dimethyl-1,3-dioxane **4a** (232.4 mg, 2.0 mmol, 10 equiv), K₃PO₄ (63.6 mg, 0.3 mmol, 1.5 equiv) and PhCF₃ (0.5 mL) and was purified by silica gel column chromatography (PE/EtOAc = 8/1) to obtain **5av** as colorless oil (24.5 mg, 47% yield, 91% ee).

¹H NMR (600 MHz, CDCl₃) δ 8.69 (d, *J* = 2.1 Hz, 1H), 7.93 (dd, *J* = 8.2, 2.1 Hz, 1H), 7.69 (d, *J* = 8.1 Hz, 1H), 5.08 (dd, *J* = 11.8, 2.9 Hz, 1H), 4.16 (td, *J* = 12.2, 2.8 Hz, 1H), 3.96 (ddd, *J* = 12.0, 5.3, 1.6 Hz, 1H), 1.86 (qd, *J* = 12.4, 5.3 Hz, 1H), 1.75 (dq, *J* = 13.2, 2.4 Hz, 1H), 1.59 (s, 3H), 1.51 (s, 3H);


¹³C NMR (151 MHz, CDCl₃) δ 147.9, 147.4 (q, *J* = 34.7 Hz), 141.1, 134.9, 121.5 (q, *J* = 273.8 Hz), 120.3 (q, *J* = 2.5 Hz), 99.1, 68.8, 59.7, 33.2, 29.9, 19.1;

¹⁹F NMR (377 MHz, CDCl₃) δ -67.71.


HRMS: (APCI) calcd for $C_{12}H_{15}F_3NO_2^+[M+H]^+$ 262.1049; found 262.1042.

The enantiomeric purity was established by HPLC analysis using a chiral column: OJ-H column, 30 °C, "Hexane/ⁱPropanol = 99/1 as eluent, 254 nm, 0.5 mL/min. tR = 22.9 min (major), 20.5 min (minor).

Optical Rotation: $[\alpha]_D^{24}$ -51.0 (c 0.1, ^{*i*}PrOH) for 91% ee.

<Chromatogram> mAU

1

2

Total

20.514

22.937

Supplementary Figure 76. HPLC spectrum of (S)-5av

0.000

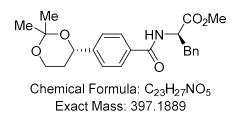
0.000

M

Μ

309606

6832496


7142102

13587

232928

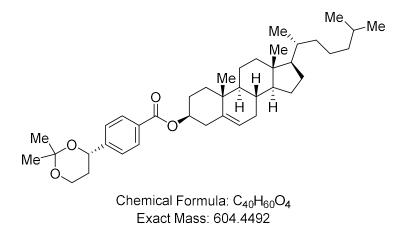
246515

methyl (4-((S)-2,2-dimethyl-1,3-dioxan-4-yl)benzoyl)-D-phenylalaninate (5ax)

5ax was prepared according to general procedure **2.2** using NiBr₂•dme (6.2 mg, 0.02 mmol, 10 mol%), **L6** (11.7 mg, 0.03 mmol, 15 mol%), anhydrous acetone (0.5 mL), methyl (4-bromobenzoyl)-*D*-phenylalaninate (72.2 mg, 0.20 mmol, 1 equiv), TBADT (33.5 mg, 0.02 mmol, 5 mol%), 2,2-dimethyl-1,3-dioxane **4a** (232.4 mg, 2.0 mmol, 10 equiv), K₃PO₄ (63.6 mg, 0.3 mmol, 1.5 equiv) and PhCF₃ (0.5 mL) and was purified by silica gel column chromatography (PE/EtOAc = 3/1) to obtain **5ax** as colorless oil (57.9 mg, 73% yield, d.r. > 20/1).

¹H NMR (600 MHz, CDCl₃) δ 7.71 (d, *J* = 8.1 Hz, 2H), 7.42 (d, *J* = 8.1 Hz, 2H), 7.31 – 7.22 (m, 3H), 7.14 – 7.09 (m, 2H), 6.59 (d, *J* = 7.6 Hz, 1H), 5.11 – 5.05 (m, 1H), 4.97 (dd, *J* = 11.7, 2.8 Hz, 1H), 4.16 – 4.10 (m, 1H), 3.95 – 3.90 (m, 1H), 3.76 (s, 3H), 3.29 (dd, *J* = 13.9, 5.8 Hz, 1H), 3.21 (dd, *J* = 13.9, 5.4 Hz, 1H), 1.89 – 1.80 (m, 1H), 1.71 – 1.65 (m, 1H), 1.57 (s, 3H), 1.50 (s, 3H);

¹³C NMR (151 MHz, CDCl₃) δ 172.1, 166.6, 146.4, 135.9, 133.1, 129.3, 128.6, 127.2, 126.0, 98.9, 70.9, 60.0, 53.5, 52.4, 37.9, 33.4, 30.0, 19.2;


HRMS: (ESI) calcd for C₂₃H₂₈NO₅⁺[M+H]⁺ 398.1962; found 398.1961.

Optical Rotation: $[\alpha]_D^{24}$ 71.8 (c 0.2, ^{*i*}PrOH).

Absolute stereochemistry was determined through analogy with 5ag.

3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-((R)-6-methylheptan-2-yl)-

2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1*H*-cyclopenta[a]phenanthren-3-yl 4-((*S*)-2,2-dimethyl-1,3-dioxan-4-yl)benzoate (5az)

5az was prepared according to general procedure **2.2** using NiBr₂•dme (6.2 mg, 0.02 mmol, 10 mol%), **L6** (11.7 mg, 0.03 mmol, 15 mol%), anhydrous acetone (0.5 mL), (3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-((R)-6-methylheptan-2-yl)-2,3,4,7,8,9,10,11, 12,13,14,15,16,17-tetradecahydro-1*H*-cyclopenta[a]phenanthren-3-yl 4-bromobenzoate (113.9 mg, 0.20 mmol, 1 equiv), TBADT (33.5 mg, 0.02 mmol, 5 mol%), 2,2-dimethyl-1,3-dioxane **4a** (232.4 mg, 2.0 mmol, 10 equiv), K₃PO₄ (63.6 mg, 0.3 mmol, 1.5 equiv) and PhCF₃ (0.5 mL) and was purified by silica gel column chromatography (PE/EtOAc = 40/1) to obtain **5az** as colorless oil (67.7 mg, 56% yield, d.r. > 20/1).

¹H NMR (600 MHz, CDCl₃) δ 8.03 – 8.00 (m, 2H), 7.45 – 7.42 (m, 2H), 5.42 (dd, J = 5.0, 2.1 Hz, 1H), 4.99 (dd, J = 11.7, 2.8 Hz, 1H), 4.85 (dtd, J = 16.3, 8.4, 4.5 Hz, 1H), 4.14 (td, J = 12.2, 2.7 Hz, 1H), 3.93 (ddd, J = 11.8, 5.3, 1.6 Hz, 1H), 2.47 – 2.44 (m, 2H), 2.04 – 1.96 (m, 3H), 1.91 (dt, J = 13.4, 3.6 Hz, 1H), 1.84 (tdd, J = 12.8, 10.3, 5.4 Hz, 2H), 1.75 – 1.71 (m, 1H), 1.71 – 1.67 (m, 1H), 1.59 – 1.45 (m, 12H), 1.40 – 1.31 (m, 3H), 1.28 – 1.09 (m, 8H), 1.07 (s, 3H), 1.03 – 0.96 (m, 3H), 0.92 (d, J = 6.5 Hz, 3H), 0.87 (d, J = 2.8 Hz, 3H), 0.86 (d, J = 2.8 Hz, 3H), 0.69 (s, 3H);

¹³C NMR (151 MHz, CDCl₃) δ 165.8, 147.4, 139.7, 130.0, 129.8, 125.6, 122.8, 98.9, 74.6, 71.0,
60.0, 56.7, 56.2, 50.1, 42.3, 39.8, 39.5, 38.2, 37.0, 36.7, 36.2, 35.8, 33.5, 32.0, 31.9, 30.0, 28.3,
28.0, 27.9, 24.3, 23.8, 22.9, 22.6, 21.1, 19.4, 19.2, 18.7, 11.9;

HRMS: (APCI) calcd for $C_{40}H_{61}O_4^+[M+H]^+$ 605.4564; found 605.4558.

Optical Rotation: $[\alpha]_D^{22}$ -6.2 (c 0.1, ^{*i*}PrOH).

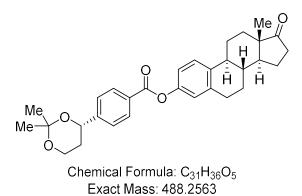
(1R,2S,5R)-2-isopropyl-5-methylcyclohexyl 4-((S)-2,2-dimethyl-1,3-dioxan-4-yl)benzoate

(5aaa)

Exact Mass: 374.2457

5aaa was prepared according to general procedure **2.2** using NiBr₂•dme (6.2 mg, 0.02 mmol, 10 mol%), **L6** (11.7 mg, 0.03 mmol, 15 mol%), anhydrous acetone (0.5 mL), (1R,2S,5R)-2-isopropyl-5-methylcyclohexyl 4-bromobenzoate (67.6 mg, 0.20 mmol, 1 equiv), TBADT (33.5 mg, 0.02 mmol, 5 mol%), 2,2-dimethyl-1,3-dioxane **4a** (232.4 mg, 2.0 mmol, 10 equiv), K₃PO₄ (63.6 mg, 0.3 mmol, 1.5 equiv) and PhCF₃ (0.5 mL) and was purified by silica gel column chromatography (PE/EtOAc = 3/1) to obtain **5aaa** as colorless oil (46.4 mg, 62% yield, d.r. > 20/1).

¹H NMR (600 MHz, CDCl₃) δ 8.05 – 8.00 (m, 2H), 7.46 – 7.42 (m, 2H), 4.98 (dd, J = 11.7, 2.8 Hz, 1H), 4.94 – 4.89 (m, 1H), 4.16 – 4.10 (m, 1H), 3.95 – 3.90 (m, 1H), 2.15 – 2.08 (m, 1H), 1.97 – 1.90 (m, 1H), 1.89 – 1.80 (m, 1H), 1.75 – 1.66 (m, 3H), 1.60 – 1.52 (m, 5H), 1.50 (s, 3H), 1.16 – 1.05 (m, 2H), 0.91 (dd, J = 9.9, 6.8 Hz, 7H), 0.78 (d, J = 6.9 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 165.9, 147.3, 130.1, 129.8, 125.7, 98.9, 74.8, 70.9, 60.0, 47.3,


41.0, 34.3, 33.4, 31.5, 30.0, 26.6, 23.7, 22.1, 20.8, 19.2, 16.6;

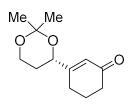
HRMS: (APCI) calcd for $C_{23}H_{35}O_4^+[M+H]^+ 375.2529$; found 375.2522.

Optical Rotation: $[\alpha]_D^{24}$ 71.8 (c 0.2, ^{*i*}PrOH).

Absolute stereochemistry was determined through analogy with 5ag.

(8*R*,9*S*,13*S*,14*S*)-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6*H*cyclopenta[*a*]phenanthren-3-yl 4-((*S*)-2,2-dimethyl-1,3-dioxan-4-yl)benzoate (5aab)

5aab was prepared according to general procedure **2.2** using NiBr₂•dme (6.2 mg, 0.02 mmol, 10 mol%), **L6** (11.7 mg, 0.03 mmol, 15 mol%), anhydrous acetone (0.5 mL), (8*R*,9*S*,13*S*,14*S*)-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthren-3-yl 4-bromobenzoate (90.7 mg, 0.20 mmol, 1 equiv), TBADT (33.5 mg, 0.02 mmol, 5 mol%), 2,2-dimethyl-1,3-dioxane **4a** (232.4 mg, 2.0 mmol, 10 equiv), K₃PO₄ (63.6 mg, 0.3 mmol, 1.5 equiv) and PhCF₃ (0.5 mL) and was purified by silica gel column chromatography (PE/EtOAc = 4/1) to obtain **5aab** as yellow solid (45.9 mg, 47% yield, d.r. > 20/1).


¹H NMR (600 MHz, CDCl₃) δ 8.17 (d, J = 8.0 Hz, 2H), 7.51 (d, J = 8.0 Hz, 2H), 7.33 (d, J = 8.5 Hz, 1H), 6.98 (dd, J = 8.5, 2.6 Hz, 1H), 6.94 (d, J = 2.5 Hz, 1H), 5.03 (dd, J = 11.8, 2.8 Hz, 1H), 4.16 (td, J = 12.1, 2.6 Hz, 1H), 3.97 – 3.93 (m, 1H), 2.97 – 2.92 (m, 2H), 2.52 (dd, J = 19.1, 8.8 Hz, 1H), 2.46 – 2.41 (m, 1H), 2.32 (td, J = 11.0, 4.2 Hz, 1H), 2.16 (dt, J = 18.6, 8.8 Hz, 2H), 2.10 – 2.00 (m, 3H), 1.98 (dt, J = 12.9, 3.1 Hz, 1H), 1.87 (qd, J = 12.5, 5.2 Hz, 1H), 1.75 – 1.71 (m, 1H), 1.62 – 1.51 (m, 10H), 0.93 (s, 3H);

¹³C NMR (151 MHz, CDCl₃) δ 220.8, 165.3, 148.8, 148.3, 138.1, 137.4, 130.4, 128.8, 126.5, 125.9, 121.7, 118.9, 99.0, 70.9, 60.0, 50.5, 48.0, 44.2, 38.0, 35.9, 33.5, 31.6, 30.0, 29.4, 26.4, 25.8, 21.6, 19.2, 13.9;

HRMS: (APCI) calcd for $C_{31}H_{37}O_5^+[M+H]^+$ 489.2636; found 489.2631.

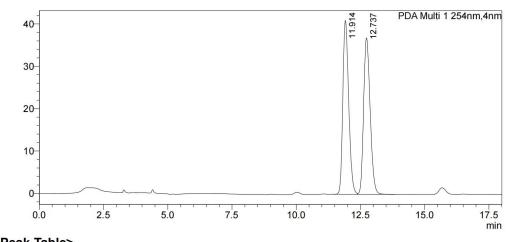
Optical Rotation: $[\alpha]_D^{22}$ 86.9 (c 0.1, ^{*i*}PrOH).

(S)-3-(2,2-dimethyl-1,3-dioxan-4-yl)cyclohex-2-en-1-one (5aac)

Chemical Formula: C₁₂H₁₈O₃ Exact Mass: 210.1256

5aac was prepared according to general procedure **2.2** using NiBr₂•dme (6.2 mg, 0.02 mmol, 10 mol%), **L6** (11.7 mg, 0.03 mmol, 15 mol%), anhydrous acetone (0.5 mL), 3-bromocyclohex-2-en-1-one (35.0 mg, 0.20 mmol, 1 equiv), TBADT (33.5 mg, 0.02 mmol, 5 mol%), 2,2-dimethyl-1,3-dioxane **4a** (232.4 mg, 2.0 mmol, 10 equiv), K_3PO_4 (63.6 mg, 0.3 mmol, 1.5 equiv) and PhCF₃ (0.5 mL) and was purified by silica gel column chromatography (PE/EtOAc = 5/1) to obtain **5aac** as colorless oil (21.4 mg, 51% yield, 97% ee).

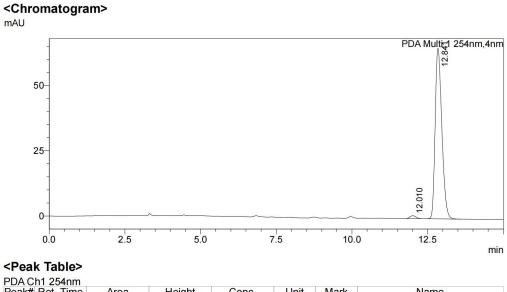
¹H NMR (600 MHz, CDCl₃) δ 6.11 (s, 1H), 4.45 (dt, *J* = 12.0, 2.0 Hz, 1H), 4.04 (td, *J* = 12.1, 2.8 Hz, 1H), 3.90 (ddd, *J* = 11.9, 5.4, 1.7 Hz, 1H), 2.40 (t, *J* = 6.7 Hz, 2H), 2.35 (dtd, *J* = 12.5, 6.2, 1.6 Hz, 1H), 2.32 – 2.26 (m, 1H), 2.01 (q, *J* = 6.4 Hz, 2H), 1.72 (dd, *J* = 12.3, 5.3 Hz, 1H), 1.60 (dq, *J* = 13.1, 2.4 Hz, 1H), 1.49 (s, 3H), 1.43 (s, 3H);


¹³C NMR (151 MHz, CDCl₃) δ 199.9, 163.9, 124.1, 98.7, 71.0, 59.7, 37.8, 29.8, 29.7, 25.6, 22.6, 19.1;

HRMS: (APCI) calcd for $C_{12}H_{19}O_2^+[M+H]^+$ 211.1329; found 211.1328.

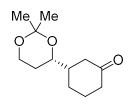
The enantiomeric purity was established by HPLC analysis using a chiral column: OJ-H column, 30 °C, "Hexane/"Propanol = 95/5 as eluent, 254 nm, 1 mL/min. tR = 12.8 min (major), 12.0 min (minor).

Optical Rotation: $[\alpha]_D^{22}$ -13.6 (c 0.1, ^{*i*}PrOH) for 97% ee.



<Peak Table>

Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	11.914	651921	41030	0.000		M	
2	12.737	654193	36914	0.000		VM	
Total		1306114	77944				



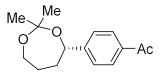
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	12.010	14478	1092	0.000		M	
2	12.841	996508	65276	0.000		Μ	
Total		1010986	66367				

Supplementary Figure 78. HPLC spectrum of (S)-5aac

(R)-3-((S)-2,2-dimethyl-1,3-dioxan-4-yl)cyclohexan-1-one (5aad)

Chemical Formula: C₁₂H₂₀O₃ Exact Mass: 212.1412

An oven-dried 10-mL Schlenk equipped with a PTFE-coated stir bar was charged with 5% Pd/C (36.6 mg, 0.018 mmol, 15 mol%) and **5aac** (21.0 mg, 0.10 mmol, 1 equiv) in toluene (1 mL) and $CH_2Cl_2(1 \text{ mL})$. The reaction mixture was stirred under H_2 atmosphere (10 bar) at 25 °C for 24 hours. The mixture was filtered through Celite and the filtrate was condensed. The residue was purified by silica gel column chromatography (PE/EtOAc = 5/1) to obtain **5aad** as colorless oil (16.1 mg, 76%, d.r. > 20/1).

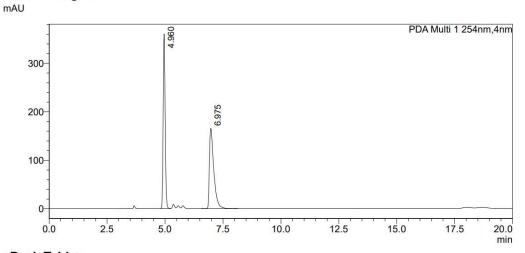

¹H NMR (600 MHz, CDCl₃) δ 3.94 (t, *J* = 12.0 Hz, 1H), 3.85 (dd, *J* = 11.6, 5.2 Hz, 1H), 3.74 – 3.65 (m, 1H), 2.36 (t, *J* = 11.1 Hz, 2H), 2.27 (td, *J* = 14.0, 13.3, 5.9 Hz, 1H), 2.16 (t, *J* = 13.0 Hz, 1H), 2.05 (t, *J* = 14.1 Hz, 2H), 1.84 (dt, *J* = 16.3, 8.3 Hz, 1H), 1.63 (tt, *J* = 12.2, 6.0 Hz, 3H), 1.54 – 1.45 (m, 1H), 1.42 (s, 3H), 1.37 (s, 3H);

¹³C NMR (151 MHz, CDCl₃) δ 211.7, 98.4, 71.6, 59.8, 43.7, 43.1, 41.5, 29.8, 28.2, 26.1, 24.8, 19.1;

HRMS: (ESI) calcd for $C_{12}H_{21}O_3^+[M+H]^+$ 213.1485; found 213.1480.

Optical Rotation: $[\alpha]_D^{21}$ -0.4 (c 0.1, ^{*i*}PrOH).

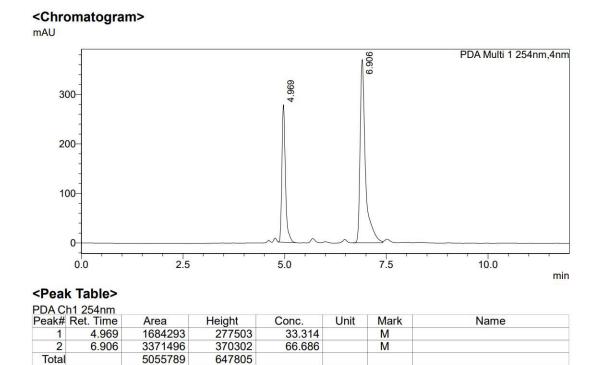
(S)-1-(4-(2,2-dimethyl-1,3-dioxepan-4-yl)phenyl)ethan-1-one (7aa)


Chemical Formula: C₁₅H₂₀O₃ Exact Mass: 248.1412

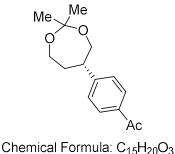
7aa was prepared according to general procedure **2.1** using NiBr₂•dme (6.2 mg, 0.02 mmol, 10 mol%), **L6** (11.7 mg, 0.03 mmol, 15 mol%), anhydrous acetone (0.5 mL), 1-(4-bromophenyl)ethan-1-one (39.8 mg, 0.20 mmol, 1 equiv), TBADT (33.5 mg, 0.02 mmol, 5 mol%), 2,2-dimethyl-1,3-dioxepane **6a** (130.2 mg, 1.0 mmol, 5 equiv), K₃PO₄ (63.6 mg, 0.3 mmol, 1.5 equiv) and PhCF₃ (0.5 mL) and was purified by silica gel column chromatography (PE/EtOAc = 8/1) to obtain **7aa** as colorless oil (2 mg, 4% yield, 33% ee).

¹H NMR (600 MHz, CDCl₃) δ 7.94 – 7.91 (m, 2H), 7.46 – 7.43 (m, 2H), 4.87 (d, J = 10.7 Hz, 1H), 3.91 – 3.87 (m, 1H), 3.75 – 3.71 (m, 1H), 2.60 (s, 3H), 1.97 – 1.92 (m, 1H), 1.75 (dt, J = 5.3, 3.0 Hz, 1H), 1.65 (dddd, J = 13.8, 12.4, 10.7, 5.4 Hz, 2H), 1.43 (s, 3H), 1.38 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 197.8, 150.1, 136.3, 128.6, 125.9, 73.8, 62.9, 36.4, 31.0, 29.7, 28.9, 26.7;

HRMS: (APCI) calcd for C₁₅H₂₁O₃⁺[M+H]⁺ 249.1485; found 249.1484.


The enantiomeric purity was established by HPLC analysis using a chiral column: AD-H column, 30 °C, "Hexane/ⁱPropanol = 90/10 as eluent, 254 nm, 1 mL/min. tR = 5.0 min (minor), 6.9 min (major).

<Peak Table>


Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	4.960	2139871	359951	0.000		M	
2	6.975	2162050	165615	0.000		M	
Total		4301921	525566				

Supplementary Figure 80. HPLC spectrum of (S)-7aa

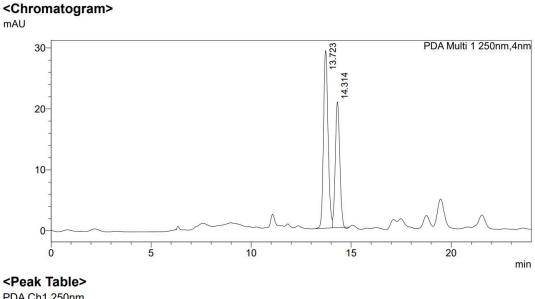
(S)-1-(4-(2,2-dimethyl-1,3-dioxepan-5-yl)phenyl)ethan-1-one (7aa')

Exact Mass: 248.1412

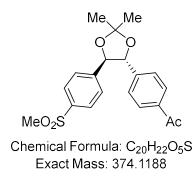

7aa' was prepared according to general procedure **2.1** using NiBr₂•dme (6.2 mg, 0.02 mmol, 10 mol%), **L6** (11.7 mg, 0.03 mmol, 15 mol%), anhydrous acetone (0.5 mL), 1-(4-bromophenyl)ethan-1-one (39.8 mg, 0.20 mmol, 1 equiv), TBADT (33.5 mg, 0.02 mmol, 5 mol%), 2,2-dimethyl-1,3-dioxepane **6a** (130.2 mg, 1.0 mmol, 5 equiv), K₃PO₄ (63.6 mg, 0.3 mmol, 1.5 equiv) and PhCF₃ (0.5 mL) and was purified by silica gel column chromatography (PE/EtOAc = 8/1) to obtain **7aa'** as colorless oil (3.2 mg, 6% yield, 18% ee).

¹H NMR (400 MHz, CDCl₃) δ 7.93 – 7.87 (m, 2H), 7.33 – 7.28 (m, 2H), 3.96 – 3.85 (m, 2H), 3.74 (dt, *J* = 12.3, 3.4 Hz, 1H), 3.61 (ddd, *J* = 11.9, 3.2, 1.4 Hz, 1H), 2.95 (tdd, *J* = 10.4, 6.0, 3.2 Hz, 1H), 2.58 (s, 3H), 1.92 – 1.85 (m, 2H), 1.39 (s, 6H).

¹³C NMR (151 MHz, CDCl₃) δ 197.7, 148.0, 135.7, 128.7, 127.7, 101.5, 66.6, 60.9, 47.0, 37.1, 26.6, 25.0, 24.9.


The enantiomeric purity was established by HPLC analysis using a chiral column: AD-H column, $30 \,^{\circ}$ C, "Hexane/[†]Propanol = 95/5 as eluent, 250 nm, 0.5 mL/min. tR = 14.3 min (minor), 13.7 min (major).

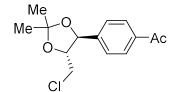
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	13.723	5042775	319587	0.000		M	
2	14.311	5089008	306805	0.000		VM	
Total		10131783	626392				



Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	13.723	460559	29136	0.000		M	
2	14.314	320015	20642	0.000		VM	
Total		780574	49778				

Supplementary Figure 82. HPLC spectrum of (S)-7aa'

1-(4-((4R,5R)-2,2-dimethyl-5-(4-(methylsulfonyl)phenyl)-1,3-dioxolan-4-yl)phenyl)ethan-

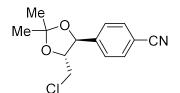

9a was prepared according to general procedure **2.3** using NiBr₂•dme (6.4 mg, 0.02 mmol, 10 mol%), dtbbpy (8.0 mg, 0.03 mmol, 15 mol%), TBADT (13.3 mg, 0.004 mmol, 2 mol%), K₃PO₄ (50.9 mg, 0.24 mmol, 1.2 equiv), 1-bromo-4-(methylsulfonyl)benzene (47.0 mg, 0.20 mmol, 1.0 equiv), **3ca** (66.0 mg, 0.6 mmol, 3.0 equiv) and anhydrous MeCN (1 mL) and was purified by silica gel column chromatography (PE/EA = 2/1) to obtain **9a** as colorless oil (62.1 mg, 83% yield, d.r. > 20/1). $R_f = 0.3$ (PE/EA = 3/1).

¹H NMR (600 MHz, CDCl₃) δ 7.95 – 7.91 (m, 2H), 7.91 – 7.87 (m, 2H), 7.40 – 7.36 (m, 2H), 7.32 – 7.27 (m, 2H), 4.78 (d, *J* = 8.4 Hz, 1H), 4.72 (d, *J* = 8.4 Hz, 1H), 3.05 (s, 3H), 2.59 (s, 3H), 1.69 (s, 3H), 1.68 (s, 3H);

¹³C NMR (151 MHz, CDCl₃) δ 197.6, 142.9, 141.2, 140.6, 137.4, 128.7, 127.7, 127.5, 126.9, 110.5, 84.9, 84.6, 44.5, 27.1, 27.0, 26.7;

HRMS: (APCI) calcd for C₂₀H₂₃O₅S⁺[M+H]⁺ 375.1261; found 375.1252.

1-(4-((4*S*,5*R*)-5-(chloromethyl)-2,2-dimethyl-1,3-dioxolan-4-yl)phenyl)ethan-1-one (9b)


Chemical Formula: C₁₄H₁₇ClO₃ Exact Mass: 268.0866

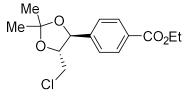
9b was prepared according to general procedure **2.3** using NiBr₂•dme (6.4 mg, 0.02 mmol, 10 mol%), dtbbpy (8.0 mg, 0.03 mmol, 15 mol%), TBADT (13.3 mg, 0.004 mmol, 2 mol%), K₃PO₄ (50.9 mg, 0.24 mmol, 1.2 equiv), 1-(4-bromophenyl)ethan-1-one (40.0 mg, 0.20 mmol,

1.0 equiv), (*R*)-4-(chloromethyl)-2,2-dimethyl-1,3-dioxolane (150 mg, 1.0 mmol, 5.0 equiv) and anhydrous MeCN (1 mL) and was purified by silica gel column chromatography (PE/EA = 10/1) to obtain **9b** as colorless oil (47.2 mg, 88% yield, d.r. > 20/1). $R_f = 0.4$ (PE/EA = 10/1). ¹H NMR (600 MHz, CDCl₃) δ 7.98 – 7.94 (m, 2H), 7.52 – 7.47 (m, 2H), 4.97 (d, *J* = 8.1 Hz, 1H), 4.01 (dt, *J* = 8.3, 4.3 Hz, 1H), 3.75 (dd, *J* = 12.1, 4.1 Hz, 1H), 3.62 (dd, *J* = 12.1, 4.5 Hz, 1H), 2.60 (s, 3H), 1.58 (s, 3H), 1.55 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 197.5, 142.6, 137.2, 128.7, 126.6, 110.2, 82.1, 79.9, 42.8, 27.1, 26.9, 26.6;

HRMS: (ESI) calcd for C₁₄H₁₈ClO₃⁺[M+H]⁺269.0939; found 269.0939.

4-((4*S*,5*R*)-5-(chloromethyl)-2,2-dimethyl-1,3-dioxolan-4-yl)benzonitrile (9c)

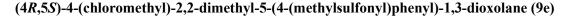
Chemical Formula: C₁₃H₁₄CINO₂ Exact Mass: 251.0713

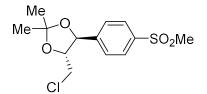

9c was prepared according to general procedure **2.3** using NiBr₂•dme (6.4 mg, 0.02 mmol, 10 mol%), dtbbpy (8.0 mg, 0.03 mmol, 15 mol%), TBADT (13.3 mg, 0.004 mmol, 2 mol%), K₃PO₄ (50.9 mg, 0.24 mmol, 1.2 equiv), 4-bromobenzonitrile (36.4 mg, 0.20 mmol, 1.0 equiv), (*R*)-4-(chloromethyl)-2,2-dimethyl-1,3-dioxolane (150 mg, 1.0 mmol, 5.0 equiv) and anhydrous MeCN (1 mL) and was purified by silica gel column chromatography (PE/EA = 10/1) to obtain **9c** as colorless oil (41.7 mg, 83% yield, d.r. > 20/1). $R_f = 0.5$ (PE/EA = 10/1).

¹H NMR (600 MHz, CDCl₃) δ 7.70 – 7.65 (m, 2H), 7.54 – 7.51 (m, 2H), 4.97 (d, *J* = 7.9 Hz, 1H), 3.99 (dt, *J* = 7.9, 4.3 Hz, 1H), 3.75 (dd, *J* = 12.1, 4.4 Hz, 1H), 3.63 (dd, *J* = 12.1, 4.3 Hz, 1H), 1.57 (s, 3H), 1.54 (s, 3H);

¹³C NMR (151 MHz, CDCl₃) δ 142.9, 132.5, 127.2, 118.4, 112.3, 110.5, 82.0, 79.7, 42.6, 27.0, 26.9;

HRMS: (ESI) calcd for $C_{13}H_{15}CINO_2^+[M+H]^+252.0785$; found 252.0783.


ethyl 4-((4*S*,5*R*)-5-(chloromethyl)-2,2-dimethyl-1,3-dioxolan-4-yl)benzoate (9d)



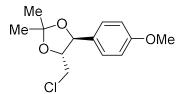
Chemical Formula: C₁₅H₁₉ClO₄ Exact Mass: 298.0972

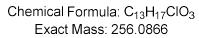
9d was prepared according to general procedure **2.3** using NiBr₂•dme (6.4 mg, 0.02 mmol, 10 mol%), dtbbpy (8.0 mg, 0.03 mmol, 15 mol%), TBADT (13.3 mg, 0.004 mmol, 2 mol%), K₃PO₄ (50.9 mg, 0.24 mmol, 1.2 equiv), ethyl 4-bromobenzoate (46.0 mg, 0.20 mmol, 1.0 equiv), (*R*)-4-(chloromethyl)-2,2-dimethyl-1,3-dioxolane (150 mg, 1.0 mmol, 5.0 equiv) and anhydrous MeCN (1 mL) and was purified by silica gel column chromatography (PE/EA = 10/1) to obtain **9d** as colorless oil (47.7 mg, 80% yield, d.r. > 20/1). $R_f = 0.5$ (PE/EA = 10/1). ¹H NMR (600 MHz, CDCl₃) δ 8.09 – 8.02 (m, 2H), 7.50 – 7.44 (m, 2H), 4.97 (d, *J* = 8.1 Hz, 1H), 4.38 (q, *J* = 7.1 Hz, 2H), 4.01 (dt, *J* = 8.2, 4.2 Hz, 1H), 3.75 (dd, *J* = 12.1, 4.0 Hz, 1H), 3.62 (dd, *J* = 12.1, 4.5 Hz, 1H), 1.59 (s, 3H), 1.55 (s, 3H), 1.39 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 166.2, 142.3, 130.7, 129.9, 126.4, 110.2, 82.2, 80.0, 61.1, 42.8, 27.1, 26.9, 14.3;

HRMS: (ESI) calcd for $C_{15}H_{20}ClO_4^+[M+H]^+$ 299.1044; found 299.1041.

Chemical Formula: C₁₃H₁₇ClO₄S Exact Mass: 304.0536

9e was prepared according to general procedure **2.3** using NiBr₂•dme (6.4 mg, 0.02 mmol, 10 mol%), dtbbpy (8.0 mg, 0.03 mmol, 15 mol%), TBADT (13.3 mg, 0.004 mmol, 2 mol%), K₃PO₄ (50.9 mg, 0.24 mmol, 1.2 equiv), 1-bromo-4-(methylsulfonyl)benzene (47.0 mg, 0.20 mmol, 1.0 equiv), (*R*)-4-(chloromethyl)-2,2-dimethyl-1,3-dioxolane (150 mg, 1.0 mmol, 5.0 equiv) and anhydrous MeCN (1 mL) and was purified by silica gel column chromatography (PE/EA = 5/1) to obtain **9e** as colorless oil (48.6 mg, 80% yield, d.r. > 20/1). $R_f = 0.3$ (PE/EA

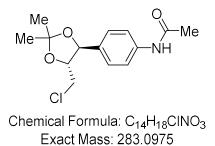

= 5/1).


¹H NMR (600 MHz, CDCl₃) δ 7.98 – 7.93 (m, 2H), 7.63 – 7.58 (m, 2H), 5.00 (d, *J* = 7.9 Hz, 1H), 4.01 (dt, *J* = 8.0, 4.3 Hz, 1H), 3.76 (dd, *J* = 12.1, 4.4 Hz, 1H), 3.64 (dd, *J* = 12.1, 4.3 Hz, 1H), 3.05 (s, 3H), 1.57 (s, 3H), 1.54 (s, 3H);

¹³C NMR (151 MHz, CDCl₃) δ 143.9, 140.6, 127.8, 127.4, 110.5, 82.1, 79.6, 44.4, 42.7, 27.0, 26.9;

HRMS: (ESI) calcd for $C_{13}H_{18}CIO_4S^+[M+H]^+ 305.0608$; found 305.0604.

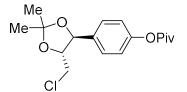
(4R,5S)-4-(chloromethyl)-5-(4-methoxyphenyl)-2,2-dimethyl-1,3-dioxolane (9f)


9f was prepared according to general procedure **2.3** using NiBr₂•dme (6.4 mg, 0.02 mmol, 10 mol%), dtbbpy (8.0 mg, 0.03 mmol, 15 mol%), TBADT (13.3 mg, 0.004 mmol, 2 mol%), K₃PO₄ (50.9 mg, 0.24 mmol, 1.2 equiv), 1-bromo-4-methoxybenzene (37.4 mg, 0.20 mmol, 1.0 equiv), (*R*)-4-(chloromethyl)-2,2-dimethyl-1,3-dioxolane (150 mg, 1.0 mmol, 5.0 equiv) and anhydrous MeCN (1 mL) and was purified by silica gel column chromatography (PE/EA = 30/1) to obtain **9f** as colorless oil (35.8 mg, 70% yield, d.r. > 20/1). $R_f = 0.5$ (PE/EA = 30/1).

¹H NMR (600 MHz, CDCl₃) δ 7.36 – 7.27 (m, 2H), 6.94 – 6.89 (m, 2H), 4.83 (d, *J* = 8.3 Hz, 1H), 4.03 – 3.98 (m, 1H), 3.81 (s, 3H), 3.71 (dd, *J* = 12.0, 3.6 Hz, 1H), 3.59 (dd, *J* = 12.0, 4.9 Hz, 1H), 1.58 (s, 3H), 1.54 (s, 3H);

¹³C NMR (151 MHz, CDCl₃) δ 159.9, 128.8, 128.0, 114.1, 109.6, 82.2, 80.2, 55.3, 43.0, 27.2, 26.9;

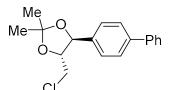
HRMS: (ESI) calcd for $C_{13}H_{18}ClO_3^+[M+H]^+257.0944$; found 257.0948.


N-(4-((4S,5R)-5-(chloromethyl)-2,2-dimethyl-1,3-dioxolan-4-yl)phenyl)acetamide (9g)

9g was prepared according to general procedure **2.3** using NiBr₂•dme (6.4 mg, 0.02 mmol, 10 mol%), dtbbpy (8.0 mg, 0.03 mmol, 15 mol%), TBADT (13.3 mg, 0.004 mmol, 2 mol%), K₃PO₄ (50.9 mg, 0.24 mmol, 1.2 equiv), *N*-(4-bromophenyl)acetamide (42.8 mg, 0.20 mmol, 1.0 equiv), (*R*)-4-(chloromethyl)-2,2-dimethyl-1,3-dioxolane (150 mg, 1.0 mmol, 5.0 equiv) and anhydrous MeCN (1 mL) and was purified by silica gel column chromatography (PE/EA = 1/1) to obtain **9g** as colorless oil (35.7 mg, 63% yield, d.r. > 20/1). R_f = 0.4 (PE/EA = 2/1). ¹H NMR (600 MHz, CDCl₃) δ 7.58 (s, 1H), 7.52 (d, *J* = 8.4 Hz, 2H), 7.34 (d, *J* = 8.5 Hz, 2H), 4.85 (d, *J* = 8.2 Hz, 1H), 4.02 – 3.97 (m, 1H), 3.72 (dd, *J* = 12.0, 3.7 Hz, 1H), 3.59 (dd, *J* = 12.1, 4.8 Hz, 1H), 2.17 (s, 3H), 1.58 (s, 3H), 1.54 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 168.6, 138.2, 132.8, 127.4, 120.1, 109.8, 82.3, 80.1, 42.9, 27.2, 27.0, 24.6;

HRMS: (ESI) calcd for C₁₄H₁₉ClNO₃⁺[M+H]⁺ 284.1048; found 284.1045.

4-((4S,5R)-5-(chloromethyl)-2,2-dimethyl-1,3-dioxolan-4-yl)phenyl pivalate (9h)


Chemical Formula: C₁₇H₂₃ClO₄ Exact Mass: 326.1285

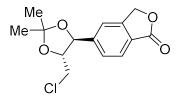
9h was prepared according to general procedure **2.3** using NiBr₂•dme (6.4 mg, 0.02 mmol, 10 mol%), dtbbpy (8.0 mg, 0.03 mmol, 15 mol%), TBADT (13.3 mg, 0.004 mmol, 2 mol%), K₃PO₄ (50.9 mg, 0.24 mmol, 1.2 equiv), 4-bromophenyl pivalate (51.4 mg, 0.20 mmol, 1.0 equiv), (*R*)-4-(chloromethyl)-2,2-dimethyl-1,3-dioxolane (150 mg, 1.0 mmol, 5.0 equiv) and anhydrous MeCN (1 mL) and was purified by silica gel column chromatography (PE/EA = 20/1) to obtain **9h** as colorless oil (43.0 mg, 66% yield, d.r. > 20/1). $R_f = 0.6$ (PE/EA = 10/1).

¹H NMR (600 MHz, CDCl₃) δ 7.43 – 7.38 (m, 2H), 7.09 – 7.05 (m, 2H), 4.91 (d, *J* = 8.2 Hz, 1H), 4.02 – 3.98 (m, 1H), 3.74 (dd, *J* = 12.1, 3.6 Hz, 1H), 3.60 (dd, *J* = 12.1, 4.6 Hz, 1H), 1.58 (s, 3H), 1.54 (s, 3H), 1.36 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 177.0, 151.3, 134.5, 127.6, 121.9, 109.9, 82.3, 79.9, 42.8, 39.1, 27.2, 27.1, 27.0;

HRMS: (ESI) calcd for $C_{17}H_{24}ClO_4^+[M+H]^+ 327.1357$; found 327.1356.

(4*S*,5*R*)-4-([1,1'-biphenyl]-4-yl)-5-(chloromethyl)-2,2-dimethyl-1,3-dioxolane (9i)

Chemical Formula: C₁₈H₁₉ClO₂ Exact Mass: 302.1074


9i was prepared according to general procedure **2.3** using NiBr₂•dme (6.4 mg, 0.02 mmol, 10 mol%), dtbbpy (8.0 mg, 0.03 mmol, 15 mol%), TBADT (13.3 mg, 0.004 mmol, 2 mol%), K₃PO₄ (50.9 mg, 0.24 mmol, 1.2 equiv), 4-bromo-1,1'-biphenyl (46.6 mg, 0.20 mmol, 1.0 equiv), (R)-4-(chloromethyl)-2,2-dimethyl-1,3-dioxolane (150 mg, 1.0 mmol, 5.0 equiv) and anhydrous MeCN (1 mL) and was purified by silica gel column chromatography (PE/EtOAc = 50/1) to obtain **9i** as colorless solid (39.8 mg, 66% yield).

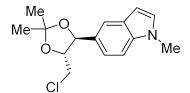
¹H NMR (600 MHz, CDCl₃) δ 7.64 – 7.57 (m, 4H), 7.50 – 7.43 (m, 4H), 7.39 – 7.35 (m, 1H), 4.95 (d, *J* = 8.2 Hz, 1H), 4.12 – 4.07 (m, 1H), 3.79 (dd, *J* = 12.0, 3.6 Hz, 1H), 3.66 (dd, *J* = 12.1, 4.8 Hz, 1H), 1.63 (s, 3H), 1.58 (s, 3H);

¹³C NMR (151 MHz, CDCl₃) δ 141.6, 140.6, 136.1, 128.8, 127.5, 127.09, 127.05, 109.9, 82.3, 80.2, 43.0, 27.2, 27.0;

HRMS: (ESI) calcd for $C_{18}H_{20}ClO_2^+[M+H]^+ 303.1152$; found 303.1154.

5-((4S,5R)-5-(chloromethyl)-2,2-dimethyl-1,3-dioxolan-4-yl)isobenzofuran-1(3H)-one (9j)

Chemical Formula: C₁₄H₁₅ClO₄ Exact Mass: 282.0659


9j was prepared according to general procedure **2.3** using NiBr₂•dme (6.4 mg, 0.02 mmol, 10 mol%), dtbbpy (8.0 mg, 0.03 mmol, 15 mol%), TBADT (13.3 mg, 0.004 mmol, 2 mol%), K₃PO₄ (50.9 mg, 0.24 mmol, 1.2 equiv), 5-bromoisobenzofuran-1(3*H*)-one (42.6 mg, 0.20 mmol, 1.0 equiv), (*R*)-4-(chloromethyl)-2,2-dimethyl-1,3-dioxolane (150 mg, 1.0 mmol, 5.0 equiv) and anhydrous MeCN (1 mL) and was purified by silica gel column chromatography (PE/EA = 3/1) to obtain **9j** as colorless oil (43.4 mg, 77% yield, d.r. > 20/1). $R_f = 0.3$ (PE/EA = 3/1).

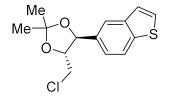
¹H NMR (600 MHz, CDCl₃) δ 7.92 (d, *J* = 7.8 Hz, 1H), 7.58 – 7.54 (m, 2H), 5.33 (s, 2H), 5.05 (d, *J* = 8.0 Hz, 1H), 4.02 (dt, *J* = 8.2, 4.2 Hz, 1H), 3.78 (dd, *J* = 12.1, 4.3 Hz, 1H), 3.65 (dd, *J* = 12.1, 4.2 Hz, 1H), 1.59 (s, 3H), 1.55 (s, 3H);

¹³C NMR (151 MHz, CDCl₃) δ 170.5, 147.2, 144.5, 127.5, 126.1, 126.0, 120.1, 110.4, 82.2, 80.0, 69.5, 42.6, 27.1, 26.9;

HRMS: (ESI) calcd for C₁₄H₁₆ClO₄⁺[M+H]⁺ 283.0732; found 283.0733.

5-((4S,5R)-5-(chloromethyl)-2,2-dimethyl-1,3-dioxolan-4-yl)-1-methyl-1H-indole (9k)

Chemical Formula: C₁₅H₁₈CINO₂ Exact Mass: 279.1026


9k was prepared according to general procedure **2.3** using NiBr₂•dme (6.4 mg, 0.02 mmol, 10 mol%), dtbbpy (8.0 mg, 0.03 mmol, 15 mol%), TBADT (13.3 mg, 0.004 mmol, 2 mol%), K₃PO₄ (50.9 mg, 0.24 mmol, 1.2 equiv), 5-bromo-1-methyl-1*H*-indole (42.0 mg, 0.20 mmol, 1.0 equiv), (*R*)-4-(chloromethyl)-2,2-dimethyl-1,3-dioxolane (150 mg, 1.0 mmol, 5.0 equiv) and anhydrous MeCN (1 mL) and was purified by silica gel column chromatography (PE/EA

= 15/1) to obtain 9k as yellow oil (29.6 mg, 53% yield, d.r. > 20/1). R_f = 0.7 (PE/EA = 10/1).
¹H NMR (600 MHz, CDCl₃) δ 7.64 (d, J = 1.6 Hz, 1H), 7.33 (d, J = 8.4 Hz, 1H), 7.28 - 7.24 (m, 1H), 7.07 (d, J = 3.1 Hz, 1H), 6.48 (dd, J = 3.1, 0.9 Hz, 1H), 4.98 (d, J = 8.4 Hz, 1H), 4.12 - 4.06 (m, 1H), 3.79 (s, 3H), 3.74 (dd, J = 12.0, 3.2 Hz, 1H), 3.60 (dd, J = 12.0, 5.0 Hz, 1H), 1.64 (s, 3H), 1.57 (s, 3H);

¹³C NMR (151 MHz, CDCl₃) δ 136.9, 129.6, 128.5, 127.5, 120.1, 119.5, 109.6, 109.5, 101.1, 82.7, 81.2, 43.2, 33.0, 27.4, 27.1;

HRMS: (ESI) calcd for $C_{15}H_{19}CINO_2^+[M+H]^+ 280.1098$; found 280.1095.

(4*S*,5*R*)-4-(benzo[b]thiophen-5-yl)-5-(chloromethyl)-2,2-dimethyl-1,3-dioxolane (9l)

Chemical Formula: C₁₄H₁₅ClO₂S Exact Mass: 282.0481

91 was prepared according to general procedure **2.3** using NiBr₂•dme (6.4 mg, 0.02 mmol, 10 mol%), dtbbpy (8.0 mg, 0.03 mmol, 15 mol%), TBADT (13.3 mg, 0.004 mmol, 2 mol%), K₃PO₄ (50.9 mg, 0.24 mmol, 1.2 equiv), 5-bromobenzo[*b*]thiophene (42.6 mg, 0.20 mmol, 1.0 equiv), (*R*)-4-(chloromethyl)-2,2-dimethyl-1,3-dioxolane (150 mg, 1.0 mmol, 5.0 equiv) and anhydrous MeCN (1 mL) and was purified by silica gel column chromatography (PE/EA = 50/1) to obtain **91** as yellow oil (32.1 mg, 57% yield, d.r. > 20/1). $R_f = 0.5$ (PE/EA = 50/1).

¹H NMR (600 MHz, CDCl₃) δ 7.90 (d, *J* = 8.3 Hz, 1H), 7.85 (d, *J* = 1.6 Hz, 1H), 7.49 (d, *J* = 5.4 Hz, 1H), 7.39 (dd, *J* = 8.3, 1.7 Hz, 1H), 7.35 (dd, *J* = 5.4, 0.8 Hz, 1H), 5.03 (d, *J* = 8.2 Hz, 1H), 4.11 – 4.07 (m, 1H), 3.77 (dd, *J* = 12.1, 3.6 Hz, 1H), 3.64 (dd, *J* = 12.1, 4.7 Hz, 1H), 1.64 (s, 3H), 1.58 (s, 3H);

¹³C NMR (151 MHz, CDCl₃) δ 140.0, 139.8, 133.3, 127.4, 123.8, 122.9, 122.6, 121.8, 109.9, 82.5, 80.5, 42.9, 27.3, 27.0;

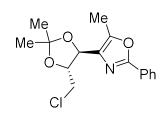
HRMS: (ESI) calcd for $C_{14}H_{16}ClO_2S^+[M+H]^+ 283.0560$; found 283.0561.

methyl 5-((4R,5R)-5-(chloromethyl)-2,2-dimethyl-1,3-dioxolan-4-yl)furan-2-carboxylate

Me Me O Cl

(9m)

Chemical Formula: C₁₂H₁₅ClO₅ Exact Mass: 274.0608


9m was prepared according to general procedure **2.3** using NiBr₂•dme (6.4 mg, 0.02 mmol, 10 mol%), dtbbpy (8.0 mg, 0.03 mmol, 15 mol%), TBADT (13.3 mg, 0.004 mmol, 2 mol%), K₃PO₄ (50.9 mg, 0.24 mmol, 1.2 equiv), methyl 5-bromofuran-2-carboxylate (41.0 mg, 0.20 mmol, 1.0 equiv), (*R*)-4-(chloromethyl)-2,2-dimethyl-1,3-dioxolane (150 mg, 1.0 mmol, 5.0 equiv) and anhydrous MeCN (1 mL) and was purified by silica gel column chromatography (PE/EA = 10/1) to obtain **9m** as colorless oil (33.4 mg, 61% yield, d.r. > 20/1). $R_f = 0.6$ (PE/EA = 10/1).

¹H NMR (600 MHz, CDCl₃) δ 7.14 (d, J = 3.5 Hz, 1H), 6.51 (d, J = 3.5 Hz, 1H), 4.94 (d, J = 7.7 Hz, 1H), 4.51 – 4.46 (m, 1H), 3.88 (s, 3H), 3.75 (dd, J = 11.9, 4.7 Hz, 1H), 3.68 (dd, J = 11.9, 4.8 Hz, 1H), 1.51 (d, J = 5.7 Hz, 6H);

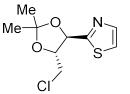
¹³C NMR (151 MHz, CDCl₃) δ 158.9, 155.0, 144.9, 118.7, 111.2, 110.7, 79.0, 74.2, 52.0, 43.3, 27.0, 26.7;

HRMS: (ESI) calcd for $C_{12}H_{16}O_5C1^+[M+H]^+275.0681$; found 275.0673.

4-((4*S*,5*R*)-5-(chloromethyl)-2,2-dimethyl-1,3-dioxolan-4-yl)-5-methyl-2-phenyloxazole (9n)

Chemical Formula: C₁₆H₁₈CINO₃ Exact Mass: 307.0975

9n was prepared according to general procedure **2.3** using NiBr₂•dme (6.4 mg, 0.02 mmol, 10 mol%), dtbbpy (8.0 mg, 0.03 mmol, 15 mol%), TBADT (13.3 mg, 0.004 mmol, 2 mol%), K₃PO₄ (50.9 mg, 0.24 mmol, 1.2 equiv), 4-bromo-5-methyl-2-phenyloxazole (47.6 mg, 0.20

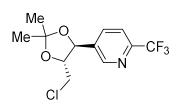

mmol, 1.0 equiv), (*R*)-4-(chloromethyl)-2,2-dimethyl-1,3-dioxolane (150 mg, 1.0 mmol, 5.0 equiv) and anhydrous MeCN (1 mL) and was purified by silica gel column chromatography (PE/EA = 10/1) to obtain **9n** as yellow oil (31.3 mg, 51% yield, d.r. > 20/1). $R_f = 0.6$ (PE/EA = 10/1).

¹H NMR (600 MHz, CDCl₃) δ 8.02 – 7.96 (m, 2H), 7.46 – 7.38 (m, 3H), 4.90 (d, *J* = 8.0 Hz, 1H), 4.62 – 4.58 (m, 1H), 3.82 (dd, *J* = 11.9, 4.1 Hz, 1H), 3.69 (dd, *J* = 11.9, 4.8 Hz, 1H), 2.44 (s, 3H), 1.61 (s, 3H), 1.55 (s, 3H);

¹³C NMR (151 MHz, CDCl₃) δ 160.2, 147.1, 132.1, 130.1, 128.7, 127.5, 126.2, 110.3, 79.1, 73.2, 43.6, 27.01, 26.95, 10.5;

HRMS: (ESI) calcd for $C_{16}H_{19}CINO_3^+[M+H]^+ 308.1048$; found 308.1039.

2-((4R,5R)-5-(chloromethyl)-2,2-dimethyl-1,3-dioxolan-4-yl)thiazole (90)


Chemical Formula: C₉H₁₂CINO₂S Exact Mass: 233.0277

90 was prepared according to general procedure **2.3** using NiBr₂•dme (6.4 mg, 0.02 mmol, 10 mol%), dtbbpy (8.0 mg, 0.03 mmol, 15 mol%), TBADT (13.3 mg, 0.004 mmol, 2 mol%), K₃PO₄ (50.9 mg, 0.24 mmol, 1.2 equiv), 2-bromothiazole (32.8 mg, 0.20 mmol, 1.0 equiv), (*R*)-4-(chloromethyl)-2,2-dimethyl-1,3-dioxolane (150 mg, 1.0 mmol, 5.0 equiv) and anhydrous MeCN (1 mL) and was purified by silica gel column chromatography (PE/EA = 20/1) to obtain **90** as colorless oil (20.0 mg, 43% yield, d.r. > 20/1). $R_f = 0.6$ (PE/EA = 20/1).

¹H NMR (600 MHz, CDCl₃) δ 7.77 (d, *J* = 3.2 Hz, 1H), 7.34 (d, *J* = 3.2 Hz, 1H), 5.18 (d, *J* = 7.7 Hz, 1H), 4.37 – 4.33 (m, 1H), 3.95 (dd, *J* = 12.0, 3.4 Hz, 1H), 3.82 (dd, *J* = 12.0, 5.3 Hz, 1H), 1.57 (s, 3H), 1.53 (s, 3H);

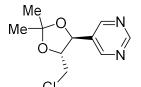
¹³C NMR (151 MHz, CDCl₃) δ 169.0, 143.1, 119.4, 111.4, 81.2, 77.7, 43.3, 27.0, 26.8; HRMS: (ESI) calcd for C₉H₁₃ClNO₂S⁺[M+H]⁺234.0350; found 234.0344.

5-((4S,5R)-5-(chloromethyl)-2,2-dimethyl-1,3-dioxolan-4-yl)-2-(trifluoromethyl)pyridine

(9p)

Chemical Formula: C₁₂H₁₃ClF₃NO₂ Exact Mass: 295.0587

9p was prepared according to general procedure **2.3** using NiBr₂•dme (6.4 mg, 0.02 mmol, 10 mol%), dtbbpy (8.0 mg, 0.03 mmol, 15 mol%), TBADT (13.3 mg, 0.004 mmol, 2 mol%), K₃PO₄ (50.9 mg, 0.24 mmol, 1.2 equiv), 5-bromo-2-(trifluoromethyl)pyridine (45.2 mg, 0.20 mmol, 1.0 equiv), (*R*)-4-(chloromethyl)-2,2-dimethyl-1,3-dioxolane (150 mg, 1.0 mmol, 5.0 equiv) and anhydrous MeCN (1 mL) and was purified by silica gel column chromatography (PE/EA = 10/1) to obtain **9p** as colorless oil (50.1 mg, 85% yield, d.r. > 20/1). $R_f = 0.5$ (PE/EA = 5/1).


¹H NMR (600 MHz, CDCl₃) δ 8.76 (d, J = 2.1 Hz, 1H), 7.93 (dd, J = 8.2, 2.2 Hz, 1H), 7.71 (d, J = 8.1 Hz, 1H), 5.04 (d, J = 7.8 Hz, 1H), 4.08 – 4.02 (m, 1H), 3.76 (dd, J = 12.0, 5.1 Hz, 1H), 3.68 (dd, J = 12.0, 4.2 Hz, 1H), 1.57 (s, 3H), 1.55 (s, 3H);

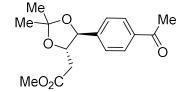
¹³C NMR (151 MHz, CDCl₃) δ 148.6, 148.3 (q, *J* = 35.0 Hz), 136.8, 135. 7, 121.4 (q, *J* = 274.1 Hz), 120.4 (q, *J* = 2.7 Hz), 110.9, 82.0, 78.3, 42.6, 27.0, 26.9;

¹⁹F NMR (565 MHz, CDCl₃) δ -67.93.

HRMS: (ESI) calcd for $C_{12}H_{14}ClF_3NO_2^+[M+H]^+ 296.0659$; found 296.0650.

5-((4*S*,5*R*)-5-(chloromethyl)-2,2-dimethyl-1,3-dioxolan-4-yl)pyrimidine (9q)

Chemical Formula: C₁₀H₁₃ClN₂O₂ Exact Mass: 228.0666

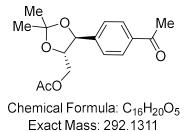

9q was prepared according to general procedure **2.3** using NiBr₂•dme (6.4 mg, 0.02 mmol, 10 mol%), dtbbpy (8.0 mg, 0.03 mmol, 15 mol%), TBADT (13.3 mg, 0.004 mmol, 2 mol%), K₃PO₄ (50.9 mg, 0.24 mmol, 1.2 equiv), 5-bromopyrimidine (31.8 mg, 0.20 mmol, 1.0 equiv),

(*R*)-4-(chloromethyl)-2,2-dimethyl-1,3-dioxolane (150 mg, 1.0 mmol, 5.0 equiv) and anhydrous MeCN (1 mL) and was purified by silica gel column chromatography (PE/EA = 3/1) to obtain **9q** as colorless oil (35.6 mg, 78% yield, d.r. > 20/1). R_f = 0.7 (PE/EA = 3/1).

¹H NMR (600 MHz, CDCl₃) δ 9.20 (s, 1H), 8.79 (s, 2H), 4.96 (d, *J* = 7.8 Hz, 1H), 4.12 – 4.07 (m, 1H), 3.74 (dd, *J* = 11.9, 5.6 Hz, 1H), 3.69 (dd, *J* = 11.9, 4.2 Hz, 1H), 1.57 (s, 3H), 1.54 (s, 3H);

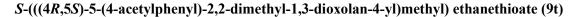
¹³C NMR (151 MHz, CDCl₃) δ 158.9, 155.7, 131.4, 110.9, 81.8, 77.28, 42.7, 27.1, 26.8; HRMS: (ESI) calcd for C₁₀H₁₄ClN₂O₂⁺[M+H]⁺ 229.0738; found 229.0730.

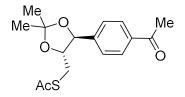
methyl 2-((4S,5S)-5-(4-acetylphenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)acetate (9r)


Chemical Formula: C₁₆H₂₀O₅ Exact Mass: 292.1311

9r was prepared according to general procedure **2.3** using NiBr₂•dme (6.4 mg, 0.02 mmol, 10 mol%), dtbbpy (8.0 mg, 0.03 mmol, 15 mol%), TBADT (13.3 mg, 0.004 mmol, 2 mol%), K₃PO₄ (50.9 mg, 0.24 mmol, 1.2 equiv), 1-(4-bromophenyl)ethan-1-one (40.0 mg, 0.20 mmol, 1.0 equiv), methyl (*S*)-2-(2,2-dimethyl-1,3-dioxolan-4-yl)acetate (174 mg, 1.0 mmol, 5.0 equiv) and anhydrous MeCN (1 mL) and was purified by silica gel column chromatography (PE/EA = 5/1) to obtain **9r** as colorless oil (52.6 mg, 90% yield, d.r. > 20/1). $R_f = 0.4$ (PE/EA = 5/1). ¹H NMR (600 MHz, CDCl₃) δ 7.98 – 7.93 (m, 2H), 7.49 – 7.45 (m, 2H), 4.72 (d, *J* = 8.5 Hz, 1H), 4.18 – 4.13 (m, 1H), 3.60 (s, 3H), 2.66 – 2.57 (m, 2H), 2.58 (s, 3H), 1.57 (s, 3H), 1.50 (s, 3H);

¹³C NMR (151 MHz, CDCl₃) δ 197.6, 170.5, 142.4, 137.3, 128.7, 126.9, 109.8, 81.9, 79.3, 51.9, 36.4, 27.2, 27.0, 26.7;


HRMS: (ESI) calcd for $C_{16}H_{21}O_5^+[M+H]^+$ 293.1389; found 293.1393.


((4*S*,5*S*)-5-(4-acetylphenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methyl acetate (9s)

9s was prepared according to general procedure **2.3** using NiBr₂•dme (6.4 mg, 0.02 mmol, 10 mol%), dtbbpy (8.0 mg, 0.03 mmol, 15 mol%), TBADT (13.3 mg, 0.004 mmol, 2 mol%), K₃PO₄ (50.9 mg, 0.24 mmol, 1.2 equiv), 1-(4-bromophenyl)ethan-1-one (40.0 mg, 0.20 mmol, 1.0 equiv), (*R*)-(2,2-dimethyl-1,3-dioxolan-4-yl)methyl acetate (174 mg, 1.0 mmol, 5.0 equiv) and anhydrous MeCN (1 mL) and was purified by silica gel column chromatography (PE/EA = 5/1) to obtain **9s** as colorless oil (45.0 mg, 77% yield, d.r. > 20/1). $R_f = 0.4$ (PE/EA = 5/1). ¹H NMR (600 MHz, CDCl₃) δ 7.99 – 7.94 (m, 2H), 7.52 – 7.46 (m, 2H), 4.83 (d, *J* = 8.5 Hz, 1H), 4.36 (dd, *J* = 12.0, 3.4 Hz, 1H), 4.17 (dd, *J* = 12.1, 5.6 Hz, 1H), 4.01 – 3.97 (m, 1H), 2.60 (s, 3H), 2.06 (s, 3H), 1.59 (s, 3H), 1.53 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 197.6, 170.7, 142.8, 137.2, 128.8, 126.6, 110.3, 80.9, 79.3, 62.8, 27.0, 26.9, 26.7, 20.8;

HRMS: (ESI) calcd for $C_{16}H_{21}O_5^+[M+H]^+$ 293.1389; found 293.1384.

Chemical Formula: C₁₆H₂₀O₄S Exact Mass: 308.1082

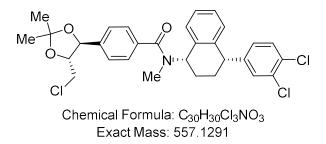
9t was prepared according to general procedure **2.3** using NiBr₂•dme (6.4 mg, 0.02 mmol, 10 mol%), dtbbpy (8.0 mg, 0.03 mmol, 15 mol%), TBADT (13.3 mg, 0.004 mmol, 2 mol%), K₃PO₄ (50.9 mg, 0.24 mmol, 1.2 equiv), 1-(4-bromophenyl)ethan-1-one (40.0 mg, 0.20 mmol, 1.0 equiv), (*R*)-*S*-((2,2-dimethyl-1,3-dioxolan-4-yl)methyl) ethanethioate (190 mg, 1.0 mmol, 5.0 equiv) and anhydrous MeCN (1 mL) and was purified by silica gel column chromatography (PE/EA = 5/1) to obtain **9t** as yellow oil (43.7 mg, 71% yield, d.r. > 20/1). $R_f = 0.5$ (PE/EA =

¹H NMR (600 MHz, CDCl₃) δ 7.99 – 7.92 (m, 2H), 7.52 – 7.46 (m, 2H), 4.70 (d, *J* = 8.2 Hz, 1H), 4.00 – 3.92 (m, 1H), 3.27 (dd, *J* = 14.2, 4.1 Hz, 1H), 3.18 (dd, *J* = 14.2, 5.6 Hz, 1H), 2.59 (s, 4H), 2.33 (s, 4H), 1.53 (s, 3H), 1.51 (s, 3H);

¹³C NMR (151 MHz, CDCl₃) δ 197.7, 195.0, 142.8, 137.1, 128.7, 126.7, 109.9, 81.3, 81.2, 30.5, 29.8, 27.1, 27.0, 26.7;

HRMS: (ESI) calcd for $C_{16}H_{21}O_4S^+[M+H]^+ 309.1155$; found 309.1154.

methyl (4R,5S)-5-(4-acetylphenyl)-2,2-dimethyl-1,3-dioxolane-4-carboxylate (9u)

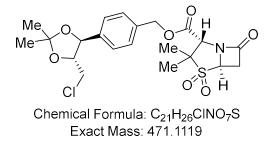

5/1).

9u was prepared according to general procedure **2.3** using NiBr₂•dme (6.4 mg, 0.02 mmol, 10 mol%), dtbbpy (8.0 mg, 0.03 mmol, 15 mol%), TBADT (13.3 mg, 0.004 mmol, 2 mol%), K₃PO₄ (50.9 mg, 0.24 mmol, 1.2 equiv), 1-(4-bromophenyl)ethan-1-one (40.0 mg, 0.20 mmol, 1.0 equiv), methyl (*R*)-2,2-dimethyl-1,3-dioxolane-4-carboxylate (160 mg, 1.0 mmol, 5.0 equiv) and anhydrous MeCN (1 mL) and was purified by silica gel column chromatography (PE/EA = 5/1) to obtain **9u** as yellow oil (47.3 mg, 85% yield, d.r. > 20/1). R_f = 0.5 (PE/EA = 5/1). ¹H NMR (600 MHz, CDCl₃) δ 7.98 – 7.93 (m, 2H), 7.55 – 7.50 (m, 2H), 5.21 (d, *J* = 7.6 Hz, 1H), 4.32 (d, *J* = 7.6 Hz, 1H), 3.79 (s, 3H), 2.59 (s, 3H), 1.60 (s, 3H), 1.55 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 197.7, 170.5, 143.1, 137.2, 128.7, 126.6, 112.1, 81.1, 80.1, 52.6, 26.8, 26.7, 25.8;

HRMS: (ESI) calcd for $C_{15}H_{19}O_5^+[M+H]^+ 279.1227$; found 279.1225.

4-((4*S*,5*R*)-5-(chloromethyl)-2,2-dimethyl-1,3-dioxolan-4-yl)-N-((1*S*,4*S*)-4-(3,4-dichlorophenyl)-1,2,3,4-tetrahydronaphthalen-1-yl)-N-methylbenzamide (9v)

Chemical Formula: C₁₅H₁₈O₅ Exact Mass: 278.1154



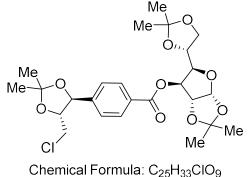
9v was prepared according to general procedure **2.3** using NiBr₂•dme (6.4 mg, 0.02 mmol, 10 mol%), dtbbpy (8.0 mg, 0.03 mmol, 15 mol%), TBADT (13.3 mg, 0.004 mmol, 2 mol%), K₃PO₄ (50.9 mg, 0.24 mmol, 1.2 equiv), 4-bromo-*N*-((1*S*,4*S*)-4-(3,4-dichlorophenyl)-1,2,3,4-tetrahydronaphthalen-1-yl)-*N*-methylbenzamide (97.8 mg, 0.20 mmol, 1.0 equiv), (*R*)-4-(chloromethyl)-2,2-dimethyl-1,3-dioxolane (150 mg, 1.0 mmol, 5.0 equiv) and anhydrous MeCN (1 mL) and was purified by silica gel column chromatography (PE/EA = 3/1) to obtain **9**v as colorless oil (85.8 mg, 77% yield, d.r. > 20/1). $R_f = 0.4$ (PE/EA = 3/1).

¹H NMR (600 MHz, CDCl₃) δ 7.56 – 7.42 (m, 4H), 7.36 – 7.28 (m, 3H), 7.24 – 7.19 (m, 1H), 7.10 – 7.06 (m, 1H), 7.00 – 6.94 (m, 1H), 6.87 – 6.74 (m, 1H), 6.08 – 4.89 (m, 2H), 4.25 – 4.12 (m, 1H), 4.06 – 3.97 (m, 1H), 3.78 – 3.72 (m, 1H), 3.65 – 3.57 (m, 1H), 2.90 – 2.69 (m, 3H), 2.11 – 2.04 (m, 1H), 2.00 – 1.65 (m, 3H), 1.62 – 1.51 (m, 6H);

¹³C NMR (151 MHz, CDCl₃) δ 172.3, 172.0, 147.0, 146.7, 139.0, 138.8, 138.4, 138.0, 136.9, 135.7, 135.6, 132.5, 132.3, 131.2, 131.0, 130. 7, 130.6, 130.3, 130.2, 130.1, 128.1, 127.97, 127.96, 127.8, 127.6, 127.5, 127.4, 127.2, 127.1, 126.8, 126.7, 126.5, 110.13, 110.10, 82.3, 82.2, 80.1, 80.0, 58.6, 52.8, 43.1, 42.8, 42.8, 42.9, 33.1, 30.1, 30.0, 29.0, 27.2, 27.0, 27.0, 22.6, 21.2; HRMS: (ESI) calcd for C₃₀H₃₁Cl₃NO₃⁺[M+H]⁺ 558.1364; found 558.1367.

4-((4*S*,5*R*)-5-(chloromethyl)-2,2-dimethyl-1,3-dioxolan-4-yl)benzyl (2*S*,5*R*)-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylate 4,4-dioxide (9w)

9w was prepared according to general procedure 2.3 using NiBr₂•dme (6.4 mg, 0.02 mmol, 10

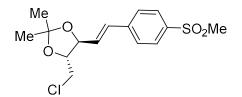

mol%), dtbbpy (8.0 mg, 0.03 mmol, 15 mol%), TBADT (13.3 mg, 0.004 mmol, 2 mol%), K₃PO₄ (50.9 mg, 0.24 mmol, 1.2 equiv), 4-bromobenzyl (2*S*,5*R*)-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylate 4,4-dioxide (80.4 mg, 0.20 mmol, 1.0 equiv), (*R*)-4-(chloromethyl)-2,2-dimethyl-1,3-dioxolane (150 mg, 1.0 mmol, 5.0 equiv) and anhydrous MeCN (1 mL) and was purified by silica gel column chromatography (PE/EA = 3/1) to obtain **9w** as colorless oil (50.8 mg, 54% yield, d.r. > 20/1). $R_f = 0.2$ (PE/EA = 3/1).

¹H NMR (600 MHz, CDCl₃) δ 7.43 (d, J = 8.2 Hz, 2H), 7.38 (d, J = 8.2 Hz, 2H), 5.27 (d, J = 12.1 Hz, 1H), 5.18 (d, J = 12.1 Hz, 1H), 4.91 (d, J = 8.1 Hz, 1H), 4.59 (dd, J = 4.4, 2.1 Hz, 1H), 4.40 (s, 1H), 4.03 – 3.99 (m, 1H), 3.74 (dd, J = 12.1, 4.0 Hz, 1H), 3.61 (dd, J = 12.1, 4.6 Hz, 1H), 3.48 (dd, J = 16.2, 4.3 Hz, 1H), 3.43 (dd, J = 16.2, 2.1 Hz, 1H), 1.58 (s, 3H), 1.55 (s, 3H), 1.54 (s, 3H), 1.29 (s, 3H);

¹³C NMR (151 MHz, CDCl₃) δ 170.8, 166.8, 138.3, 134.7, 129.2, 127.1, 110.1, 82.3, 80.1, 67.7, 63.2, 62.7, 61.1, 42.9, 38.3, 27.2, 27.0, 20.2, 18.6;

HRMS: (ESI) calcd for $C_{21}H_{27}CINO_7S^+[M+H]^+472.1191$; found 472.1192.

(3aR,5R,6S,6aR)-5-((R)-2,2-dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-yl 4-((4S,5R)-5-(chloromethyl)-2,2-dimethyl-1,3-dioxolan-4-yl)benzoate (9x)



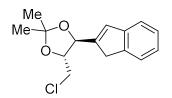
Exact Mass: 512.1813

9x was prepared according to general procedure **2.3** using NiBr₂•dme (6.4 mg, 0.02 mmol, 10 mol%), dtbbpy (8.0 mg, 0.03 mmol, 15 mol%), TBADT (13.3 mg, 0.004 mmol, 2 mol%), K₃PO₄ (50.9 mg, 0.24 mmol, 1.2 equiv), (3aR,5R,6S,6aR)-5-((R)-2,2-dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-*d*][1,3]dioxol-6-yl 4-bromobenzoate (88.6 mg, 0.20 mmol, 1.0 equiv), (*R*)-4-(chloromethyl)-2,2-dimethyl-1,3-dioxolane (150 mg, 1.0 mmol, 5.0 equiv)

and anhydrous MeCN (1 mL) and was purified by silica gel column chromatography (PE/EA = 5/1) to obtain **9x** as colorless oil (63.5 mg, 62% yield, d.r. > 20/1). $R_f = 0.4$ (PE/EA = 5/1). ¹H NMR (600 MHz, CDCl₃) δ 8.03 (d, J = 8.1 Hz, 2H), 7.49 (d, J = 8.1 Hz, 2H), 5.94 (d, J = 3.6 Hz, 1H), 5.49 (d, J = 2.7 Hz, 1H), 4.97 (d, J = 8.0 Hz, 1H), 4.62 (d, J = 3.7 Hz, 1H), 4.37 – 4.30 (m, 2H), 4.12 – 4.05 (m, 2H), 4.03 – 3.98 (m, 1H), 3.75 (dd, J = 12.1, 4.1 Hz, 1H), 3.62 (dd, J = 12.1, 4.4 Hz, 1H), 1.58 (s, 3H), 1.55 (s, 6H), 1.40 (s, 3H), 1.31 (s, 3H), 1.26 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 164.8, 143.3, 130.2, 129.7, 126.7, 112.4, 110.4, 109.4, 105.1, 83.4, 82.2, 80.00, 79.95, 76.8, 72.6, 67.3, 42.8, 27.1, 27.0, 26.9, 26.7, 26.2, 25.2; HRMS: (ESI) calcd for C₂₅H₃₃ClO₉Na⁺[M+Na]⁺ 535.1705; found 535.1707.

(4*R*,5*S*)-4-(chloromethyl)-2,2-dimethyl-5-((*E*)-4-(methylsulfonyl)styryl)-1,3-dioxolane (9y)

Chemical Formula: C₁₅H₁₉ClO₄S Exact Mass: 330.0693


9y was prepared according to general procedure **2.3** using NiBr₂•dme (3.3 mg, 0.01 mmol, 10 mol%), dtbbpy (4.2 mg, 0.015 mmol, 15 mol%), (*E*)-1-(2-bromovinyl)-4-(methylsulfonyl) benzene (26.2 mg, 0.10 mmol, 1 equiv), (*R*)-4-(chloromethyl)-2,2-dimethyl-1,3-dioxolane (75.2 mg, 0.5 mmol, 5 equiv), TBADT (6.8 mg, 0.002 mmol, 2 mol%), (*E*)-1,2-diphenylethene (18.0 mg, 0.1 mmol, 1 equiv), K₃PO₄ (25.3 mg, 0.12 mmol, 1.2 equiv) and anhydrous MeCN (1 mL) and was purified by silica gel column chromatography (PE/EA = 3/1) to obtain **9**y as colorless oil (14.2 mg, 43% yield, d.r. > 20/1, *E*/*Z* = 16/1). $R_f = 0.3$ (PE/EA = 4/1).

¹H NMR (600 MHz, CDCl₃) δ 7.90 (d, *J* = 8.4 Hz, 2H), 7.58 (d, *J* = 8.4 Hz, 2H), 6.79 (d, *J* = 15.9 Hz, 1H), 6.37 (dd, *J* = 15.9, 7.0 Hz, 1H), 4.56 – 4.52 (m, 1H), 4.06 (dt, *J* = 7.9, 4.9 Hz, 1H), 3.74 – 3.66 (m, 2H), 3.05 (s, 3H), 1.50 (s, 3H), 1.49 (s, 3H);

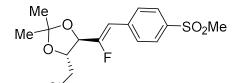
¹³C NMR (151 MHz, CDCl₃) δ 141.4, 139.6, 131.9, 129.9, 127.8, 127.4, 110.3, 80.0, 79.8, 44.5, 43.3, 27.1, 26.9;

HRMS: (ESI) calcd for C₁₅H₂₀ClO₄S⁺[M+H]⁺ 331.0765; found 331.0761.

(4R,5S)-4-(chloromethyl)-5-(1H-inden-2-yl)-2,2-dimethyl-1,3-dioxolane (9z)

Chemical Formula: C₁₅H₁₇ClO₂ Exact Mass: 264.0917

9z was prepared according to general procedure **2.3** using NiBr₂•dme (3.3 mg, 0.01 mmol, 10 mol%), dtbbpy (4.2 mg, 0.015 mmol, 15 mol%), 2-bromo-1*H*-indene (19.4 mg, 0.10 mmol, 1 equiv), (*R*)-4-(chloromethyl)-2,2-dimethyl-1,3-dioxolane (75.2 mg, 0.5 mmol, 5 equiv), TBADT (6.8 mg, 0.002 mmol, 2 mol%), K₃PO₄ (25.3 mg, 0.12 mmol, 1.2 equiv) and anhydrous MeCN (1 mL) and was purified by silica gel column chromatography (PE/EA = 50/1) to obtain **9z** as colorless oil (11.1 mg, 42% yield, d.r. > 20/1). $R_f = 0.5$ (PE/EA = 50/1).


¹H NMR (600 MHz, CDCl₃) δ 7.48 – 7.42 (m, 1H), 7.38 – 7.32 (m, 1H), 7.30 – 7.26 (m, 1H), 7.20 (td, J = 7.4, 1.2 Hz, 1H), 6.91 – 6.85 (m, 1H), 4.88 (dd, J = 8.0, 0.9 Hz, 1H), 4.18 (ddd, J = 8.0, 5.1, 4.3 Hz, 1H), 3.74 (dd, J = 11.9, 4.3 Hz, 1H), 3.66 (dd, J = 11.8, 5.0 Hz, 1H), 3.56 (ddd, J = 22.6, 1.7, 0.8 Hz, 1H), 3.43 (ddd, J = 22.6, 1.7, 0.8 Hz, 1H), 1.52 (s, 6H);

¹³C NMR (151 MHz, CDCl₃) δ 144.6, 143.9, 143.2, 130.4, 126.6, 125.1, 123.9, 121.2, 110.0, 80.0, 77.9, 43.6, 37.8, 27.2, 27.0;

HRMS: (ESI) calcd for C₁₅H₁₈ClO₂⁺[M+H]⁺ 265.0995; found 265.0992.

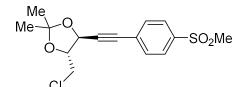
(4R,5R)-4-(chloromethyl)-5-((Z)-1-fluoro-2-(4-(methylsulfonyl)phenyl)vinyl)-2,2-

dimethyl-1,3-dioxolane (9aa)

Chemical Formula: C₁₅H₁₈CIFO₄S Exact Mass: 348.0598

9aa was prepared according to general procedure **2.3** using NiBr₂•dme (3.3 mg, 0.01 mmol, 10 mol%), dtbbpy (4.2 mg, 0.015 mmol, 15 mol%), 1-(2,2-difluorovinyl)-4-(methylsulfonyl)benzene (21.8 mg, 0.10 mmol, 1 equiv), (*R*)-4-(chloromethyl)-2,2-dimethyl-

1,3-dioxolane (75.2 mg, 0.5 mmol, 5 equiv), TBADT (6.8 mg, 0.002 mmol, 2 mol%), (*E*)-1,2diphenylethene (18.0 mg, 0.1 mmol, 1 equiv), K_3PO_4 (25.3 mg, 0.12 mmol, 1.2 equiv) and anhydrous MeCN (1 mL) and was purified by silica gel column chromatography (PE/EA = 3/1) to obtain **9aa** as colorless oil (16.3 mg, 47% yield, d.r. > 20/1, *E*/*Z* = 20/1). $R_f = 0.4$ (PE/EA = 3/1).


¹H NMR (600 MHz, CDCl₃) δ 7.94 – 7.89 (m, 2H), 7.72 – 7.67 (m, 2H), 6.00 (d, *J* = 37.5 Hz, 1H), 4.52 (dd, *J* = 15.7, 7.6 Hz, 1H), 4.44 (dt, *J* = 7.6, 4.6 Hz, 1H), 3.80 (dd, *J* = 11.9, 4.6 Hz, 1H), 3.73 (dd, *J* = 11.9, 4.5 Hz, 1H), 3.06 (s, 3H), 1.53 (s, 6H);

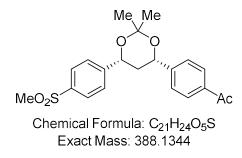
¹³C NMR (151 MHz, CDCl₃) δ 158.6, 156.8, 139.3, 137.7, 129.5 (d, *J* = 7.5 Hz), 127.7, 111.5, 107.9, 107.8, 44.5, 43.6, 27.1, 26.5;

¹⁹F NMR (565 MHz, CDCl₃) δ -113.9 (dd, J = 37.6, 15.8 Hz).

HRMS: (ESI) calcd for C₁₅H₁₉ClFO₄S⁺[M+H]⁺ 349.0677; found 349.0672.

(4R,5S)-4-(chloromethyl)-2,2-dimethyl-5-((4-(methylsulfonyl)phenyl)ethynyl)-1,3dioxolane (9ab)

Chemical Formula: C₁₅H₁₇ClO₄S Exact Mass: 328.0536

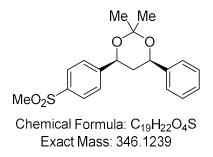

9ab was prepared according to general procedure **2.3** using NiBr₂•dme (3.3 mg, 0.01 mmol, 10 mol%), dtbbpy (4.2 mg, 0.015 mmol, 15 mol%), 1-(bromoethynyl)-4-(methylsulfonyl)benzene (26.0 mg, 0.1 mmol, 1 equiv), (*R*)-4-(chloromethyl)-2,2-dimethyl-1,3-dioxolane (75.2 mg, 0.5 mmol, 5 equiv), TBADT (6.8 mg, 0.002 mmol, 2 mol%), K₃PO₄ (25.3 mg, 0.12 mmol, 1.2 equiv) and anhydrous MeCN (1 mL) and was purified by silica gel column chromatography (PE/EA = 3/1) to obtain **9ab** as colorless oil (15.7 mg, 48% yield, d.r. > 20/1). R_f = 0.4 (PE/EA = 3/1).

¹H NMR (600 MHz, CDCl₃) δ 8.02 – 7.80 (m, 2H), 7.74 – 7.54 (m, 2H), 4.85 (d, *J* = 6.4 Hz, 1H), 4.43 (dt, *J* = 6.4, 5.1 Hz, 1H), 3.71 (d, *J* = 5.1 Hz, 2H), 3.06 (s, 3H), 1.57 (s, 3H), 1.49 (s, 3H);

¹³C NMR (151 MHz, CDCl₃) δ 140.4, 132.6, 127.8, 127.4, 111.8, 89.5, 85.0, 81.0, 44.5, 43.3, 27.1, 26.5;

HRMS: (ESI) calcd for $C_{15}H_{18}CIO_4S^+[M+H]^+$ 329.0614; found 329.0615.

1-(4-((4*S*,6*R*)-2,2-dimethyl-6-(4-(methylsulfonyl)phenyl)-1,3-dioxan-4-yl)phenyl)ethan-1one (10a)

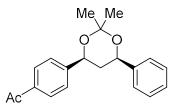

10a was prepared according to general procedure **2.4** using NiBr₂•dme (6.2 mg, 0.02 mmol, 10 mol%), **L4** (15.4 mg, 0.03 mmol, 15 mol%), anhydrous acetone (0.5 mL), 1-bromo-4- (methylsulfonyl)benzene (47.0 mg, 0.20 mmol, 1.0 equiv), (*S*)-1-(4-(2,2-dimethyl-1,3-dioxan-4-yl)phenyl)ethan-1-one (468.6 mg, 2.0 mmol, 10.0 equiv), TBADT (33.5 mg, 0.2 mmol, 5 mol%), K₃PO₄ (63.6 mg, 0.3 mmol, 1.5 equiv) and PhCF₃ (0.5 mL) and was purified by silica gel column chromatography (PE/EtOAc = 3/1) to obtain **10a** as colorless oil (51.9 mg, 67% yield, d.r. = 15/1). R_f = 0.2 (PE/EA = 3/1).

¹H NMR (600 MHz, CDCl₃) δ 7.93 (t, *J* = 8.9 Hz, 4H), 7.61 (d, *J* = 7.8 Hz, 2H), 7.49 (d, *J* = 7.8 Hz, 2H), 5.23 – 5.11 (m, 2H), 3.02 (s, 3H), 2.59 (s, 3H), 2.04 (d, *J* = 13.1 Hz, 1H), 1.69 (s, 3H), 1.64 (s, 3H), 1.60 (d, *J* = 19.9 Hz, 1H);

¹³C NMR (151 MHz, CDCl₃) δ 197.7, 148.0, 146.8, 139.7, 136.5, 128.6, 127.6, 126.7, 125.9, 99.9, 70.9, 70.8, 44.5, 40.9, 30.1, 26.6, 19.7;

HRMS: (APCI) calcd for C₂₁H₂₅O₅S⁺[M+H]⁺ 389.1417; found 389.1408.

(4*S*,6*R*)-2,2-dimethyl-4-(4-(methylsulfonyl)phenyl)-6-phenyl-1,3-dioxane (10b)

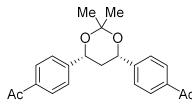


10b was prepared according to general procedure **2.4** using NiBr₂•dme (6.2 mg, 0.02 mmol, 10 mol%), **L6** (11.7 mg, 0.03 mmol, 15 mol%), anhydrous acetone (0.5 mL), 1-bromo-4- (methylsulfonyl)benzene (47.0 mg, 0.20 mmol, 1.0 equiv), TBADT (33.5 mg, 0.02 mmol, 5 mol%), (*R*)-2,2-dimethyl-4-phenyl-1,3-dioxane (384.2 mg, 2.0 mmol, 10.0 equiv), K₃PO₄ (63.6 mg, 0.3 mmol, 1.5 equiv) and PhCF₃ (0.5 mL) and was purified by silica gel column chromatography (PE/EtOAc = 3/1) to obtain **10b** as colorless oil (38.1 mg, 55% yield, d.r. > 20/1). R_f = 0.3 (PE/EA = 3/1).

¹H NMR (600 MHz, CDCl₃) δ 7.92 (d, *J* = 7.6 Hz, 2H), 7.61 (d, *J* = 7.7 Hz, 2H), 7.39 (d, *J* = 7.4 Hz, 2H), 7.35 (t, *J* = 7.2 Hz, 2H), 7.28 (d, *J* = 6.9 Hz, 1H), 5.17 (d, *J* = 11.6 Hz, 1H), 5.09 (d, *J* = 11.5 Hz, 1H), 3.02 (d, *J* = 2.4 Hz, 3H), 2.05 – 1.99 (m, 1H), 1.72 (d, *J* = 12.7 Hz, 1H), 1.69 (s, 3H), 1.63 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 148.4, 141.5, 139.6, 128.5, 127.9, 127.6, 126.7, 125.9, 99.8, 71.4, 70.9, 44.6, 41.1, 30.2, 19.8;

HRMS: (ESI) calcd for $C_{19}H_{22}O_4SNa^+[M+Na]^+$ 369.1058; found 369.1054.

1-(4-((4*S*,6*R*)-2,2-dimethyl-6-phenyl-1,3-dioxan-4-yl)phenyl)ethan-1-one (10c)

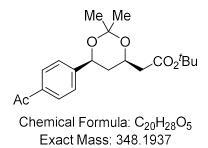

Chemical Formula: C₂₀H₂₂O₃ Exact Mass: 310.1569

10c was prepared according to general procedure **2.4** using NiBr₂•dme (6.2 mg, 0.02 mmol, 10 mol%), **L6** (11.7 mg, 0.03 mmol, 15 mol%), anhydrous acetone (0.5 mL), 1-(4-bromophenyl)ethan-1-one (40.0 mg, 0.20 mmol, 1.0 equiv), TBADT (33.5 mg, 0.02 mmol, 5 mol%), (R)-2,2-dimethyl-4-phenyl-1,3-dioxane (384.2 mg, 2.0 mmol, 10.0 equiv), K₃PO₄ (63.6

mg, 0.3 mmol, 1.5 equiv) and PhCF₃ (0.5 mL) and was purified by silica gel column chromatography (PE/EtOAc = 5/1) to obtain **10c** as colorless oil (37.8 mg, 61% yield, d.r. > 20/1). $R_f = 0.4$ (PE/EA = 10/1).

¹H NMR (600 MHz, CDCl₃) δ 7.94 (d, *J* = 8.3 Hz, 2H), 7.50 (d, *J* = 8.3 Hz, 2H), 7.40 (d, *J* = 7.4 Hz, 2H), 7.35 (t, *J* = 7.6 Hz, 2H), 7.28 (d, *J* = 7.3 Hz, 1H), 5.14 (dd, *J* = 11.7, 2.5 Hz, 1H), 5.09 (dd, *J* = 11.7, 2.5 Hz, 1H), 2.59 (s, 3H), 2.01 (dt, *J* = 13.2, 2.5 Hz, 1H), 1.77 – 1.71 (m, 1H), 1.69 (s, 3H), 1.64 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 197.8, 147.4, 141.8, 136.4, 128.6, 128.5, 127.8, 125.91, 125.88, 99.7, 71.5, 71.2, 41.1, 30.3, 26.6, 19.8. HRMS: (APCI) calcd for C₂₀H₂₃O₃⁺[M+H]⁺ 311.1642; found 311.1639.

1,1'-(((4S,6R)-2,2-dimethyl-1,3-dioxane-4,6-diyl)bis(4,1-phenylene))bis(ethan-1-one) (10d)

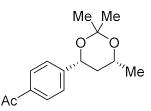

Chemical Formula: C₂₂H₂₄O₄ Exact Mass: 352.1675

10d was prepared according to general procedure **2.4** using NiBr₂•dme (6.2 mg, 0.02 mmol, 10 mol%), **L4** (15.4 mg, 0.03 mmol, 15 mol%), anhydrous acetone (0.5 mL), 1-(4-bromophenyl)ethan-1-one (40.0 mg, 0.20 mmol, 1.0 equiv), (*S*)-1-(4-(2,2-dimethyl-1,3-dioxan-4-yl)phenyl)ethan-1-one (468.6 mg, 2.0 mmol, 10.0 equiv), TBADT (33.5 mg, 0.2 mmol, 5 mol%), K₃PO₄ (63.6 mg, 0.3 mmol, 1.5 equiv) and PhCF₃ (0.5 mL) and was purified by silica gel column chromatography (PE/EtOAc = 3/1) to obtain **10d** as colorless oil (51.4 mg, 73% yield, d.r. = 15/1). R_f = 0.4 (PE/EA = 3/1).

¹H NMR (600 MHz, CDCl₃) δ 7.94 (d, *J* = 7.3 Hz, 4H), 7.49 (d, *J* = 7.4 Hz, 4H), 5.15 (d, *J* = 11.4 Hz, 2H), 2.59 (s, 6H), 2.03 (d, *J* = 13.4 Hz, 1H), 1.69 (s, 3H), 1.68 (s, 1H), 1.65 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 197.8, 147.1, 136.5, 128.6, 125.9, 99.8, 71.0, 40.9, 30.2, 26.6, 19.7;

HRMS: (ESI) calcd for C₂₂H₂₅O₄⁺[M+H]⁺ 353.1747; found 353.1737.

tert-butyl 2-((4R,6S)-6-(4-acetylphenyl)-2,2-dimethyl-1,3-dioxan-4-yl)acetate (10e)

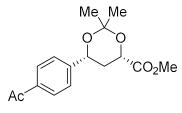


10e was prepared according to general procedure **2.4** using NiBr₂•dme (6.2 mg, 0.02 mmol, 10 mol%), **L6** (11.7 mg, 0.03 mmol, 15 mol%), anhydrous acetone (0.5 mL), 1-(4-bromophenyl)ethan-1-one (40.0 mg, 0.20 mmol, 1 equiv), TBADT (33.5 mg, 0.02 mmol, 5 mol%), *tert*-butyl (*R*)-2-(2,2-dimethyl-1,3-dioxan-4-yl)acetate (460.6 mg, 2.0 mmol, 10 equiv), K₃PO₄ (63.6 mg, 0.3 mmol, 1.5 equiv) and PhCF₃ (0.5 mL) and was purified by silica gel column chromatography (PE/EtOAc = 6/1) to obtain **10e** as colorless oil (36.2 mg, 52% yield, d.r. > 20:1). $R_f = 0.6$ (PE/EA = 5/1).

¹H NMR (400 MHz, CDCl₃) δ 7.96 – 7.91 (m, 2H), 7.48 – 7.43 (m, 2H), 4.99 (dd, J = 11.7, 2.7 Hz, 1H), 4.43 (dtd, J = 11.6, 6.6, 2.4 Hz, 1H), 2.59 (s, 3H), 2.48 (dd, J = 15.3, 7.0 Hz, 1H), 2.33 (dd, J = 15.3, 6.2 Hz, 1H), 1.84 (dt, J = 12.9, 2.5 Hz, 1H), 1.57 (s, 3H), 1.49 (s, 3H), 1.45 (s, 10H), 1.39 – 1.27 (m, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 197.8, 170.1, 147.5, 136.4, 128.6, 126.0, 99.3, 80.8, 71.0, 66.3, 42.5, 38.6, 30.1, 28.1, 26.7, 19.7.

HRMS: (ESI) calcd for $C_{20}H_{28}O_5Na^+[M+Na]^+$ 372.1863; found 372.1855.

1-(4-((4R,6R)-2,2,6-trimethyl-1,3-dioxan-4-yl)phenyl)ethan-1-one (10f)

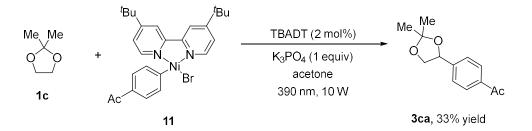

Chemical Formula: C₁₅H₂₀O₃ Exact Mass: 248.1412

10f was prepared according to general procedure **2.2** using NiBr₂•dme (6.2 mg, 0.02 mmol, 10 mol%), **L4** (15.4 mg, 0.03 mmol, 15 mol%), anhydrous acetone (0.5 mL), 1-(4-bromophenyl)ethan-1-one (40.0 mg, 0.20 mmol, 1 equiv), TBADT (33.5 mg, 0.02 mmol, 5 mol%), (*R*)-2,2,4-trimethyl-1,3-dioxane (260.4 mg, 2.0 mmol, 10 equiv), K₃PO₄ (63.6 mg, 0.3

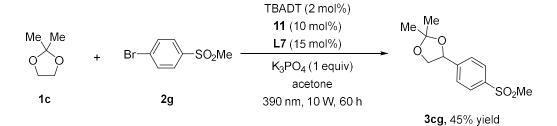
mmol, 1.5 equiv) and PhCF₃ (0.5 mL) and was purified by silica gel column chromatography (PE/EtOAc = 10/1) to obtain **10f** as colorless oil (34.7 mg, 70% yield, d.r. = 15/1). $R_f = 0.4$ (PE/EA = 10/1).

¹H NMR (600 MHz, CDCl₃) δ 7.96 – 7.91 (m, 2H), 7.48 – 7.43 (m, 2H), 4.96 (dd, *J* = 11.8, 2.7 Hz, 1H), 4.15 (dqd, *J* = 12.2, 6.1, 2.3 Hz, 1H), 2.58 (s, 3H), 1.75 (dt, *J* = 13.1, 2.6 Hz, 1H), 1.56 (s, 3H), 1.52 (s, 3H), 1.39 (dt, *J* = 13.1, 11.6 Hz, 1H), 1.21 (d, *J* = 6.1 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 197.9, 147.8, 136.3, 128.6, 125.9, 99.1, 71.1, 65.2, 40.8, 30.3, 26.7, 22.1, 19.8. HRMS: (ACPI) calcd for C₁₅H₂₁O₃⁺[M+H]⁺ 249.1485; found 249.1479.

methyl (4S,6R)-6-(4-acetylphenyl)-2,2-dimethyl-1,3-dioxane-4-carboxylate (10g)

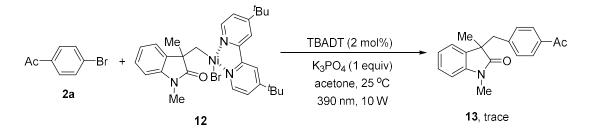

Chemical Formula: C₁₆H₂₀O₅ Exact Mass: 292.1311

10g was prepared according to general procedure **2.2** using NiBr₂•dme (6.2 mg, 0.02 mmol, 10 mol%), **L4** (15.4 mg, 0.03 mmol, 15 mol%), anhydrous acetone (0.5 mL), 1-(4-bromophenyl)ethan-1-one (40.0 mg, 0.20 mmol, 1 equiv), TBADT (33.5 mg, 0.02 mmol, 5 mol%), methyl (*S*)-2,2-dimethyl-1,3-dioxane-4-carboxylate (348.4 mg, 2.0 mmol, 10 equiv), K₃PO₄ (63.6 mg, 0.3 mmol, 1.5 equiv) and PhCF₃ (0.5 mL) and was purified by silica gel column chromatography (PE/EtOAc = 5/1) to obtain **10g** as colorless oil (37.4 mg, 64% yield, d.r. = 12/1). R_f = 0.3 (PE/EA = 5/1).

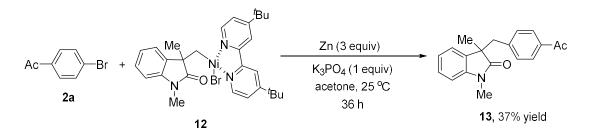

¹H NMR (400 MHz, CDCl₃) δ 8.01 – 7.80 (m, 2H), 7.45 (d, *J* = 8.1 Hz, 2H), 5.03 (dd, *J* = 11.7, 2.7 Hz, 1H), 4.68 (dd, *J* = 12.2, 2.7 Hz, 1H), 3.76 (s, 3H), 2.58 (s, 3H), 2.11 (dt, *J* = 13.1, 2.7 Hz, 1H), 1.74 (q, *J* = 12.1 Hz, 1H), 1.61 (s, 3H), 1.59 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 197.8, 170.9, 146.6, 136.6, 128.6, 126.0, 100.0, 70.7, 68.9, 52.4, 35.5, 29.9, 26.7, 19.4. HRMS: (APCI) calcd for C₁₆H₂₁O₅⁺[M+H]⁺ 293.1383; found 293.1376.

5. Mechanistic studies

5.1 Reaction of aryl-Ni(II) complex 11



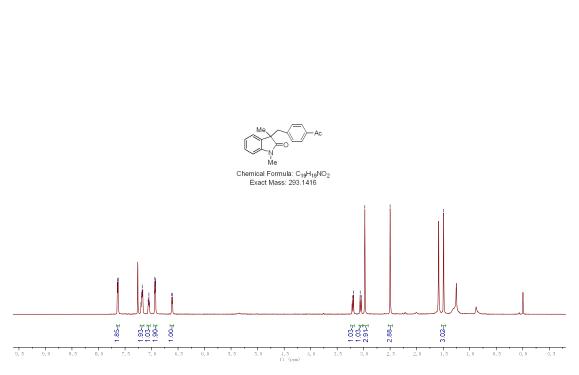
An oven-dried 10-mL vial equipped with a PTFE-coated stir bar was charged with complex **11** (26.3 mg, 0.05 mmol, 1 equiv), 2,2-dimethyl-1,3-dioxolane **1c** (25.5 mg, 0.25 mmol, 5 equiv), TBADT (3.4 mg, 0.001 mmol, 2 mol%), K_3PO_4 (10.6 mg, 0.05 mmol, 1 equiv) and anhydrous acetone (0.5 mL). The sealed tube was sealed and removed from the glovebox. The reaction mixture was stirred and irradiated using a 10 W 390 nm LED lamp at 25 °C. The resulting mixture was concentrated under vacuum and the residue was purified by column chromatography on silica gel, eluting with PE/EA (10/1) to afford the corresponding product **3ca** (3.6 mg, 33% yield).



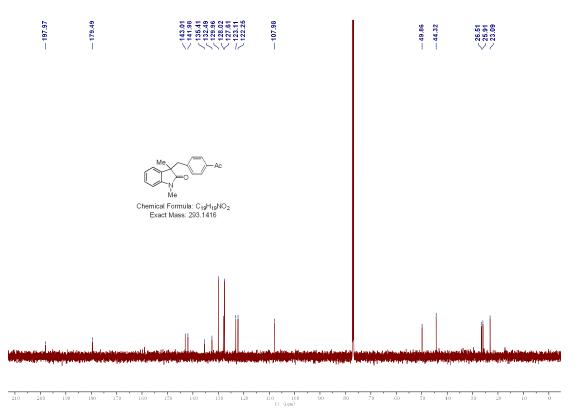
An oven-dried 10-mL vial equipped with a PTFE-coated stir bar was charged with complex **11** (5.6 mg, 0.01 mmol, 10 mol%), **L7** (4.0 mg, 0.015 mmol, 15 mol%), TBADT (6.8 mg, 0.002 mmol, 2 mol%), 2,2-dimethyl-1,3-dioxolane **1c** (51.0 mg, 0.50 mmol, 5 equiv), 1-bromo-4- (methylsulfonyl)benzene **2g** (23.5 mg, 0.10 mmol, 1.0 equiv), K_3PO_4 (21.2 mg, 0.10 mmol, 1 equiv) and anhydrous acetone (1.0 mL). The sealed tube was sealed and removed from the glovebox. The reaction mixture was stirred and irradiated using a 10 W 390 nm LED lamp at 25 °C. The resulting mixture was concentrated under vacuum and the residue was purified by column chromatography on silica gel, eluting with PE/EA (5/1) to afford the corresponding product **3cg** (11.5 mg, 45% yield).

5.2 Reaction of σ -alkyl-Ni(II) complex 12

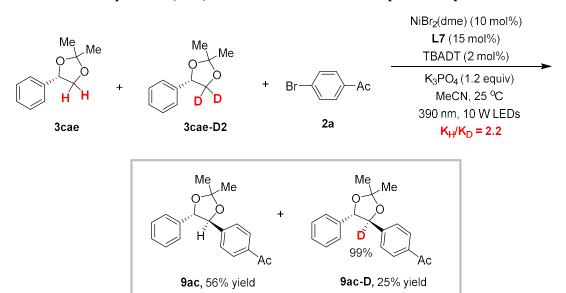
An oven-dried 10-mL vial equipped with a PTFE-coated stir bar was charged with complex **12** (29.1 mg, 0.05 mmol, 1 equiv), 1-(4-bromophenyl)ethan-1-one **2a** (10.0 mg, 0.05 mmol, 1 equiv), TBADT (3.4 mg, 0.001 mmol, 2 mol%), K₃PO₄ (10.6 mg, 0.05 mmol, 1 equiv) and anhydrous acetone (0.5 mL). The sealed tube was sealed and removed from the glovebox. The reaction mixture was stirred and irradiated using a 10 W 390 nm LED lamp at 25 °C. The resulting mixture was concentrated under vacuum and the residue was purified by column chromatography on silica gel, eluting with PE/EA (4/1) to afford trace product **13**.



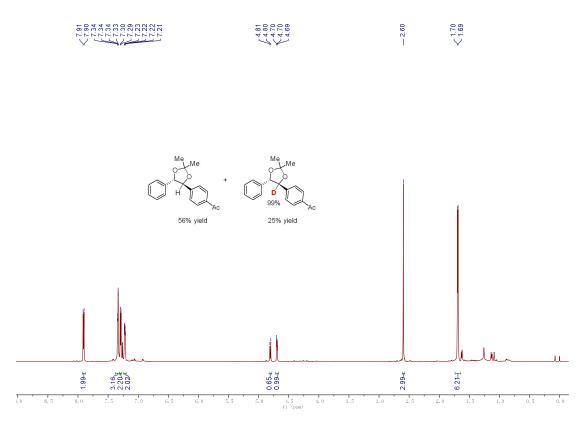
An oven-dried 10-mL vial equipped with a PTFE-coated stir bar was charged with complex **12** (29.1 mg, 0.05 mmol, 1 equiv), 1-(4-bromophenyl)ethan-1-one **2a** (10.0 mg, 0.05 mmol, 1 equiv), Zn (9.8 mg, 0.15 mmol, 3 equiv) K_3PO_4 (10.6 mg, 0.05 mmol, 1 equiv) and anhydrous acetone (0.5 mL). The sealed tube was sealed and removed from the glovebox. Then the reaction was stirred at 25 °C in an aluminium bead bath for 12 hours. The resulting mixture was concentrated under vacuum and the residue was purified by column chromatography on silica gel, eluting with PE/EA (4/1) to afford the corresponding product **13** (5.4 mg, 37% yield).


The NMR data matched those reported in the literature.⁸

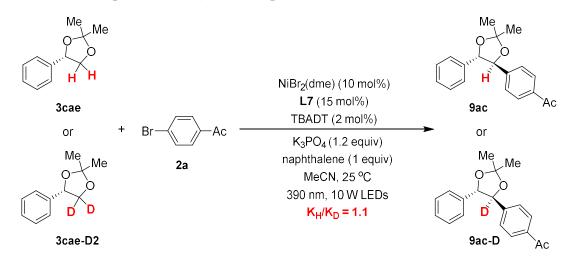
¹H NMR (600 MHz, CDCl₃) δ 7.66 – 7.61 (m, 2H), 7.18 (q, *J* = 7.4, 6.9 Hz, 2H), 7.05 (t, *J* = 7.6 Hz, 1H), 6.93 (dd, *J* = 8.4, 2.9 Hz, 2H), 6.61 (d, *J* = 7.7 Hz, 1H), 3.20 (d, *J* = 12.9 Hz, 1H), 3.06 (d, *J* = 12.9 Hz, 1H), 2.98 (s, 3H), 2.50 (s, 3H), 1.49 (s, 3H).


¹³C NMR (151 MHz, CDCl₃) δ 198.0, 179.5, 143.0, 142.0, 135.4, 132.5, 130.0, 128.0, 127.6, 123.1, 122.3, 108.0, 49.9, 44.3, 26.5, 25.9, 23.1.

Supplementary Figure 83. ¹H NMR Spectrum of 13

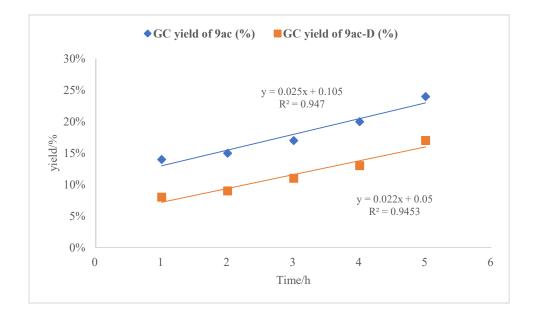


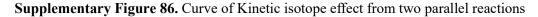
Supplementary Figure 84. ¹³C NMR Spectrum of 13

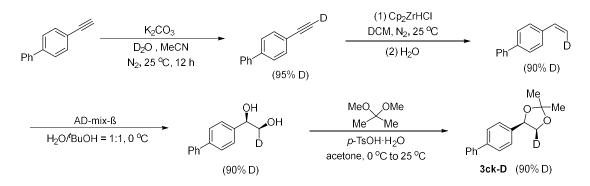


5.3 Kinetic isotope effect (KIE) from an intermolecular competition experiment

An oven-dried 10-mL vial equipped with a PTFE-coated stir bar was charged with NiBr₂(dme) (3.1 mg, 0.01 mmol, 10 mol%), L7 (4.0 mg, 0.015 mmol, 15 mol%), TBADT (6.8 mg, 0.002 mmol, 2 mol%), **2a** (19.9 mg, 0.10 mmol, 1.0 equiv), **3cae** (89.0 mg, 0.50 mmol, 5.0 equiv), **3cae-D2** (90.0 mg, 0.50 mmol, 5.0 equiv), K_3PO_4 (25.2 mg, 0.12 mmol, 1.2 equiv) and anhydrous MeCN (1 mL). The reaction mixture was stirred and irradiated with a 10 W 390 nm LED lamp at 25 °C. The resulting mixture was removed from light, diluted with ethyl acetate and passed through a pad of celite. The celite plug was further washed with ethyl acetate. The combined solvent was then evaporated under reduced pressure, and the residue was purified by column chromatography on silica gel, eluting with PE/EA (5/1) to afford **9ac** (56% yield) and **9ac-D** (25% yield).

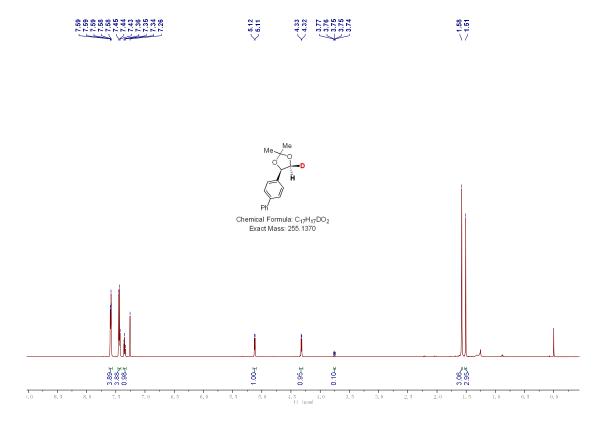



Supplementary Figure 85. ¹H NMR Spectrum of 9ac and 9ac-D

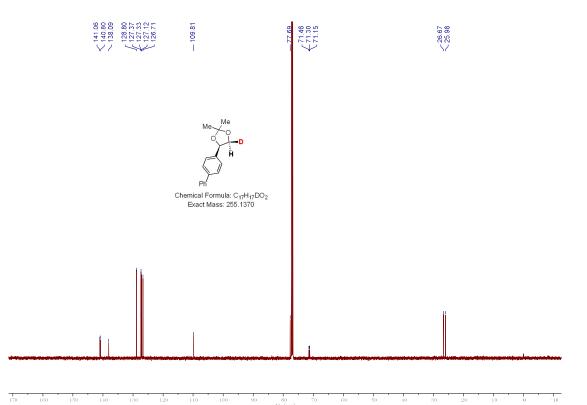

5.4 Kinetic isotope effect (KIE) from two parallel reactions

Two oven-dried 10-mL vials equipped with a PTFE-coated stir bar was charged with NiBr₂(dme) (3.1 mg, 0.01 mmol, 10 mol%), L7 (4.0 mg, 0.015 mmol, 15 mol%), TBADT (6.8 mg, 0.002 mmol, 2 mol%), **3cae** or **3cae-D2** (90.0 mg, 0.50 mmol, 5.0 equiv), **2a** (19.9 mg, 0.10 mmol, 1.0 equiv), anhydrous K₃PO₄ (25.2 mg, 0.12 mmol, 1.2 equiv) and dry MeCN (1.0 mL) in an argon-filled glovebox. The vial was sealed and removed from the glovebox. The reaction mixture was stirred and irradiated using a 10 W 390 nm LED lamp at 25 °C. The reactions were stirred under irradiation for the time stated for each experiment. The kinetic isotope effect (KIE) was determined to be 1.1. The reaction uses naphthalene as an internal standard.

5.5 Intramolecular competition experiment of 3ck-D


An oven-dried 100 mL Schlenk flask was charged with 4-ethynyl-1,1'-biphenyl (1.78 g, 10 mmol), K_3PO_4 (2.0 g, 1.5 equiv) and anhydrous MeCN (10 mL). The reaction mixture was stirred under N₂ atmosphere for 30 minutes. D₂O (10.0 mL, 50 equiv) was then added and the resulting mixture was stirring at 25 °C for overnight. The reaction mixture was diluted with DCM. The organic layer was dried over Na₂SO₄, filtered and solvent was removed under reduced pressure to afford the 4-(ethynyl-*d*)-1,1'-biphenyl (1.77 g, 99% yield, 95% D).

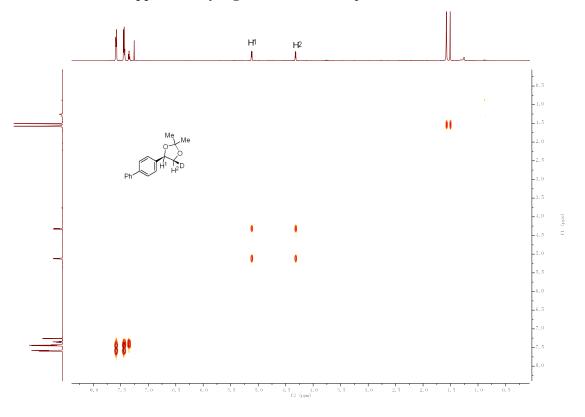
An oven-dried 100 mL Schlenk flask was charged with 4-(ethynyl-*d*)-1,1'-biphenyl (0.896 g, 5 mmol), Cp₂ZrHCl (Schwartz' reagent) (1.42 g, 5.5 mmol, 1.1 equiv) and anhydrous DCM (10 mL). After stirring at room temperature in the dark for 2 h, water (0.71 mL, 40 mmol, 8 equiv) was added and the reaction was stirred for overnight. The reaction was diluted with DCM and the organic layer was washed with brine, dried over Na₂SO₄, filtered, and solvent was removed under reduced pressure. The residue was purified by flash chromatography on silica gel (PE) to afford (*Z*)-4-(vinyl-2-*d*)-1,1'-biphenyl (815.6 mg, 90% yield, 90% D).


A round-bottomed flask was charged with tert-butyl alcohol (20 mL), H₂O (20 mL) and ADmix- β (5.6 g). The mixture was stirred at room temperature until the aqueous phase appears bright yellow. The mixture was cooled to 0 °C whereupon some of the dissolved salts precipitated, (*Z*)-4-(vinyl-2-*d*)-1,1'-biphenyl (815.6 mg, 4.5 mmol) was added once, and the heterogenous slurry was stirred vigorously at 0 °C for 24 h. While the mixture was stirred at 0 °C, anhydrous sodium sulfite was added and the mixture was allowed to warm to 25 °C and further stirred for 30 minutes. The reaction mixture was extracted with EA. The organic phase was washed with brine, dried over anhydrous Na₂SO₄ and concentrated. The residue was purified by flash chromatography on silica gel (PE/EA) to afford (1*R*,2*S*)-1-([1,1'-biphenyl]-4yl)ethane-2-*d*-1,2-diol (238.8 mg, 40% yield, 90% D).

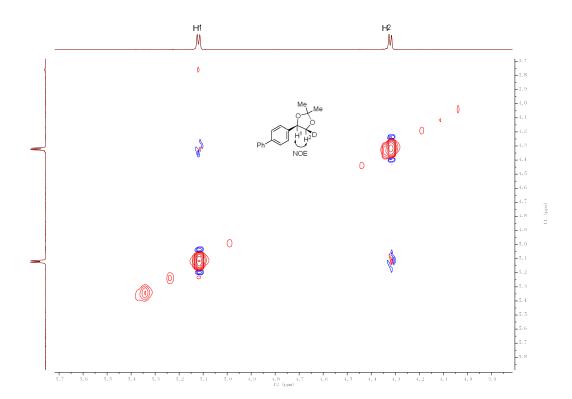
To a solution of (1R,2S)-1-([1,1'-biphenyl]-4-yl)ethane-2-*d*-1,2-diol (89.7 mg, 0.42 mmol) in acetone (5 mL) was added PTSA·H₂O (8.0 mg, 0.042 mmol, 10 mol%). The reaction mixture was cooled to 0 °C and added 2,2-dimethoxypropane (0.14 mL, 1.05 equiv, 0.44 mmol). The reaction mixture was stirred at room temperature for 16 h. The reaction was quenched by adding saturated NaHCO₃ solution (2 mL). The reaction mixture was extracted with DCM. The organic phase was washed with brine, dried over anhydrous Na₂SO₄ and concentrated. The residue was purified by flash chromatography on silica gel (PE/EA) to afford **3ck-D** (86.2 mg, 81% yield, 90% D).

¹H NMR (600 MHz, CDCl₃) δ 7.61 – 7.56 (m, 4H), 7.44 (t, *J* = 7.4 Hz, 4H), 7.35 (t, *J* = 7.4 Hz, 1H), 5.12 (d, *J* = 6.2 Hz, 1H), 4.32 (d, *J* = 6.2 Hz, 1H), 1.58 (s, 3H), 1.51 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 141.1, 140.8, 138.1, 128.8, 127.4, 127.3, 127.1, 126.7, 109.8, 77.7, 71.3 (t, *J* = 24.2 Hz), 26.7, 26.0.

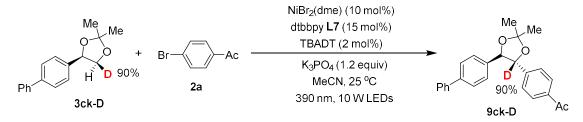
Supplementary Figure 87. ¹H NMR Spectrum of 3ck-D



Supplementary Figure 88. ¹³C NMR Spectrum of 3ck-D

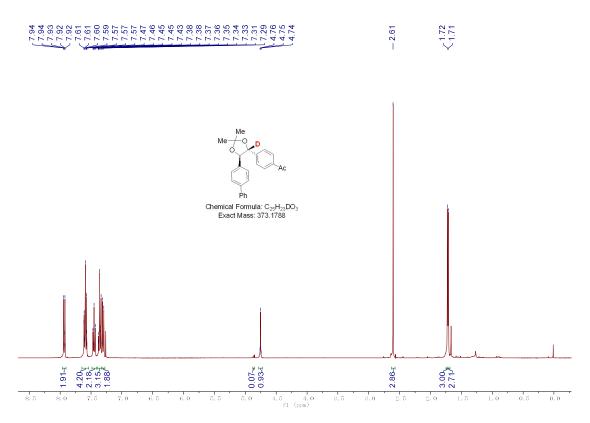

80 f1 (ppm)

100

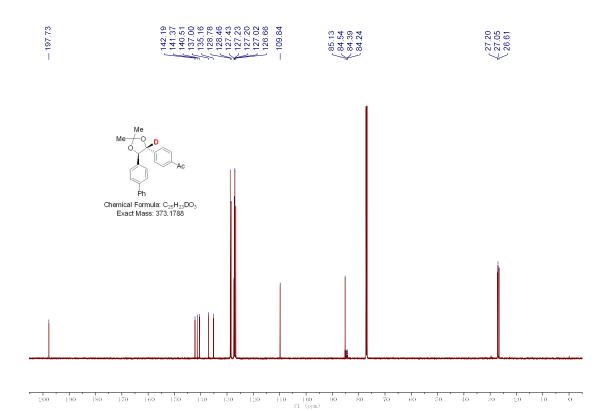

130

Supplementary Figure 89. H-H COSY Spectrum of 3ck-D

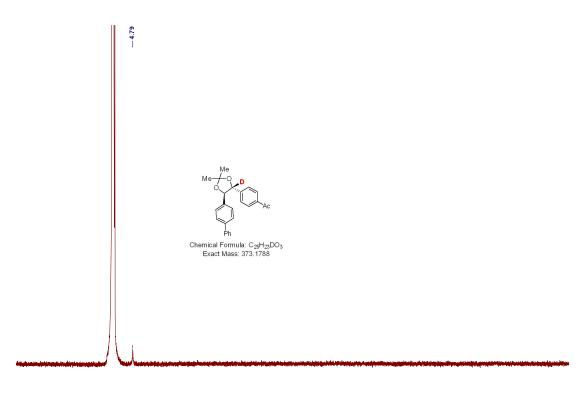
Supplementary Figure 90. H-H NOESY Spectrum of 3ck-D


An oven-dried 10-mL vial equipped with a PTFE-coated stir bar was charged with NiBr₂(dme) (1.6 mg, 0.005 mmol, 10 mol%), L7 (2.0 mg, 0.0075 mmol, 15 mol%), TBADT (3.4 mg, 0.001 mmol, 2 mol%), **2a** (10.0 mg, 0.05 mmol, 1.0 equiv), **3ck-D** (63.7 mg, 0.25 mmol, 5.0 equiv), K₃PO₄ (12.7 mg, 0.06 mmol, 1.2 equiv) and anhydrous MeCN (0.5 mL). The reaction mixture was stirred and irradiated with a 10 W 390 nm LED lamp at 25 °C. The resulting mixture was removed from light, diluted with ethyl acetate and passed through a pad of celite. The celite plug was further washed with ethyl acetate. The combined solvent was then evaporated under reduced pressure, and the residue was purified by column chromatography on silica gel, eluting with PE/EA (5/1) to afford **9ck-D** (12.1 mg, 65% yield, > 20:1 d.r.).

¹H NMR (400 MHz, CDCl₃) δ 7.97 – 7.90 (m, 2H), 7.65 – 7.54 (m, 4H), 7.48 – 7.41 (m, 2H), 7.39 – 7.32 (m, 3H), 7.30 (d, *J* = 8.2 Hz, 2H), 4.76 (d, *J* = 3.5 Hz, 1H), 2.61 (s, 3H), 1.72 (s, 3H), 1.71 (s, 3H).

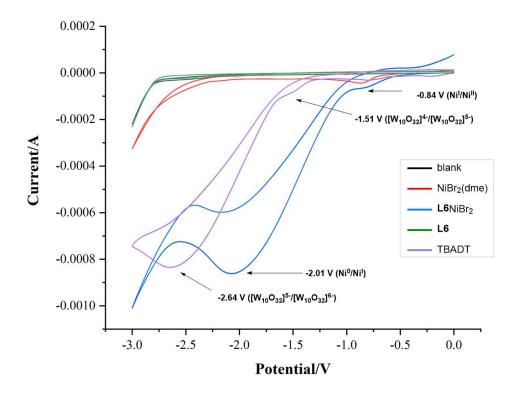

¹³C NMR (151 MHz, CDCl₃) δ 197.7, 142.2, 141.4, 140.5, 137.0, 135.2, 128.8, 128.5, 127.4, 127.23, 127.2, 127.0, 126.7, 109.8, 85.1, 84.6 – 84.0 (m), 27.2, 27.0, 26.6.

²H NMR (92 MHz, CDCl₃) δ 4.79 (s, 1H).


HRMS: (APCI) calcd for C₂₅H₂₄DO₃⁺[M+H]⁺ 374.1861; found 374.1858.

Supplementary Figure 91. ¹H NMR Spectrum of 9ck-D

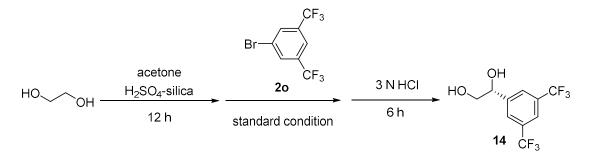
Supplementary Figure 92. ¹³C NMR Spectrum of 9ck-D



18 16 14 12 10 8 6 4 2 0 -2 -4 -6 -8 -10 -12 -14 -16 -18 -20 -22 -24 -26 -28 -30 -32 -34 -36 -38 -40 -42 -44 -46 -48 f1 (com)

Supplementary Figure 93. ²H NMR Spectrum of 9ck-D

5.6 Cyclic voltammetry experiments

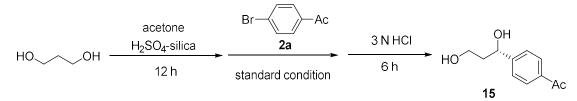

General information: Cyclic voltammetry (CV) experiments were conducted in a 20 mL twonecked cell set-up fitted with a glassy carbon working electrode (3 mm in diameter), an Ag/AgCl reference electrode, and a platinum wire counter electrode. All measurements were carried out in anhydrous MeCN, using a scan rate of 100 mV/s. Blank line: "Bu₄NBF₄ (0.10 mmol) in 6.0 mL MeCN. Red line: NiBr₂(dme) (0.01 mmol), "Bu₄NBF₄ (0.10 mmol) in 6.0 mL MeCN. Blue line: L6NiBr₂ (0.01 mmol), "Bu₄NBF₄ (0.10 mmol) in 6.0 mL MeCN. Green line: L6 (0.01 mmol), "Bu₄NBF₄ (0.10 mmol) in 6.0 mL MeCN. Purple line: TBADT (0.01 mmol), "Bu₄NBF₄ (0.10 mmol) in 6.0 mL MeCN. As shown in cyclic voltammetry studies, two reductive peaks of L6NiBr₂ were observed at Ni^{II}/Ni^I = - 0.84 V (*vs* Ag/Ag⁺) and Ni^I/Ni⁰ = -2.01 V (*vs* Ag/Ag⁺). Two reductive peaks of TBADT were observed at [W₁₀O₃₂]⁴/[W₁₀O₃₂]⁵⁻ = - 1.51 V (*vs* Ag/Ag⁺) and [W₁₀O₃₂]⁵⁻/[W₁₀O₃₂]⁶⁻ = - 2.64 V (*vs* Ag/Ag⁺).

Supplementary Figure 94. Cyclic voltammetry experiments

6. Synthetic Applications

6.1 Synthesis of the (R)-1-(3,5-bis(trifluoromethyl)phenyl)ethane-1,2-diol (14)

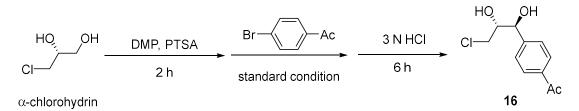
An oven-dried 10 mL tube equipped with a PTFE-coated stir bar was charged with ethane-1,2-diol (62.0 mg, 1.0 mmol, 5.0 equiv), anhydrous acetone (0.5 mL) was stirred in the presence of H₂SO₄-silica⁹ at room temperature in an argon-filled glovebox. The tube was sealed and stirred at room temperature for 12 hours. The reaction then proceeds with the addition of powdered CaCl₂ (22.0 mg, 0.2 mmol, 1.0 equiv). Subsequently, the tube was charged with NiBr₂•dme (6.4 mg, 0.02 mmol, 10 mol%), **L6** (11.7 mg, 0.03 mmol, 15 mol%), TBADT (24.6 mg, 0.01 mmol, 5 mol%), K₃PO₄ (84.8 mg, 0.40 mmol, 2.0 equiv), 1-bromo-3,5bis(trifluoromethyl)benzene **20** (58.6 mg, 0.20 mmol, 1.0 equiv), anhydrous acetone (1 mL) and PhCF₃ (1 mL). The tube was sealed and removed from the glovebox. The reaction mixture was stirred and irradiated using a 10 W 390 nm LED lamp for 48 hours. The light was removed and 3 N HCl (6 mL) was added to the resulting reaction mixture. After string at room temperature for another 6 hours, the solvent was removed under reduced pressure and the residue was purified by column chromatography on silica gel (EA) to afford **14** as colorless oil (35.6 mg, 65% yield, 90% ee).


The NMR data matched those reported in the literature.¹⁰

¹H NMR (600 MHz, Methanol- d_4) δ 7.99 (s, 2H), 7.85 (s, 1H), 4.86 – 4.82 (m, 1H), 3.67 (d, J = 5.6 Hz, 2H);

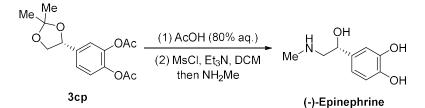
¹³C NMR (151 MHz, Methanol- d_4) δ 146.1, 131.0 (q, J = 33.1 Hz), 126.7 (q, J = 4.1 Hz), 123.6 (q, J = 271.8 Hz), 120.6 (p, J = 3.9 Hz), 72.9, 66.7;

¹⁹F NMR (565 MHz, Methanol- d_4) δ -64.32.


6.2 Synthesis of the (S)-1-(4-(1,3-dihydroxypropyl)phenyl)ethan-1-one (15)

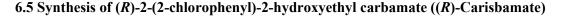
An oven-dried 10 mL tube equipped with a PTFE-coated stir bar was charged with propane-1,3-diol (76.0 mg, 1.0 mmol, 5.0 equiv), anhydrous acetone (0.5 mL) was stirred in the presence of H₂SO₄-silica at room temperature in an argon-filled glovebox. The tube was sealed and stirred at room temperature for 12 hours. The reaction then proceeds with the addition of powdered CaCl₂ (22.0 mg, 0.2 mmol, 1.0 equiv). Subsequently, the tube was charged with NiBr₂•dme (6.4 mg, 0.02 mmol, 10 mol%), **L6** (11.7 mg, 0.03 mmol, 15 mol%), TBADT (24.6 mg, 0.01 mmol, 5 mol%), K₃PO₄ (106.0 mg, 0.50 mmol, 2.5 equiv), 1-(4-bromophenyl)ethan-1-one **2a** (40.0 mg, 0.20 mmol, 1.0 equiv), anhydrous acetone (1 mL) and PhCF₃ (1 mL). The tube was sealed and removed from the glovebox. The reaction mixture was stirred and irradiated using a 10 W 390 nm LED lamp for 48 hours. The light was removed and 3 N HCl (6 mL) was added to the resulting reaction mixture. After string at room temperature for another 6 hours, the solvent was removed under reduced pressure and the residue was purified by column chromatography on silica gel (EA) to afford **15** as colorless oil (24.0 mg, 62% yield, 90% ee). The NMR data matched those reported in the literature.¹¹

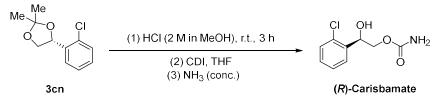
¹H NMR (400 MHz, CDCl₃) δ 7.94 – 7.89 (m, 2H), 7.44 (d, *J* = 8.2 Hz, 2H), 5.02 (dd, *J* = 7.2, 5.1 Hz, 1H), 3.86 (t, *J* = 5.5 Hz, 2H), 2.82 (s, 2H), 2.58 (s, 3H), 1.99 – 1.91 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 198.1, 149.8, 136.2, 128.6, 125.7, 73.7, 61.2, 40.2, 26.6.


6.3 Synthesis of the 1-(4-((1S,2R)-3-chloro-1,2-dihydroxypropyl)phenyl)ethan-1-one (16)

An oven-dried 10 mL tube equipped with a PTFE-coated stir bar was charged with α chlorohydrin (110 mg, 1.0 mmol, 5.0 equiv), PTSA·H₂O (19.0 mg, 0.1 mmol, 10 mol%) and 2,2-dimethoxypropane (124.8 mg, 1.2 mmol, 6.0 equiv) in an argon-filled glovebox. The tube was sealed and stirred at room temperature for 2 hours. Subsequently, the tube was charged with NiBr₂•dme (6.4 mg, 0.02 mmol, 10 mol%), dtbbpy (8.0 mg, 0.03 mmol, 15 mol%), TBADT (13.3 mg, 0.004 mmol, 2 mol%), K₃PO₄ (93.3 mg, 0.44 mmol, 2.2 equiv), 1-(4-bromophenyl)ethan-1-one (40.0 mg, 0.20 mmol, 1.0 equiv) and anhydrous MeCN (1 mL). The tube was sealed and removed from the glovebox. The reaction mixture was stirred and irradiated using a 10 W 390 nm LED lamp for 48 hours. The light was removed and 3 N HCl (6 mL) was added to the resulting reaction mixture. After string at room temperature for another 6 hours, the solvent was removed under reduced pressure and the residue was purified by column chromatography on silica gel (EA) to afford **16** as colorless oil (34.2 mg, 75% yield, d.r. > 20/1). ¹H NMR (400 MHz, CDCl₃) δ 8.06 – 7.79 (m, 2H), 7.63 – 7.45 (m, 2H), 4.83 (d, *J* = 6.0 Hz, 1H), 3.89 (q, *J* = 5.5 Hz, 1H), 3.60 (dd, *J* = 11.5, 4.4 Hz, 1H), 3.41 (dd, *J* = 11.5, 5.6 Hz, 1H), 3.13 (s, 1H), 2.97 (s, 1H), 2.58 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 198.1, 145.4, 137.1, 128.8, 126.9, 75.3, 74.0, 45.9, 26.8;

HRMS: (ESI) calcd for $C_{11}H_{14}ClO_3^+[M+H]^+$ 229.0626; found 229.0629.

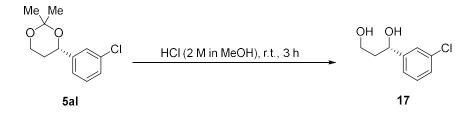

6.4 Synthesis of (*R*)-4-(1-hydroxy-2-((methylsulfonyl)oxy)ethyl)-1,2-phenylene diacetate ((-)-Epinephrine)



To a 50 mL flask equipped with a PTFE-coated stir bar was added **3cp** (147.3 mg, 0.5 mmol, 1 equiv) and AcOH (4 mL, 80% aq.). The reaction mixture was stirred at room temperature for 4 hours. The solvent was evaporated under reduced pressure and the residue was added DCM (5 mL), Et₃N (151.8 mg, 1.5 mmol, 3 equiv) and MsCl (85.9 mg, 0.75 mmol, 1.5 equiv) at 0 $^{\circ}$ C. The reaction was stirred at 0 $^{\circ}$ C for an hour, then NH₂Me (155.3 mg, 5 mmol, 10 equiv, 33% in EtOH) was added. After stirring at room temperature overnight, the solvent was evaporated under reduced pressure and the residue was purified by flash chromatography on silica gel (DCM/MeOH/Et₃N) to afford (-)-Epinephrine as brown solid (58.6 mg, 64% yield).

The NMR data matched those reported in the literature.¹²

¹H NMR (400 MHz, DMSO-*d*₆) δ 6.68 (d, *J* = 2.0 Hz, 1H), 6.61 (d, *J* = 8.1 Hz, 1H), 6.51 (dd, *J* = 8.0, 2.0 Hz, 1H), 4.41 (dd, *J* = 8.2, 4.5 Hz, 1H), 2.56 – 2.47 (m, 2H), 2.26 (s, 3H); ¹³C NMR (151 MHz, DMSO-*d*₆) δ 145.4, 144.6, 135.8, 117.2, 115.5, 113.9, 71.1, 60.0, 36.2.

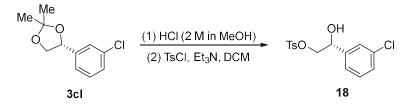


To a 50 mL flask equipped with a PTFE-coated stir bar was added **3cn** (82.5 mg, 0.388 mmol, 1 equiv) and HCl (6 mL) (2 M in MeOH). The reaction mixture was stirred at room temperature for 3 hours. The solvent was evaporated under reduced pressure and the residue was used in the next step without further purification.

To a solution of the obtained crude product in THF (2 mL) was added CDI (67.0 mg, 0.41 mmol). The resulting mixture was stirred at room temperature for overnight, then ammonia solution (0.11 mL) was added. After stirring for another 12 hours, the reaction was quenched with 1 M HCl solution and extracted with EA. The organic phase was washed with saturated NaHCO₃ (aq.) and brine, and dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure and the residue was purified by flash chromatography on silica gel (EA) to afford (*R*)-Carisbamate (18.4 mg, 22% yield).

¹H NMR (600 MHz, CDCl₃) δ 7.64 (dd, J = 7.8, 1.7 Hz, 1H), 7.35 (dd, J = 7.9, 1.3 Hz, 1H), 7.32 (td, J = 7.6, 1.3 Hz, 1H), 7.24 (dd, J = 7.6, 1.7 Hz, 1H), 5.37 (dd, J = 7.8, 2.6 Hz, 1H), 4.82 (s, 2H), 4.34 (dd, J = 11.9, 2.7 Hz, 1H), 4.22 (dd, J = 11.9, 7.7 Hz, 1H), 3.38 (s, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 157.4, 137.2, 132.0, 129.5, 129.2, 127.9, 127.2, 70.0, 68.8; Optical Rotation: [α]_D²² -20.4 (c 0.1, ^{*i*}PrOH) for 82% ee.

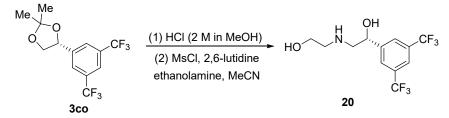
6.6 Synthesis of (S)-1-(3-chlorophenyl)propane-1,3-diol (17)



To a 50-mL flask equipped with a PTFE-coated stir bar was added **5al** (28.1 mg, 0.124 mmol, 1 equiv) and HCl (2 mL) (2 M in MeOH). The reaction mixture was stirred at room temperature for 3 hours. The solvent was evaporated under reduced pressure and the residue was purified by flash chromatography on silica gel (EA) to afford **17** (20.8 mg, 90% yield). The NMR data matched those reported in the literature.¹³

¹H NMR (600 MHz, CDCl₃) δ 7.38 (s, 1H), 7.31 – 7.19 (m, 4H), 5.00 – 4.91 (m, 1H), 3.88 (t, *J* = 5.2 Hz, 2H), 2.58 (s, 3H), 2.05 – 1.90 (m, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 146.4, 134.4, 129.8, 127.6, 125.9, 123.8, 73.7, 61.4, 40.4;

Optical Rotation: $[\alpha]_D^{23}$ -20.5 (c 0.2, ^{*i*}PrOH) for 88% ee.


6.7 Synthesis of (R)-2-(3-chlorophenyl)-2-hydroxyethyl 4-methylbenzenesulfonate (18)

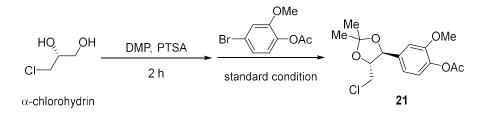
To a 50 mL flask equipped with a PTFE-coated stir bar was added **3cl** (118.1 mg, 0.555 mmol, 1 equiv) and HCl (6 mL) (2 M in MeOH). The reaction mixture was stirred at room temperature for 3 hours. The solvent was evaporated under reduced pressure and the residue was purified by flash chromatography on silica gel (EA) to afford the crude diol (85.6 mg, 89% yield). To a solution of the obtained crude diol in DCM (2 mL) and Et₃N (0.1 mL, 0.735 mmol, 1.5 equiv) was added TsCl (103.0 mg, 0.54 mmol, 1.1 equiv) at 0 °C. The reaction was stirred at rt for 24 hours. The solvent was evaporated under reduced pressure and the residue was purified by flash chromatography on silica gel (PE/EA) to afford **18** (100.8 mg, 62% yield). The NMR data matched those reported in the literature.¹⁴

¹H NMR (600 MHz, CDCl₃) δ 7.77 – 7.74 (m, 2H), 7.35 – 7.32 (m, 2H), 7.30 (d, *J* = 4.2 Hz, 1H), 7.28 – 7.26 (m, 2H), 7.21 – 7.18 (m, 1H), 4.96 (dt, *J* = 8.3, 2.7 Hz, 1H), 4.14 (dd, *J* = 10.5, 3.3 Hz, 1H), 4.02 (dd, *J* = 10.5, 8.3 Hz, 1H), 2.66 (d, *J* = 3.1 Hz, 1H), 2.45 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 145.3, 140.3, 134.7, 132.5, 130.02, 129.95, 128.7, 128.0, 126.4, 124.4, 74.0, 71.4, 21.7.

6.8 Synthesis of the (*R*)-1-(3,5-bis(trifluoromethyl)phenyl)-2-((2hydroxyethyl)amino)ethan-1-ol (20)

To a solution of **14** (274.1 mg, 1 mmol, 1 equiv) in MeCN (5 mL) and 2,6-lutidine (535.5 mg, 5 mmol, 5 equiv) was added MsCl (137.5 mg, 1.2 mmol, 1.2 equiv) at 0 °C. The reaction was stirred at 0 °C for an hour followed by addition of ethanolamine (305.4 mg, 5 mmol, 5 equiv). After stirring at room temperature overnight, the reaction mixture was partitioned between aqueous NaHCO₃ and EA and the organic layer was washed with brane. After drying with Na₂SO₄, the organic layer was evaporated under reduced pressure and the residue was purified by flash chromatography on silica gel (DCM/MeOH/Et₃N) to afford **20** as white solid (237.6 mg, 74% yield).

The NMR data matched those reported in the literature.¹⁰

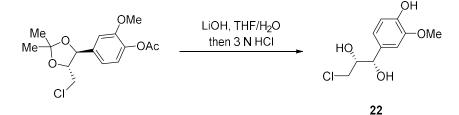

¹H NMR (400 MHz, Methanol- d_4) δ 7.98 (s, 2H), 7.84 (s, 1H), 4.94 (dd, J = 8.9, 3.8 Hz, 1H),

3.71 – 3.61 (m, 2H), 2.86 (dd, *J* = 12.4, 3.7 Hz, 1H), 2.83 – 2.72 (m, 3H);

¹³C NMR (151 MHz, Methanol-*d*₄) δ 147.0, 131.3 (q, J = 33.1 Hz), 126.2 (q, J = 4.2 Hz), 123.8 (q, J = 272.3 Hz), 120.7 (m), 70.5, 60.0, 56.1, 50.6.

¹⁹F NMR (565 MHz, Methanol- d_4) δ -64.33.

6.9 Synthesis of 4-((4*S*,5*R*)-5-(chloromethyl)-2,2-dimethyl-1,3-dioxolan-4-yl)-2methoxyphenyl acetate (21)

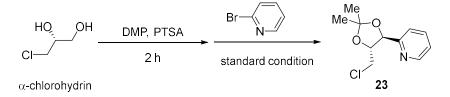

An oven-dried 10 mL tube equipped with a PTFE-coated stir bar was charged with α chlorohydrin (110 mg, 1.0 mmol, 5.0 equiv), PTSA·H₂O (19.0 mg, 0.1 mmol, 10 mol%) and 2,2-dimethoxypropane (124.8 mg, 1.2 mmol, 1.2 equiv) in an argon-filled glovebox. The tube was sealed and stirred at room temperature for 2 hours. Subsequently, the tube was charged with NiBr₂•dme (6.4 mg, 0.02 mmol, 10 mol%), dtbbpy (8.0 mg, 0.03 mmol, 15 mol%), TBADT (13.3 mg, 0.004 mmol, 2 mol%), K₃PO₄ (93.3 mg, 0.44 mmol, 2.2 equiv), 4-bromo-2methoxyphenyl acetate (49.2 mg, 0.2 mmol, 1.0 equiv) and anhydrous MeCN (1 mL). The tube was sealed and removed from the glovebox. The reaction mixture was stirred and irradiated using a 10 W 390 nm LED lamp for 48 hours. The solvent was removed under reduced pressure and the residue was purified by column chromatography on silica gel (PE/EA = 10/1) to afford **21** as colorless oil (47.9 mg, 70% yield, d.r. > 20/1).

¹H NMR (600 MHz, CDCl₃) δ 7.05 – 7.01 (m, 2H), 6.95 (dd, J = 8.1, 1.9 Hz, 1H), 4.89 (d, J = 8.1 Hz, 1H), 4.03 (ddd, J = 8.1, 4.6, 3.6 Hz, 1H), 3.85 (s, 3H), 3.76 (dd, J = 12.1, 3.5 Hz, 1H), 3.63 (dd, J = 12.1, 4.6 Hz, 1H), 2.31 (s, 3H), 1.58 (s, 3H), 1.55 (s, 3H);

¹³C NMR (151 MHz, CDCl₃) δ 169.0, 151.4, 139.8, 136.1, 123.0, 118.8, 110.3, 109.9, 82.1, 79.9, 55.9, 42.9, 27.2, 27.0, 20.7;

HRMS: (ESI) calcd for $C_{15}H_{20}ClO_5^+[M+H]^+$ 315.0999; found 315.0997.

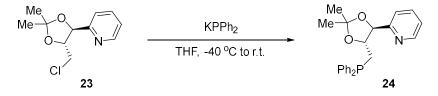
6.10 Synthesis of (1S,2R)-3-chloro-1-(4-hydroxy-3-methoxyphenyl)propane-1,2-diol (22)


To a 50 mL flask equipped with a PTFE-coated stir bar was added **15** (47.9 mg, 0.14 mmol, 1 equiv), LiOH (33.6, 1.4 mmol, 10.0 equiv), THF (1 mL) and H₂O (1.5 mL). The reaction mixture was stirred at room temperature for 2 hours, then 3 N HCl (6 mL) was added. After

stirring at room temperature for another 6 hours, the solvent was removed under reduced pressure and the residue was purified by column chromatography on silica gel (DCM/MeOH = 30/1) to afford **22** as yellow oil (19.5 mg, 60% yield, d.r. > 20/1).

The NMR data consistent with reported literature.¹⁵

¹H NMR (600 MHz, CDCl₃) δ 6.92 (d, J = 1.9 Hz, 1H), 6.90 (d, J = 8.1 Hz, 1H), 6.86 (dd, J = 8.1, 1.9 Hz, 1H), 5.66 (s, 1H), 4.66 (d, J = 7.0 Hz, 1H), 3.91 (s, 3H), 3.87 (ddd, J = 7.0, 5.8, 3.7 Hz, 1H), 3.57 (dd, J = 11.5, 3.7 Hz, 1H), 3.40 (dd, J = 11.5, 5.7 Hz, 1H), 2.89 – 2.59 (m, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 146.8, 145.8, 131.6, 119.8, 114.5, 108.9, 75.6, 74.8, 56.0, 46.3.

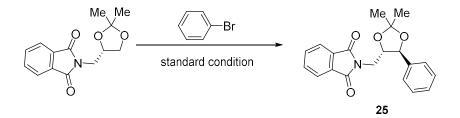

6.11 Synthesis of 2-((4*S*,5*R*)-5-(chloromethyl)-2,2-dimethyl-1,3-dioxolan-4-yl)pyridine (23)

An oven-dried 10-mL tube equipped with a PTFE-coated stir bar was charged with α chlorohydrin (110 mg, 1.0 mmol, 5.0 equiv), PTSA·H₂O (19.0 mg, 0.1 mmol, 10 mol%) and 2,2-dimethoxypropane (124.8 mg, 1.2 mmol, 1.2 equiv) in an argon-filled glovebox. The tube was sealed and stirred at room temperature for 2 hours. Subsequently, the tube was charged with NiBr₂•dme (6.4 mg, 0.02 mmol, 10 mol%), dtbbpy (8.0 mg, 0.03 mmol, 15 mol%), TBADT (13.3 mg, 0.004 mmol, 2 mol%), K₃PO₄ (93.3 mg, 0.44 mmol, 2.2 equiv), 2bromopyridine (31.4 mg, 0.2 mmol, 1.0 equiv) and anhydrous MeCN (1 mL). The tube was sealed and removed from the glovebox. The reaction mixture was stirred and irradiated using a 10 W 390 nm LED lamp for 48 hours. The solvent was removed under reduced pressure and the residue was purified by column chromatography on silica gel (PE/EA = 10/1) to afford **23** as yellow oil (30.8 mg, 68% yield, d.r. > 20/1).

¹H NMR (600 MHz, CDCl₃) δ 8.70 – 8.40 (m, 1H), 7.79 – 7.59 (m, 1H), 7.54 (d, *J* = 7.8 Hz, 1H), 7.24 – 7.20 (m, 1H), 4.94 (d, *J* = 8.0 Hz, 1H), 4.24 (ddd, *J* = 8.0, 5.9, 3.0 Hz, 1H), 4.02 (dd, *J* = 11.9, 3.0 Hz, 1H), 3.84 (dd, *J* = 11.9, 5.9 Hz, 1H), 1.58 (s, 3H), 1.53 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 158.4, 149.2, 136.9, 122.9, 120.2, 110.5, 81.5, 80.2, 44.4, 27.1, 27.0; HRMS: (ESI) calcd for C₁₁H₁₅ClNO₂⁺[M+H]⁺ 228.0791; found 228.0793.

6.12 Synthesis of 2-((4*S*,5*R*)-5-((diphenylphosphaneyl)methyl)-2,2-dimethyl-1,3-dioxolan-4-yl)pyridine (24)

An oven-dried 10-mL tube equipped with a PTFE-coated stir bar was charged with **23** (30.8 mg, 0.14 mmol, 1 equiv) and anhydrous THF (1 mL) under Ar atmosphere. KPPh₂ (420 μ L, 0.2 mmol, 1.5 equiv, 0.5 M in THF) was added to the mixture at -40 °C and the reaction mixture was warmed to room temperature. After the reaction was complete, the reaction mixture was quenched with NH₄Cl (aq.). The solvent was removed under reduced pressure and the residue was purified by column chromatography on silica gel (PE/EA = 15/1) to afford **24** as yellow oil (39.8 mg, 78% yield, d.r. > 20/1).

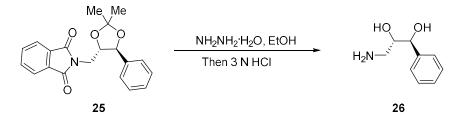

The NMR data consistent with reported literature.¹⁶

¹H NMR (600 MHz, CDCl₃) δ 8.65 – 8.46 (m, 1H), 7.69 – 7.59 (m, 1H), 7.43 (d, *J* = 7.9 Hz, 1H), 7.40 – 7.34 (m, 4H), 7.30 – 7.22 (m, 6H), 7.21 – 7.16 (m, 1H), 4.88 (d, *J* = 8.1 Hz, 1H), 4.05 (qd, *J* = 8.3, 3.5 Hz, 1H), 2.78 (ddd, *J* = 14.1, 3.5, 2.5 Hz, 1H), 2.48 (ddd, *J* = 14.2, 8.7, 3.1 Hz, 1H), 1.53 (s, 3H), 1.47 (s, 3H);

¹³C NMR (151 MHz, CDCl₃) δ 158.3, 149.0, 139.1, 139.0, 138.0, 137.9, 136.8, 133.2, 133.1, 132.6, 132.5, 128.7, 128.37, 128.35, 128.32, 128.29, 128.2, 122.9, 120.7, 109.8, 84.2, 84.1, 80.0, 79.9, 31.7, 31.6, 27.4, 26.8;

³¹P NMR (243 MHz, CDCl₃) δ -22.39.

6.13 Synthesis of 2-(((4*S*,5*S*)-2,2-dimethyl-5-phenyl-1,3-dioxolan-4-yl)methyl)isoindoline-1,3-dione (25)


The tube was charged with NiBr₂•dme (3.1 mg, 0.01 mmol, 10 mol%), dtbbpy (4.2 mg, 0.015 mmol, 15 mol%), TBADT (6.8 mg, 0.002 mmol, 2 mol%), (*S*)-2-((2,2-dimethyl-1,3-dioxolan-4-yl)methyl)isoindoline-1,3-dione (130.5 mg, 0.5 mmol, 5 equiv), K₃PO₄ (46.0 mg, 0.22 mmol, 2.2 equiv), bromobenzene (15.7 mg, 0.1 mmol, 1.0 equiv) and anhydrous MeCN (1 mL). The tube was sealed and removed from the glovebox. The reaction mixture was stirred and irradiated using a 10 W 390 nm LED lamp for 48 hours. The solvent was removed under reduced pressure and the residue was purified by column chromatography on silica gel (PE/EA = 10/1) to afford **25** as yellow oil (29.6 mg, 88% yield, d.r. > 20/1).

¹H NMR (600 MHz, CDCl₃) δ 7.79 (dd, J = 5.4, 3.0 Hz, 2H), 7.69 (dd, J = 5.5, 3.0 Hz, 2H), 7.43 – 7.40 (m, 2H), 7.26 – 7.23 (m, 2H), 7.20 – 7.17 (m, 1H), 4.76 (d, J = 8.5 Hz, 1H), 4.26 (dt, J = 8.5, 5.5 Hz, 1H), 3.98 (d, J = 5.5 Hz, 2H), 1.54 (s, 3H), 1.44 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 168.2, 136.9, 134.0, 131.8, 128.5, 128.4, 127.0, 123.3, 109.7,

81.4, 79.8, 38.4, 27.1, 27.0.

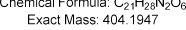
HRMS: (ESI) calcd for C₂₀H₁₉NO₄Na⁺[M+Na]⁺ 360.1206; found 360.1194.

6.14 Synthesis of (1S,2S)-3-amino-1-phenylpropane-1,2-diol (26)

To a solution of **25** (51.2 mg, 0.15 mmol) in EtOH (1 mL) was added hydrazine hydrate (20 μ L, > 85%). The rsulting mixture was reflux for 6 hours. The reaction solution was filtered through celite, and the organic layer was concentrated in vacuo to afford the crude amine. To a solution of the crude amine in THF (1 mL) was added 3 N HCl (1 mL). The resulting mixture was strred at rt for 1 hour, and than 1 N NaOH (1 mL) was added. The solvent was removed under reduced pressure and the residue was purified by column chromatography on

silica gel (EA) to afford **26** as colorless oil (18.0 mg, 90% yield, d.r. > 20/1).


The NMR data matched those reported in the literature.¹⁷


¹H NMR (600 MHz, Methanol- d_4) δ 7.40 – 7.36 (m, 2H), 7.36 – 7.32 (m, 2H), 7.29 – 7.25 (m,

1H), 4.50 (d, J = 6.1 Hz, 1H), 3.65 (q, J = 6.1 Hz, 1H), 2.52 (d, J = 6.0 Hz, 2H);

¹³C NMR (151 MHz, Methanol-*d*₄) δ 143.0, 129.1, 128.5, 127.8, 77.4, 76.9, 44.6.

6.15 Synthesis of 3-(tert-butyl) 4-methyl (4S,5R)-5-(4-(2-cyanoethoxy)phenyl)-2,2dimethyloxazolidine-3,4-dicarboxylate (28)

28 was prepared according to general procedure 2.3 using NiBr₂•dme (6.4 mg, 0.02 mmol, 10 mol%), dtbbpy (8.0 mg, 0.03 mmol, 15 mol%), TBADT (13.3 mg, 0.004 mmol, 2 mol%), K₃PO₄ (50.9 mg, 0.24 mmol, 1.2 equiv), 3-(4-bromophenoxy)propanenitrile (45.0 mg, 0.20 mmol, 1.0 equiv), 3-(tert-butyl) 4-methyl (S)-2,2-dimethyloxazolidine-3,4-dicarboxylate 27 (259 mg, 1.0 mmol, 5.0 equiv) and anhydrous MeCN (1 mL) and was purified by silica gel column chromatography (PE/EA = 5/1) to obtain 28 as colorless oil (59.1 mg, 73% yield, d.r. > 20/1).

¹H NMR (600 MHz, CDCl₃) δ 7.36 – 7.28 (m, 2H), 6.95 – 6.72 (m, 2H), 5.07 – 4.82 (m, 1H), 4.29 - 4.07 (m, 3H), 3.73 (s, 3H), 2.81 (t, J = 6.3 Hz, 2H), 1.81 - 1.63 (m, 6H), 1.48 (s, 3H), 1.38 (s, 6H);

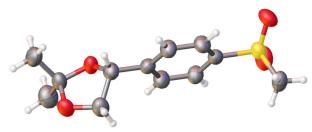
¹³C NMR (151 MHz, CDCl₃) δ 170.7, 158.1, 151.8, 150.9, 130.7, 130.6, 128.1, 128.0, 117.1, 114.8, 95.6, 94.9, 81.1, 80.6, 79.2, 78.9, 66.8, 66.6, 62.71, 62.69, 52.5, 52.3, 28.4, 28.2, 27.6, 26.4, 25.0, 24.1, 18.6 (rotamer);

HRMS: (ESI) calcd for $C_{21}H_{29}N_2O_6^+[M+H]^+$ 405.2020; found 405.2006.

6.16 Synthesis of methyl (2S,3R)-2-amino-3-(4-(2-cyanoethoxy)phenyl)-3-hydroxy

propanoate (29)

To a solution of **28** (59.1 mg, 0.15 mmol) in DCM (5 mL) was added TFA (0.5 mL). After stirring at room temperture for 6 hours, the solvent was concentrated in vacuo and the residue was purified by flash chromatography on silica gel (PE/EA = 1/1) to afford **29** as yellow oil (29.3 mg, 76% yield).


¹H NMR (600 MHz, CDCl₃) δ 7.44 – 7.32 (m, 2H), 7.11 – 6.79 (m, 2H), 6.06 (s, 1H), 5.60 (d, J = 5.1 Hz, 1H), 4.27 (d, J = 5.1 Hz, 1H), 4.21 (t, J = 6.3 Hz, 2H), 3.86 (s, 3H), 2.85 (t, J = 6.3 Hz, 2H);

¹³C NMR (151 MHz, CDCl₃) δ 170.0, 158.4, 157.9, 131.2, 127.2, 117.1, 115.1, 79.2, 62.8, 61.3, 53.3, 18.6;

HRMS: (ESI) calcd for $C_{13}H_{14}N_2O_3^+[M-H_2O+H]^+$ 247.1077; found 247.1076.

7. X-Ray Crystallographic Data

7.1 X-Ray Crystallographic Analysis of 3cg

CCDC: 2335066

Supplementary Figure 95. Structure of compound 3cg

Table S4: Crystal data and structure refinement for 3cg.						
$C_{12}H_{16}O_4S$						
256.31						
299.58(10)						
monoclinic						
P2 ₁						
5.6714(2)						
14.3623(7)						
7.9791(4)						
90						
101.543(4)						
90						
636.78(5)						
2						
1.337						
2.285						
272.0						
$0.12\times0.09\times0.08$						
Cu Ka ($\lambda = 1.54184$)						
11.318 to 133.062						
$-6 \le h \le 4, -17 \le k \le 16, -9 \le l \le 9$						

Table S4: Crystal data and structure refinement for 3cg.

Reflections collected	4349
Independent reflections	1930 [$R_{int} = 0.0155, R_{sigma} = 0.0209$]
Data/restraints/parameters	1930/1/157
Goodness-of-fit on F ²	1.038
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0288, wR_2 = 0.0751$
Final R indexes [all data]	$R_1 = 0.0296, wR_2 = 0.0758$
Largest diff. peak/hole / e Å ⁻³	0.11/-0.20
Flack parameter	-0.001(11)

Table S5: Fractional Atomic Coordinates ($\times 10^4$) and Equivalent Isotropic Displacement Parameters ($\mathring{A}^2 \times 10^3$) for 3cg. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	У	Z	U(eq)
S14	174.4(11)	6500.6(5)	6718.5(8)	47.5(2)
015	-174(4)	6929(2)	8272(3)	69.6(7)
O16	2574(3)	6274.3(19)	6536(3)	67.8(7)
O11	-2432(3)	9562.1(15)	315(3)	54.8(5)
C5	-41(5)	7310(2)	3587(4)	49.5(7)
09	-5310(3)	9227.7(17)	-2035(3)	56.8(6)
C1	-3115(5)	8393.8(19)	2324(4)	44.9(6)
C10	-3434(5)	9877(2)	-1368(4)	49.8(7)
C17	-1569(5)	5483(2)	6404(4)	58.3(8)
C7	-4239(5)	9025(2)	873(4)	51.1(7)
C2	-4164(5)	8299(2)	3732(4)	52.6(7)
C6	-1062(5)	7889(2)	2247(4)	53.3(7)
C3	-3194(5)	7717(2)	5072(4)	52.5(7)
C4	-1112(5)	7235.0(19)	4999(3)	42.0(6)
C8	-5389(6)	8543(3)	-776(4)	60.0(8)
C13	-4508(7)	10834(3)	-1329(5)	68.9(9)
C12	-1506(6)	9826(3)	-2409(5)	74.8(10)

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
S14	43.4(3)	53.4(4)	43.1(3)	6.0(3)	2.7(2)	-2.4(3)
015	85.4(16)	81.9(17)	37.9(12)	-3.7(11)	3.9(10)	2.6(13)
O16	40.2(9)	82.7(19)	77.7(15)	24.9(13)	5.3(9)	3.3(11)
011	61.5(11)	47.2(12)	47.3(11)	10.3(9)	-9.7(8)	-13.4(10)
C5	47.0(15)	50.2(18)	54.0(16)	6.7(14)	16.5(12)	6.5(12)
09	57.0(12)	62.6(14)	45.4(10)	3.4(10)	-2.4(8)	-16.3(10)
C1	50.8(14)	39.5(15)	44.2(14)	-0.2(12)	9.6(11)	0.1(12)
C10	46.8(15)	52.3(18)	45.4(16)	8.2(13)	-2.5(11)	-6.3(12)
C17	56.6(16)	52.7(17)	63(2)	15.1(15)	5.8(14)	-3.6(14)
C7	53.2(16)	51.1(17)	48.7(16)	4.3(13)	9.5(13)	8.1(13)
C2	52.2(16)	54.2(18)	53.0(17)	4.4(14)	13.9(13)	11.9(14)
C6	58.8(16)	55.2(18)	50.0(16)	5.1(14)	20.6(12)	3.0(14)
C3	57.7(15)	58.3(18)	45.3(15)	1.7(14)	19.5(12)	6.4(14)
C4	42.8(13)	40.8(14)	41.3(13)	0.2(11)	6.0(10)	-2.7(11)
C8	57.3(17)	61(2)	56.4(18)	7.1(16)	-0.4(13)	-14.3(15)
C13	80(2)	53.0(19)	65(2)	7.6(16)	-6.3(16)	5.4(17)
C12	65(2)	88(3)	74(2)	12(2)	18.6(16)	-6.6(19)

Table S6: Anisotropic Displacement Parameters (Å $^2 \times 10^3$) for 3cg. The Anisotropicdisplacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
S14	015	1.433(2)	09	C8	1.413(4)
S14	O16	1.434(2)	C1	C7	1.508(4)
S14	C17	1.754(3)	C1	C2	1.379(4)
S14	C4	1.768(3)	C1	C6	1.384(4)
011	C10	1.423(3)	C10	C13	1.507(5)
011	C7	1.424(4)	C10	C12	1.501(5)
C5	C6	1.387(4)	C7	C8	1.514(4)
C5	C4	1.386(4)	C2	C3	1.382(4)
09	C10	1.434(4)	C3	C4	1.380(4)

Table S7: Bond Lengths for 3cg.

 Table S8: Bond Angles for 3cg.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
015	S14	O16	118.87(15)	011	C10	C12	108.0(3)
015	S14	C17	108.10(17)	09	C10	C13	109.1(2)
015	S14	C4	107.96(15)	09	C10	C12	109.4(3)
016	S14	C17	108.40(16)	C12	C10	C13	113.4(3)
016	S14	C4	107.99(14)	011	C7	C1	110.2(2)
C17	S14	C4	104.64(13)	011	C7	C8	100.8(2)
C10	011	C7	106.9(2)	C1	C7	C8	115.8(3)
C4	C5	C6	119.3(3)	C1	C2	C3	121.3(3)
C8	09	C10	108.4(2)	C1	C6	C5	120.3(3)
C2	C1	C7	120.0(3)	C4	C3	C2	118.8(3)
C2	C1	C6	119.2(3)	C5	C4	S14	119.8(2)
C6	C1	C7	120.7(3)	C3	C4	S14	119.3(2)
011	C10	09	105.7(2)	C3	C4	C5	120.9(3)
011	C10	C13	110.9(3)	09	C8	C7	103.3(3)

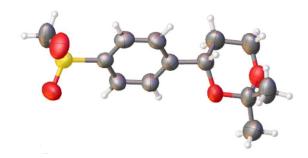

Atom	x	у	Z	U(eq)
Н5	1348.38	6975.09	3540.24	59
H17A	-933.41	5037.2	7273.35	87
H17B	-1525.66	5227.4	5298.91	87
H17C	-3200.79	5628.51	6467.08	87
H7	-5410.23	9438.41	1244.63	61
H2	-5552.57	8633.52	3780.73	63
H6	-362.9	7937.56	1290.59	64
Н3	-3931.05	7650.59	6006.61	63
H8A	-4483.82	7993.72	-968.47	72
H8B	-7034.24	8363.5	-762.52	72
H13A	-5699.31	10824.48	-627.24	103
H13B	-5246.03	11018.52	-2470.27	103
H13C	-3263.75	11269.51	-865.32	103
H12A	-268.26	10270.98	-1981.63	112
H12B	-2189.56	9963.74	-3583.07	112
H12C	-827.94	9211.44	-2327.66	112

Table S9: Hydrogen Atom Coordinates ($Å \times 10^4$) and Isotropic Displacement Parameters ($Å^2 \times 10^3$) for 3cg.

Crystal structure determination of [3cg]

Crystal Data for C₁₂H₁₆O₄S (M =256.31 g/mol): monoclinic, space group P2₁ (no. 4), a = 5.6714(2) Å, b = 14.3623(7) Å, c = 7.9791(4) Å, $\beta = 101.543(4)^{\circ}$, V = 636.78(5) Å³, Z = 2, T = 299.58(10) K, μ (Cu K α) = 2.285 mm⁻¹, *Dcalc* = 1.337 g/cm³, 4349 reflections measured (11.318° $\leq 2\Theta \leq 133.062^{\circ}$), 1930 unique ($R_{int} = 0.0155$, $R_{sigma} = 0.0209$) which were used in all calculations. The final R_1 was 0.0288 (I > 2 σ (I)) and wR_2 was 0.0758 (all data).

7.2 X-Ray Crystallographic Analysis of 5ag

CCDC: 2335067

Supplementary Figure 96. Structure of compound 5ag

Table S10: Crystal data and structure refinement for 5ag.				
Empirical formula	$C_{26}H_{36}O_8S_2$			
Formula weight	540.67			
Temperature/K	296.54(10)			
Crystal system	monoclinic			
Space group	P21			
a/Å	12.4193(10)			
b/Å	10.1926(5)			
c/Å	12.5200(9)			
$\alpha/^{\circ}$	90			
β/°	118.653(10)			
γ/°	90			
Volume/Å ³	1390.8(2)			
Z	2			
$\rho_{calc}g/cm^3$	1.291			
µ/mm ⁻¹	2.119			
F(000)	576.0			
Crystal size/mm ³	0.12 imes 0.08 imes 0.05			
Radiation	Cu Ka ($\lambda = 1.54184$)			
2Θ range for data collection/°	8.048 to 133.198			
	$\texttt{-14} \leqslant h \leqslant \texttt{14}, \texttt{-11} \leqslant k \leqslant \texttt{12}, \texttt{-14} \leqslant \texttt{I} \leqslant$			
Index ranges	14			
Reflections collected	8306			

S159

Independent reflections Data/restraints/parameters Goodness-of-fit on F^2 Final R indexes [I>= 2σ (I)] Final R indexes [all data] Largest diff. peak/hole / e Å⁻³ Flack parameter $4002 [R_{int} = 0.0257, R_{sigma} = 0.0361]$ 4002/1/3311.047 $R_1 = 0.0370, wR_2 = 0.0951$ $R_1 = 0.0463, wR_2 = 0.0996$ 0.15/-0.170.080(16)

U _{IJ} tensor	U _{IJ} tensor.						
Atom	x	у	z	U(eq)			
S13	1015.6(8)	7631.0(10)	3439.1(7)	58.2(2)			
S31	4053.1(8)	2653.9(9)	5460.1(8)	62.5(2)			
O6	1264(2)	8142(3)	-1729(2)	61.8(6)			
O4	1875(3)	6988(3)	-2951(3)	71.0(7)			
O14	1338(3)	8962(3)	3813(3)	79.2(8)			
O20	3629(3)	3005(3)	10553(2)	67.6(7)			
015	-99(2)	7135(4)	3345(2)	84.0(10)			
O22	3466(3)	1675(3)	11996(3)	83.0(9)			
O32	5244(3)	2977(4)	5647(3)	100.1(11)			
O33	3079(3)	3539(3)	4759(3)	102.7(12)			
C25	4346(3)	2290(3)	9204(3)	55.5(8)			
C28	4147(3)	2469(3)	6907(3)	53.3(8)			
C8	1525(3)	8144(4)	531(3)	59.3(9)			
C9	1601(3)	8266(4)	1669(3)	57.7(9)			
C10	956(3)	7433(4)	2007(3)	53.9(8)			
C26	3220(3)	2530(5)	8197(3)	63.5(9)			
C7	799(3)	7195(4)	-269(3)	58.9(9)			
C27	3120(3)	2618(5)	7050(3)	63.6(9)			
C1	700(4)	7032(4)	-1517(3)	66.5(10)			
C29	5271(3)	2219(4)	7896(4)	66.4(10)			
C19	4499(4)	2160(4)	10470(3)	62.0(9)			
C23	4304(5)	748(5)	11976(4)	89.8(15)			
C5	1268(4)	8142(4)	-2879(3)	65.4(10)			
C24	4279(5)	765(4)	10750(4)	83.4(13)			
C18	2077(5)	9273(5)	-2809(4)	87.8(14)			
C16	2222(4)	6638(5)	4435(4)	75.5(11)			
C2	1292(5)	5785(4)	-1647(4)	78.9(12)			
C30	5370(3)	2138(4)	9045(3)	67.3(10)			
C17	-14(4)	8269(7)	-3935(4)	103.5(19)			

Table S11: Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters ($Å^2 \times 10^3$) for 5ag. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{IJ} tensor.

x	у	Z.	U(eq)
4845(5)	3537(5)	12700(4)	97.4(16)
3643(4)	2978(4)	11705(3)	73.7(12)
222(5)	6465(5)	1222(4)	84.1(14)
1333(5)	5800(4)	-2846(4)	89.4(15)
3624(6)	1119(5)	4767(4)	101.8(18)
149(5)	6363(5)	85(4)	94.2(16)
2554(5)	3758(6)	11538(5)	110.1(19)
	4845(5) 3643(4) 222(5) 1333(5) 3624(6) 149(5)	4845(5)3537(5)3643(4)2978(4)222(5)6465(5)1333(5)5800(4)3624(6)1119(5)149(5)6363(5)	4845(5)3537(5)12700(4)3643(4)2978(4)11705(3)222(5)6465(5)1222(4)1333(5)5800(4)-2846(4)3624(6)1119(5)4767(4)149(5)6363(5)85(4)

Table S12: Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for 5ag. The Anisotropic

-		-		-		-
Atom	n U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
S13	59.6(5)	67.2(5)	53.1(4)	-1.6(5)	31.2(4)	2.3(5)
S31	76.5(5)	53.1(4)	69.1(5)	7.0(5)	43.9(5)	4.7(5)
06	77.4(16)	62.1(14)	52.5(13)	-2.1(11)	36.4(12)	1.6(13)
O4	86.7(19)	64.2(16)	79.1(17)	-6.9(14)	53.2(16)	5.4(15)
014	111(2)	66.5(17)	72.3(18)	-7.8(14)	53.2(17)	6.4(16)
O20	90.7(17)	59.9(16)	52.0(13)	6.4(11)	34.0(13)	7.8(14)
015	66.1(15)	128(3)	69.1(16)	-15.2(16)	41.5(14)	-16.8(17)
O22	115(3)	67.4(18)	74.2(18)	5.7(15)	51.4(18)	-13.1(18)
O32	91.6(19)	139(3)	92(2)	-9(2)	61.9(17)	-22(2)
O33	136(3)	103(3)	92(2)	45(2)	73(2)	52(2)
C25	61(2)	44.6(18)	56.9(19)	-0.6(15)	25.0(17)	-4.9(16)
C28	60.7(19)	42.0(18)	61.1(18)	1.9(16)	32.5(16)	0.8(16)
C8	61(2)	63(2)	56(2)	-2.9(18)	30.1(17)	-7.5(18)
С9	58(2)	61(2)	54(2)	-7.7(17)	26.6(17)	-5.7(18)
C10	57.2(18)	55(2)	52.2(17)	1.1(16)	28.5(15)	1.3(17)
C26	54.6(18)	75(2)	60.0(19)	0(2)	27.0(16)	1(2)
C7	56.9(19)	68(2)	51.8(18)	-6.1(17)	26.4(16)	-8.0(18)
C27	53.7(18)	78(2)	54.5(18)	9(2)	22.2(15)	8(2)
C1	69(2)	78(3)	51(2)	-8.0(19)	28.0(18)	-14(2)
C29	57(2)	63(2)	81(3)	-0.8(19)	35(2)	1.2(18)
C19	67(2)	56(2)	57(2)	1.5(17)	25.3(18)	0.2(19)

Atom U ₁₁	U ₂₂	U33	U23	U ₁₃	U ₁₂
C23 137(4)	62(2)	72(3)	13(2)	51(3)	0(3)
C5 73(2)	78(3)	53(2)	2.0(19)	36.8(19)	8(2)
C24 124(4)	52(2)	80(3)	6(2)	54(3)	5(2)
C18 131(4)	67(3)	96(3)	4(2)	79(3)	6(3)
C16 77(3)	91(3)	59(2)	15(2)	33(2)	10(2)
C2 111(4)	63(2)	72(3)	-16(2)	51(3)	-19(2)
C30 56(2)	72(2)	63(2)	5.1(19)	20.1(18)	9.1(19)
C17 86(3)	172(6)	55(2)	13(3)	35(2)	19(4)
C35 145(5)	80(3)	68(3)	-14(2)	52(3)	-29(3)
C21 104(3)	66(3)	54(2)	2.4(19)	39(2)	0(2)
C11 109(3)	87(3)	73(3)	-16(2)	57(3)	-37(3)
C3 136(4)	67(2)	84(3)	-20(2)	68(3)	-20(3)
C34 167(5)	72(3)	67(3)	-5(2)	57(3)	-12(3)
C12 115(4)	107(4)	71(3)	-31(3)	53(3)	-54(3)
C36 143(5)	114(4)	94(4)	18(3)	74(4)	38(4)

Table S13: Bond Lengths for 5ag.

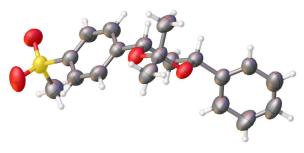
Atom	Length/Å	Atom	Atom	Length/Å
O14	1.429(3)	C28	C27	1.379(5)
015	1.425(3)	C28	C29	1.374(5)
C10	1.770(3)	C8	С9	1.387(5)
C16	1.741(4)	C8	C7	1.373(5)
O32	1.421(3)	C9	C10	1.366(5)
O33	1.425(3)	C10	C11	1.383(5)
C28	1.769(3)	C26	C27	1.384(5)
C34	1.744(5)	C7	C1	1.516(5)
C1	1.421(5)	C7	C12	1.383(6)
C5	1.442(4)	C1	C2	1.516(6)
C5	1.423(5)	C29	C30	1.386(5)
C3	1.422(5)	C19	C24	1.520(6)
C19	1.425(4)	C23	C24	1.521(6)
	014 015 C10 C16 032 033 C28 C34 C1 C5 C5 C3	014 $1.429(3)$ 015 $1.425(3)$ $C10$ $1.770(3)$ $C16$ $1.741(4)$ 032 $1.421(3)$ 033 $1.425(3)$ $C28$ $1.769(3)$ $C34$ $1.744(5)$ $C1$ $1.421(5)$ $C5$ $1.442(4)$ $C5$ $1.423(5)$ $C3$ $1.422(5)$	014 $1.429(3)$ $C28$ 015 $1.425(3)$ $C28$ $C10$ $1.770(3)$ $C8$ $C16$ $1.741(4)$ $C8$ 032 $1.421(3)$ $C9$ 033 $1.425(3)$ $C10$ $C28$ $1.769(3)$ $C26$ $C34$ $1.744(5)$ $C7$ $C1$ $1.421(5)$ $C7$ $C5$ $1.442(4)$ $C1$ $C5$ $1.423(5)$ $C29$ $C3$ $1.422(5)$ $C19$	O141.429(3)C28C27O151.425(3)C28C29C101.770(3)C8C9C161.741(4)C8C7O321.421(3)C9C10O331.425(3)C10C11C281.769(3)C26C27C341.744(5)C7C1C11.421(5)C7C12C51.442(4)C1C2C51.423(5)C29C30C31.422(5)C19C24

Atom	Atom	Length/Å	Atom	Atom	Length/Å
O20	C21	1.434(4)	C5	C18	1.503(6)
O22	C23	1.414(6)	C5	C17	1.510(6)
O22	C21	1.422(5)	C2	C3	1.527(6)
C25	C26	1.383(5)	C35	C21	1.524(6)
C25	C19	1.509(5)	C21	C36	1.495(7)
C25	C30	1.388(5)	C11	C12	1.386(6)

Table S14: Bond Angles for 5ag.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
014	S13	C10	108.00(17)	C8	C7	C12	118.5(3)
014	S13	C16	107.9(2)	C12	C7	C1	119.5(3)
015	S13	014	118.2(2)	C28	C27	C26	119.9(3)
015	S13	C10	107.99(16)	06	C1	C7	107.6(3)
015	S13	C16	108.7(2)	O6	C1	C2	109.9(3)
C16	S13	C10	105.24(18)	C2	C1	C7	113.4(3)
032	S31	O33	117.6(2)	C28	C29	C30	119.5(3)
032	S31	C28	107.68(17)	O20	C19	C25	107.8(3)
032	S31	C34	109.6(3)	O20	C19	C24	108.8(3)
033	S31	C28	108.56(17)	C25	C19	C24	112.3(3)
033	S31	C34	107.2(2)	O22	C23	C24	110.6(4)
C34	S31	C28	105.59(19)	06	C5	C18	105.3(3)
C1	O6	C5	115.2(3)	06	C5	C17	111.5(3)
C3	O4	C5	114.2(3)	O4	C5	06	108.6(3)
C19	O20	C21	114.7(3)	O4	C5	C18	106.1(3)
C23	O22	C21	114.5(3)	O4	C5	C17	112.5(4)
C26	C25	C19	122.4(3)	C18	C5	C17	112.4(4)
C26	C25	C30	119.0(3)	C19	C24	C23	109.0(3)
C30	C25	C19	118.6(3)	C1	C2	C3	110.1(4)
C27	C28	S31	120.7(3)	C29	C30	C25	120.7(3)
C29	C28	S31	118.8(3)	O20	C21	C35	110.4(4)
C29	C28	C27	120.5(3)	O20	C21	C36	106.0(3)
C7	C8	C9	120.7(3)	O22	C21	O20	110.3(3)
C10	C9	C8	120.1(3)	O22	C21	C35	110.5(4)
С9	C10	S13	119.9(3)	O22	C21	C36	107.0(4)
С9	C10	C11	120.5(3)	C36	C21	C35	112.4(4)
C11	C10	S13	119.6(3)	C10	C11	C12	118.7(4)
C25	C26	C27	120.4(3)	O4	C3	C2	109.9(3)
C8	C7	C1	122.0(3)	C7	C12	C11	121.5(4)

(Å ² ×10 ³) for 5ag.							
Atom	x	У	Z	U(eq)			
H8	1968.73	8711.51	307.69	71			
H9	2092.46	8915.03	2201.86	69			
H26	2526.52	2632.36	8291.64	76			
H27	2360.53	2776.98	6376	76			
H1	-170.35	7023.76	-2127.68	80			
H29	5959.84	2105.5	7794.52	80			
H19	5330.13	2433.51	11065.37	74			
H23A	4091.02	-121.13	12129.44	108			
H23B	5125.23	951.7	12615.26	108			
H24A	4911.03	188.71	10772.14	100			
H24B	3490.14	455.29	10120.53	100			
H18A	1737.71	10074.8	-2697.7	132			
H18B	2126.08	9320.81	-3550.64	132			
H18C	2883.27	9144.86	-2135.56	132			
H16A	2970.97	6928.07	4464.45	113			
H16B	2062.12	5745.73	4156.37	113			
H16C	2297.65	6692.15	5233.88	113			
H2A	826.39	5030.51	-1625.78	95			
H2B	2118.44	5712.25	-972.39	95			
H30	6131.55	1978.9	9716.29	81			
H17A	-484.29	7507.29	-3967.87	155			
H17B	25.35	8340.63	-4679.81	155			
H17C	-398.16	9037.74	-3827.74	155			
H35A	5504.54	2947.16	12844.97	146			
H35B	4791.29	3642.07	13434.31	146			
H35C	4998.16	4373.61	12446.1	146			
H11	-213.9	5894	1451.72	101			
H3A	1808.3	5058.45	-2874.92	107			
H3B	507.96	5723.41	-3521.55	107			
H34A	3488.07	1175.66	3946.18	153			


Table S15: Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters

Atom	x	У	Z	U(eq)
H34B	2883.12	838.97	4760.9	153
H34C	4265.37	496.36	5212.66	153
H12	-349.78	5720.3	-452.37	113
H36A	2666.6	4661.29	11397.04	165
H36B	2466.26	3691.46	12257.8	165
H36C	1829.02	3423.65	10853.52	165

Crystal structure determination of 5ag

Crystal Data for C₂₆H₃₆O₈S₂ (M =540.67 g/mol): monoclinic, space group P2₁ (no. 4), a = 12.4193(10) Å, b = 10.1926(5) Å, c = 12.5200(9) Å, β = 118.653(10)°, V = 1390.8(2) Å³, Z = 2, T = 296.54(10) K, μ (Cu K α) = 2.119 mm⁻¹, Dcalc = 1.291 g/cm³, 8306 reflections measured (8.048° $\leq 2\Theta \leq 133.198°$), 4002 unique (R_{int} = 0.0257, R_{sigma} = 0.0361) which were used in all calculations. The final R_1 was 0.0370 (I > 2 σ (I)) and wR_2 was 0.0996 (all data).

7.3 X-Ray Crystallographic Analysis of 10b

CCDC:2353650

Supplementary Figure 97. Structure of compound 10b

Table S16: Crystal data and structure refinement for 10b.						
Empirical formula	$C_{19}H_{22}O_4S$					
Formula weight	346.42					
Temperature/K	298.58(10)					
Crystal system	monoclinic					
Space group	C2					
a/Å	17.440(2)					
b/Å	8.8300(4)					
c/Å	15.9598(19)					
α/°	90					
β/°	131.37(2)					
$\gamma/^{\circ}$	90					
Volume/Å ³	1844.5(5)					
Z	4					
$\rho_{calc}g/cm^3$	1.247					
µ/mm ⁻¹	1.715					
F(000)	736.0					
Crystal size/mm ³	0.15 imes 0.1 imes 0.08					
Radiation	Cu Ka ($\lambda = 1.54184$)					
2Θ range for data collection/°	7.38 to 133.148					
Index ranges	$-20 \leqslant h \leqslant 16, -10 \leqslant k \leqslant 10, -18 \leqslant l \leqslant 18$					
Reflections collected	10747					
Independent reflections	3197 [$R_{int} = 0.0574$, $R_{sigma} = 0.0474$]					
Data/restraints/parameters	3197/1/220					
Goodness-of-fit on F ²	1.034					

Final R indexes [I>= 2σ (I)]	$R_1 = 0.0489, wR_2 = 0.1314$
Final R indexes [all data]	$R_1 = 0.0609, wR_2 = 0.1409$
Largest diff. peak/hole / e Å ⁻³	0.46/-0.22
Flack parameter	0.04(2)

<i>x</i> 5478.5(9)	y 6721.1(13)	z 1678.7(9)	U(eq) 60.0(3)
	6721.1(13)	1678.7(9)	60.0(2)
(079(2))		10,01,(2)	00.0(3)
6978(2)	5964(4)	7939(3)	59.3(8)
7201(2)	7198(4)	6815(3)	62.1(8)
6188(3)	6220(5)	1571(3)	80.5(12)
5100(4)	8243(4)	1348(4)	95.0(14)
7081(4)	4478(5)	7636(4)	57.6(11)
7518(4)	7130(6)	7895(4)	62.3(13)
6033(3)	6471(5)	3077(4)	56.6(11)
6826(4)	5471(6)	3761(4)	66.3(12)
6855(4)	6073(5)	5258(4)	55.8(10)
6722(4)	4558(6)	6492(4)	62.2(11)
5647(4)	7271(6)	3478(4)	62.6(11)
6510(4)	3408(5)	7789(4)	60.3(11)
6047(4)	7076(6)	4544(4)	62.5(12)
7234(4)	5279(6)	4842(4)	66.6(13)
7293(4)	5813(6)	6432(4)	58.8(11)
8673(4)	6950(9)	8798(4)	77.9(17)
7032(4)	2628(7)	8767(5)	71.0(13)
7148(5)	8596(6)	8012(6)	78.5(16)
6541(5)	1639(9)	8944(6)	88.4(17)
5460(4)	3222(7)	6975(5)	81.3(15)
5520(6)	1422(6)	8138(7)	87.8(19)
AAAC(A)	5 490(9)	026(5)	00.0(15)
4446(4)	5489(8)	936(5)	80.9(15)
	5647(4) $6510(4)$ $6047(4)$ $7234(4)$ $7293(4)$ $8673(4)$ $7032(4)$ $7148(5)$ $6541(5)$ $5460(4)$ $5520(6)$	5647(4) $7271(6)$ $6510(4)$ $3408(5)$ $6047(4)$ $7076(6)$ $7234(4)$ $5279(6)$ $7293(4)$ $5813(6)$ $8673(4)$ $6950(9)$ $7032(4)$ $2628(7)$ $7148(5)$ $8596(6)$ $6541(5)$ $1639(9)$ $5460(4)$ $3222(7)$ $5520(6)$ $1422(6)$	5647(4) $7271(6)$ $3478(4)$ $6510(4)$ $3408(5)$ $7789(4)$ $6047(4)$ $7076(6)$ $4544(4)$ $7234(4)$ $5279(6)$ $4842(4)$ $7293(4)$ $5813(6)$ $6432(4)$ $8673(4)$ $6950(9)$ $8798(4)$ $7032(4)$ $2628(7)$ $8767(5)$ $7148(5)$ $8596(6)$ $8012(6)$ $6541(5)$ $1639(9)$ $8944(6)$ $5460(4)$ $3222(7)$ $6975(5)$ $5520(6)$ $1422(6)$ $8138(7)$

Table S17: Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters ($Å^2 \times 10^3$) for 10b. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{IJ} tensor.

		- I				
Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
S13	78.3(7)	57.4(5)	64.4(6)	1.7(5)	55.7(6)	5.0(6)
04	65.4(18)	63.5(17)	67.8(19)	-10.9(14)	52.0(17)	-12.5(14)
02	74.0(19)	63.1(19)	64.4(19)	-10.6(14)	52.2(17)	-13.2(14)
014	86(2)	110(3)	75(2)	5.1(19)	66(2)	13(2)
015	161(4)	55(2)	103(3)	15.9(19)	102(3)	24(2)
C5	60(3)	62(2)	65(3)	-1(2)	47(2)	-2(2)
C3	69(3)	70(3)	64(3)	-11(2)	52(3)	-17(2)
C10	65(2)	57(3)	65(3)	-7(2)	50(2)	-3(2)
C11	70(3)	79(3)	66(3)	1(2)	52(3)	16(3)
C7	58(2)	62(2)	60(3)	-6(2)	44(2)	-7(2)
C6	76(3)	60(2)	65(3)	-7(2)	52(3)	-6(2)
C9	69(3)	69(3)	67(3)	4(2)	52(3)	14(2)
C17	72(3)	57(2)	70(3)	-2(2)	55(3)	0(2)
C8	70(3)	69(3)	71(3)	-6(2)	56(3)	3(2)
C12	69(3)	79(3)	63(3)	5(2)	49(3)	17(2)
C1	59(3)	64(3)	63(3)	-6(2)	45(2)	-3(2)
C24	67(3)	115(5)	61(3)	-19(3)	46(2)	-27(3)
C22	82(3)	72(3)	79(3)	15(3)	62(3)	15(3)
C23	102(4)	69(3)	100(4)	-25(3)	82(4)	-26(3)
C21	116(5)	76(3)	118(5)	21(4)	96(4)	21(4)
C18	75(3)	86(4)	82(4)	7(3)	51(3)	-12(3)
C20	133(6)	55(3)	139(6)	-1(3)	117(5)	-9(3)
C16	82(4)	95(4)	61(3)	-2(3)	45(3)	-6(3)
C19	97(4)	98(5)	113(5)	-15(4)	79(4)	-34(4)

Table S18: Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for 10b. The Anisotropicdisplacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Table S19: Bond Lengths for 10b.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
S13	014	1.426(3)	C10	C9	1.389(6)
S13	015	1.435(4)	C11	C12	1.375(7)
S13	C10	1.765(5)	C7	C8	1.395(7)
S13	C16	1.735(6)	C7	C12	1.396(6)
O4	C5	1.450(6)	C7	C1	1.501(7)
O4	C3	1.428(5)	C6	C1	1.535(7)
O2	C3	1.421(5)	C9	C8	1.357(7)
O2	C1	1.424(6)	C17	C22	1.364(7)
C5	C6	1.490(7)	C17	C18	1.387(8)
C5	C17	1.506(6)	C22	C21	1.378(9)
C3	C24	1.524(7)	C21	C20	1.354(9)
C3	C23	1.512(7)	C18	C19	1.384(8)
C10	C11	1.374(7)	C20	C19	1.381(10)

Table S20: Bond Angles for 10b.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
O14	S13	015	118.1(3)	C10	C11	C12	119.3(4)
O14	S13	C10	108.6(2)	C8	C7	C12	118.1(4)
O14	S13	C16	108.3(3)	C8	C7	C1	121.5(4)
O15	S13	C10	108.5(2)	C12	C7	C1	120.4(4)
O15	S13	C16	108.6(3)	C5	C6	C1	110.3(4)
C16	S13	C10	103.8(2)	C8	С9	C10	120.6(4)
C3	O4	C5	113.9(3)	C22	C17	C5	119.3(5)
C3	O2	C1	114.9(4)	C22	C17	C18	118.9(5)
O4	C5	C6	108.8(4)	C18	C17	C5	121.8(5)
O4	C5	C17	105.8(3)	C9	C8	C7	120.6(4)
C6	C5	C17	116.2(4)	C11	C12	C7	121.3(5)
O4	C3	C24	112.4(4)	02	C1	C7	107.3(4)
O4	C3	C23	105.2(4)	02	C1	C6	109.4(3)
O2	C3	O4	110.5(3)	C7	C1	C6	111.8(4)
02	C3	C24	111.3(3)	C17	C22	C21	121.3(6)
02	C3	C23	104.9(4)	C20	C21	C22	120.0(6)
C23	C3	C24	112.2(5)	C19	C18	C17	119.9(6)
C11	C10	S13	120.5(3)	C21	C20	C19	120.0(5)
C11	C10	С9	120.1(4)	C20	C19	C18	119.9(6)
С9	C10	S13	119.4(4)				

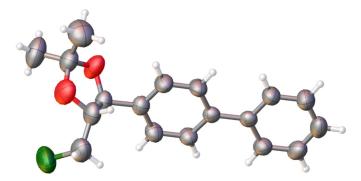

(A ^10) 101 100.							
Atom	x	y	z	U(eq)			
Н5	7805.46	4195.84	8160.48	69			
H11	7084.52	4929.35	3494.68	80			
H6A	5994.2	4760.91	5954.99	75			
H6B	6840.7	3592.92	6303.24	75			
H9	5110.59	7945.88	3011.84	75			
H8	5780.1	7617.06	4800.84	75			
H12	7773.43	4606.39	5306.26	80			
H1	8016.26	5541.73	6904.5	71			
H24A	8869.76	6976.31	9519.37	117			
H24B	9003.12	7761.09	8741.4	117			
H24C	8873.34	5998.88	8701.96	117			
H22	7734.01	2766.8	9325.3	85			
H23A	6424.15	8688.05	7407.78	118			
H23B	7488.58	9433.31	7995.32	118			
H23C	7296.86	8596.74	8708.87	118			
H21	6910.08	1119.68	9617.5	106			
H18	5088.63	3763.25	6310.25	98			
H20	5192.55	728.73	8248.05	105			
H16A	4083.04	5574.3	153.65	121			
H16B	3997.2	5740.81	1067.06	121			
H16C	4686.44	4468.74	1177.47	121			
H19	4261.1	2109.19	6610.92	114			

Table S21: Hydrogen Atom Coordinates ($Å \times 10^4$) and Isotropic Displacement Parameters ($Å^2 \times 10^3$) for 10b.

Crystal structure determination of 10b

Crystal Data for C₁₉H₂₂O₄S (M = 346.42 g/mol): monoclinic, space group C2 (no. 5), a = 17.440(2) Å, b = 8.8300(4) Å, c = 15.9598(19) Å, β = 131.37(2)°, V = 1844.5(5) Å³, Z = 4, T = 298.58(10) K, μ (Cu K α) = 1.715 mm⁻¹, *Dcalc* = 1.247 g/cm³, 10747 reflections measured (7.38° $\leq 2\Theta \leq 133.148^{\circ}$), 3197 unique ($R_{int} = 0.0574$, $R_{sigma} = 0.0474$) which were used in all calculations. The final R_1 was 0.0489 (I > 2 σ (I)) and wR_2 was 0.1409 (all data).

7.4 X-Ray Crystallographic Analysis of 9i

CCDC: 2236741

Supplementary Figure 98. Structure of compound 9i

Table S22: Crystal data and structure refinement for 9i.

Empirical formula	$C_{18}H_{19}ClO_2$
Formula weight	302.78
Temperature/K	300.62(10)
Crystal system	monoclinic
Space group	P2 ₁
a/Å	5.9444(4)
b/Å	7.6111(6)
c/Å	17.7601(11)
α/°	90
β/°	98.633(6)
$\gamma/^{\circ}$	90
Volume/Å ³	794.43(10)
Ζ	2
$\rho_{calc}g/cm^3$	1.266
µ/mm ⁻¹	2.135
F(000)	320.0
Crystal size/mm ³	0.2 imes 0.1 imes 0.05
Radiation	Cu Ka ($\lambda = 1.54184$)
2Θ range for data collection/°	5.032 to 152.182
Index ranges	$\textbf{-7} \leqslant h \leqslant 6, \textbf{-9} \leqslant k \leqslant 8, \textbf{-21} \leqslant l \leqslant 22$
Reflections collected	6998
Independent reflections	2859 [$R_{int} = 0.0286, R_{sigma} = 0.0321$]

Data/restraints/parameters	2859/1/192
Goodness-of-fit on F ²	1.044
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0410, wR_2 = 0.1107$
Final R indexes [all data]	$R_1 = 0.0548, wR_2 = 0.1187$
Largest diff. peak/hole / e Å ⁻³	0.14/-0.28
Flack parameter	0.026(11)

Table S23: Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters ($Å^2 \times 10^3$) for 9i. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{IJ} tensor.

Atom <i>x</i>		у	z	U(eq)
Cl13	8829(2)	7628(2)	8762.7(7)	128.4(6)
O11	5523(5)	2913(4)	8166.7(13)	86.1(8)
09	4937(5)	5136(4)	8972.9(14)	93.2(9)
C4	3044(5)	4455(4)	5413.2(16)	48.2(6)
C16	1969(5)	4465(4)	4604.3(17)	49.2(6)
C5	5141(5)	5212(5)	5659.9(17)	58.9(8)
C6	6097(5)	5211(5)	6417.3(18)	62.0(8)
C1	4992(5)	4436(4)	6969.0(17)	56.4(7)
C21	2985(6)	5302(5)	4032.9(18)	63.5(8)
C3	1964(5)	3668(5)	5969.3(19)	66.2(9)
C17	-108(5)	3637(5)	4365.1(19)	64.9(8)
C7	5974(5)	4498(5)	7801.4(17)	64.6(8)
C19	-95(6)	4487(5)	3072(2)	73.7(10)
C20	1958(7)	5306(5)	3286.0(19)	74.1(10)
C2	2914(6)	3658(5)	6725(2)	69.4(9)
C8	4856(7)	5884(5)	8244.5(19)	72.4(10)
C10	5035(6)	3259(6)	8913.4(19)	76.9(11)
C18	-1116(6)	3646(6)	3612(2)	77.9(10)
C12	5954(8)	7673(7)	8305(2)	97.3(13)
C15	6902(8)	2617(9)	9501(2)	114.6(17)
C14	2775(8)	2476(9)	8992(3)	122.7(18)

· · · · · · · · · · · · · · · · · · ·			1					
	Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂	
	Cl13	141.3(10)	158.9(13)	76.6(7)	-10.8(8)	-10.7(6)	-54.0(10)	
	O11	131(2)	79.2(18)	50.3(12)	4.9(12)	19.6(12)	21.0(16)	
	09	128(2)	101(2)	54.9(14)	-12.3(14)	28.3(14)	6.6(18)	
	C4	55.0(16)	42.7(14)	48.5(15)	-3.9(13)	12.9(12)	0.7(13)	
	C16	56.7(16)	40.2(14)	52.3(16)	-4.5(13)	13.2(12)	1.8(14)	
	C5	57.6(18)	67.0(19)	54.5(17)	-1.0(16)	15.6(13)	-12.2(16)	
	C6	51.3(17)	77(2)	58.3(18)	-6.9(18)	11.0(13)	-8.2(17)	
	C1	59.7(17)	60.1(18)	50.4(16)	-5.2(15)	11.7(13)	6.3(16)	
	C21	73(2)	62(2)	57.3(18)	-1.1(17)	14.9(15)	-11.7(18)	
	C3	66.3(19)	76(2)	56(2)	-0.2(17)	10.3(15)	-25.3(18)	
	C17	63.9(19)	71(2)	59(2)	1.5(16)	7.1(15)	-11.4(18)	
	C7	68.2(19)	78(2)	47.9(16)	-2.0(16)	9.6(14)	10.1(18)	
	C19	93(2)	69(2)	54.4(19)	-5.6(18)	-5.3(17)	5(2)	
	C20	105(3)	64(2)	54.8(19)	-0.3(19)	19.1(18)	-6(2)	
	C2	76(2)	83(2)	51.9(18)	3.7(17)	17.0(15)	-21(2)	
	C8	85(2)	84(3)	48.9(18)	-9.9(17)	10.6(15)	6(2)	
	C10	85(2)	95(3)	51.8(19)	4.5(18)	14.0(16)	7(2)	
	C18	81(2)	86(3)	63(2)	0.2(19)	-0.5(17)	-15(2)	
	C12	132(3)	88(3)	69(2)	-12(2)	5(2)	-2(3)	
	C15	103(3)	173(5)	67(2)	19(3)	6(2)	23(4)	
	C14	100(3)	154(5)	118(4)	-8(4)	29(3)	-25(4)	

Table S24: Anisotropic Displacement Parameters (Å2×10³) for 9i. The Anisotropicdisplacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Table S25: ond Lengths for 9i.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
C113	C12	1.779(5)	C1	C7	1.506(4)
011	C7	1.414(5)	C1	C2	1.380(5)
011	C10	1.424(4)	C21	C20	1.375(5)
09	C8	1.408(4)	C3	C2	1.376(5)
09	C10	1.434(5)	C17	C18	1.381(5)
C4	C16	1.482(4)	C7	C8	1.527(5)
C4	C5	1.383(4)	C19	C20	1.372(5)
C4	C3	1.392(4)	C19	C18	1.369(5)
C16	C21	1.409(4)	C8	C12	1.507(6)
C16	C17	1.394(5)	C10	C15	1.487(6)
C5	C6	1.379(4)	C10	C14	1.495(6)
C6	C1	1.390(4)			

Table S26: Bond Angles for 9i.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom
C7	O11	C10	110.4(3)	O11	C7	C8
C8	09	C10	109.3(3)	C1	C7	C8
C5	C4	C16	122.8(2)	C18	C19	C20
C5	C4	C3	116.4(3)	C19	C20	C21
C3	C4	C16	120.8(3)	C3	C2	C1
C21	C16	C4	122.1(3)	09	C8	C7
C17	C16	C4	121.8(3)	09	C8	C12
C17	C16	C21	116.1(3)	C12	C8	C7
C6	C5	C4	121.9(3)	O11	C10	09
C5	C6	C1	121.2(3)	O11	C10	C15
C6	C1	C7	121.6(3)	O11	C10	C14
C2	C1	C6	117.1(3)	09	C10	C15
C2	C1	C7	121.2(3)	09	C10	C14
C20	C21	C16	121.3(3)	C15	C10	C14
C2	C3	C4	122.0(3)	C19	C18	C17
C18	C17	C16	121.9(3)	C8	C12	Cl13
011	C7	C1	110.6(3)			

Angle/°

103.1(2)

113.1(3)

119.1(3)

121.0(3)

121.4(3)

103.7(3)

110.2(3) 116.3(3)

105.6(3)

111.0(3)

108.9(4)

108.1(4)

110.0(4)

113.0(4)

120.5(3)

113.0(3)

Table S27: Torsion Angles for 9i.

								A 1 /9	
A	B	С	D	Angle/°	Α	В	С	D	Angle/°
011	C7	C8	09	27.8(4)	C21	C16	C17	C18	-0.4(5)
O11	C7	C8	C12	148.9(3)	C3	C4	C16	C21	177.8(4)
09	C8	C12	Cl13	57.7(4)	C3	C4	C16	C17	-2.4(4)
C4	C16	C21	C20	-179.7(3)	C3	C4	C5	C6	-0.9(5)
C4	C16	C17	C18	179.9(3)	C17	C16	C21	C20	0.6(5)
C4	C5	C6	C1	0.3(5)	C7	011	C10	O9	6.5(4)
C4	C3	C2	C1	0.1(6)	C7	011	C10	C15	-110.4(4)
C16	C4	C5	C6	179.0(3)	C7	011	C10	C14	124.7(4)
C16	C4	C3	C2	-179.2(3)	C7	C1	C2	C3	177.1(3)
C16	C21	C20	C19	-0.2(6)	C7	C8	C12	Cl13	-59.9(4)
C16	C17	C18	C19	-0.3(6)	C20	C19	C18	C17	0.7(6)
C5	C4	C16	C21	-2.2(4)	C2	C1	C7	O11	38.5(4)
C5	C4	C16	C17	177.6(4)	C2	C1	C7	C8	-76.5(4)
C5	C4	C3	C2	0.7(5)	C8	09	C10	O11	12.7(4)
C5	C6	C1	C7	-177.3(3)	C8	09	C10	C15	131.5(3)
C5	C6	C1	C2	0.5(5)	C8	09	C10	C14	-104.8(4)
C6	C1	C7	O11	-143.8(3)	C10	011	C7	C1	-142.3(3)
C6	C1	C7	C8	101.2(4)	C10	011	C7	C8	-21.1(4)
C6	C1	C2	C3	-0.8(6)	C10	09	C8	C7	-25.1(4)
C1	C7	C8	O9	147.2(3)	C10	09	C8	C12	-150.2(4)
C1	C7	C8	C12	-91.6(4)	C18	C19	C20	C21	-0.5(6)

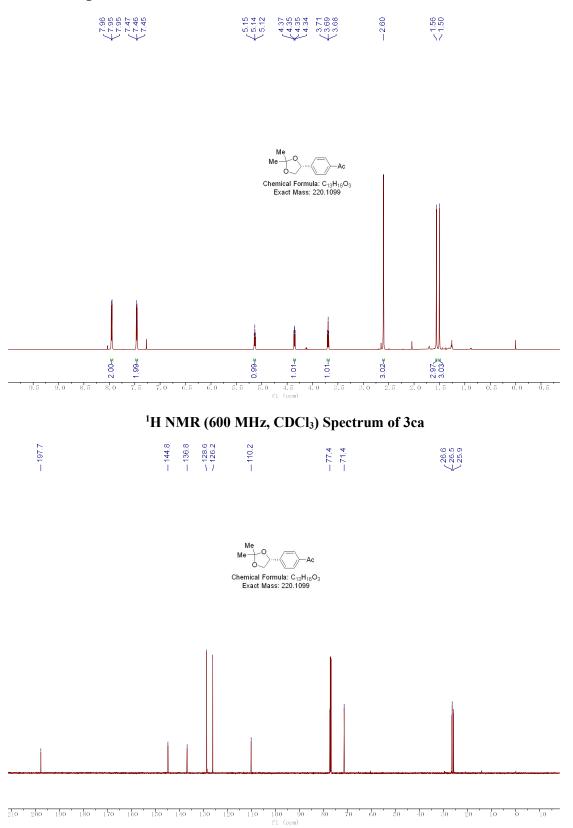
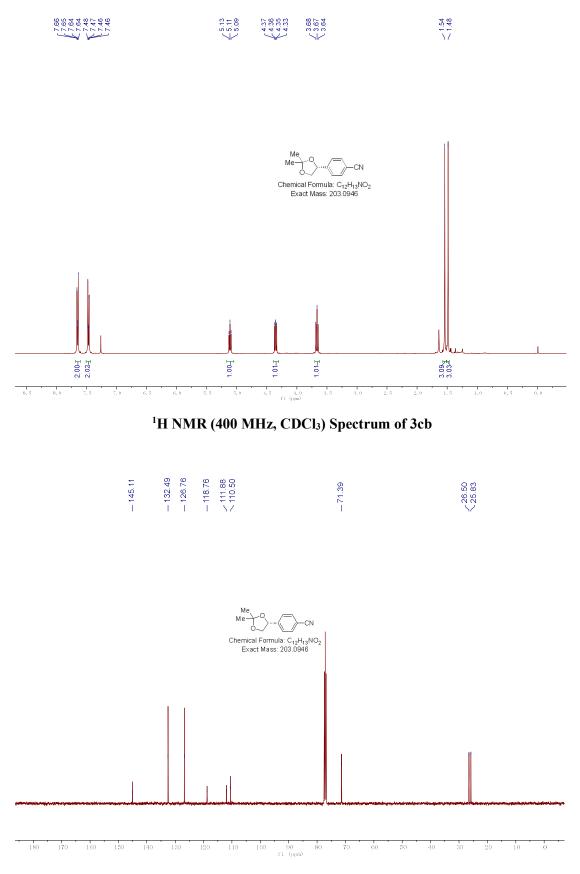

	Atom	x	У	Ζ	U(eq)
	Н5	5928.62	5735.98	5304.91	71
	H6	7506.9	5738.54	6561.44	74
	H21	4378.27	5863.96	4163.69	76
	Н3	559.13	3132.53	5825.83	79
	H17	-835.06	3061.8	4722.98	78
	H7	7618.31	4701.39	7859.31	78
	H19	-784.24	4502.86	2565.55	88
	H20	2664.28	5872.09	2920.61	89
	H2	2138.64	3115.81	7078.91	83
	H8	3259.97	6011.37	8013.74	87
	H18	-2498.79	3076.79	3471.14	94
	H12A	5084.33	8444.93	8586.53	117
	H12B	5904.46	8157.17	7797.16	117
	H15A	7181.28	1396.97	9413.04	172
	H15B	6470.84	2757.61	9996.92	172
	H15C	8258.98	3281.06	9471.38	172
	H14A	1621.95	2987.46	8619.55	184
	H14B	2428.92	2708.81	9492.91	184
	H14C	2823.03	1230.1	8912.25	184

Table S28: Hydrogen Atom Coordinates ($Å \times 10^4$) and Isotropic Displacement Parameters($Å^2 \times 10^3$) for 9i.

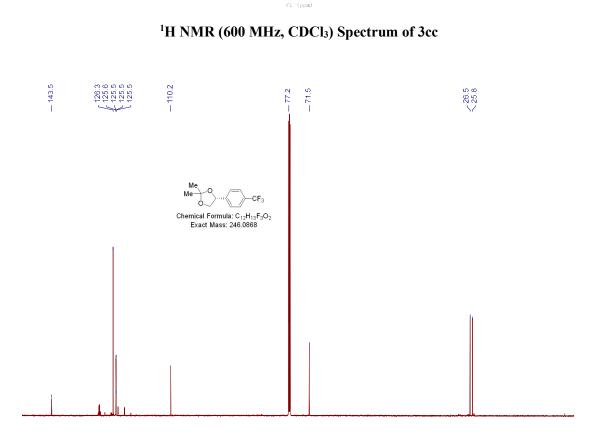

Crystal structure determination of 9i

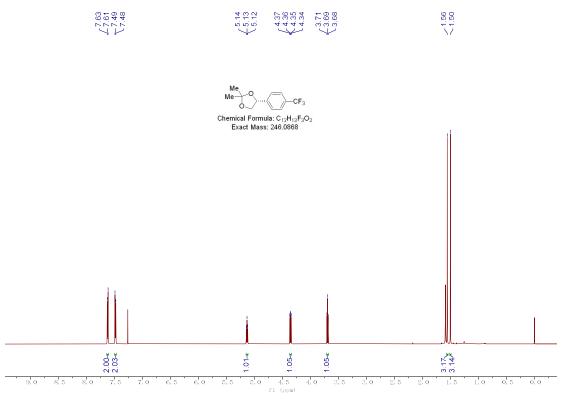
Crystal Data for C₁₈H₁₉ClO₂ (M=302.78 g/mol): monoclinic, space group P2₁ (no. 4), a = 5.9444(4) Å, b = 7.6111(6) Å, c = 17.7601(11) Å, $\beta = 98.633(6)^{\circ}$, V = 794.43(10) Å³, Z = 2, T = 300.62(10) K, μ (Cu K α) = 2.135 mm⁻¹, *Dcalc* = 1.266 g/cm³, 6998 reflections measured ($5.032^{\circ} \le 2\Theta \le 152.182^{\circ}$), 2859 unique ($R_{int} = 0.0286$, $R_{sigma} = 0.0321$) which were used in all calculations. The final R_1 was 0.0410 (I > 2 σ (I)) and wR_2 was 0.1187 (all data).

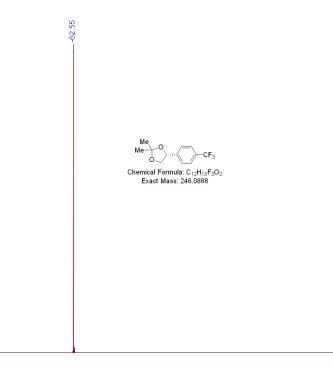
8. NMR Spectra

¹³C NMR (151 MHz, CDCl₃) Spectrum of 3ca

¹³C NMR (101 MHz, CDCl₃) Spectrum of 3cb

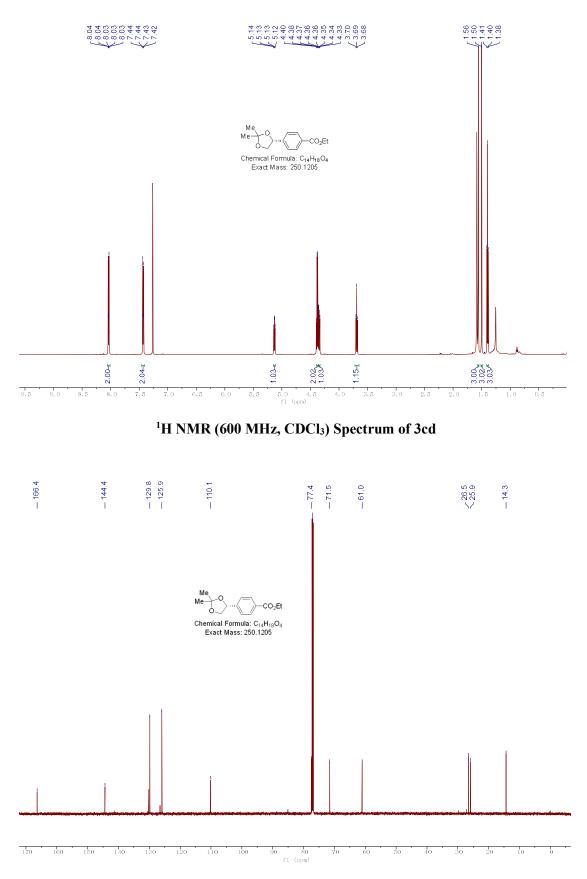

¹³C NMR (151 MHz, CDCl₃) Spectrum of 3cc

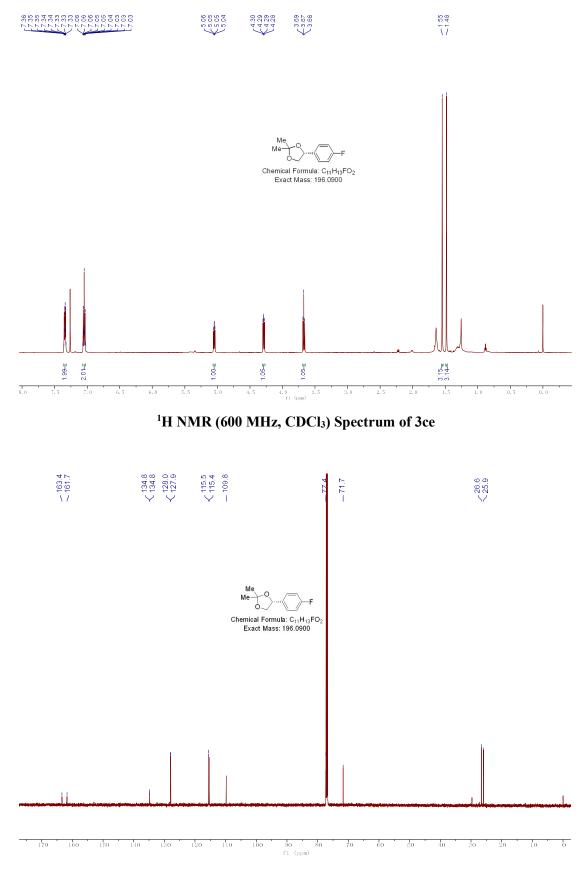

80 75 70 65 60 55 fl (ppm)


50 45

40 35 30 25 20 15 10 5 0

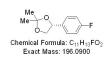
150 145 140 135 130 125 120 115 110 105 100 95 90 85

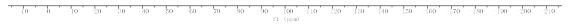


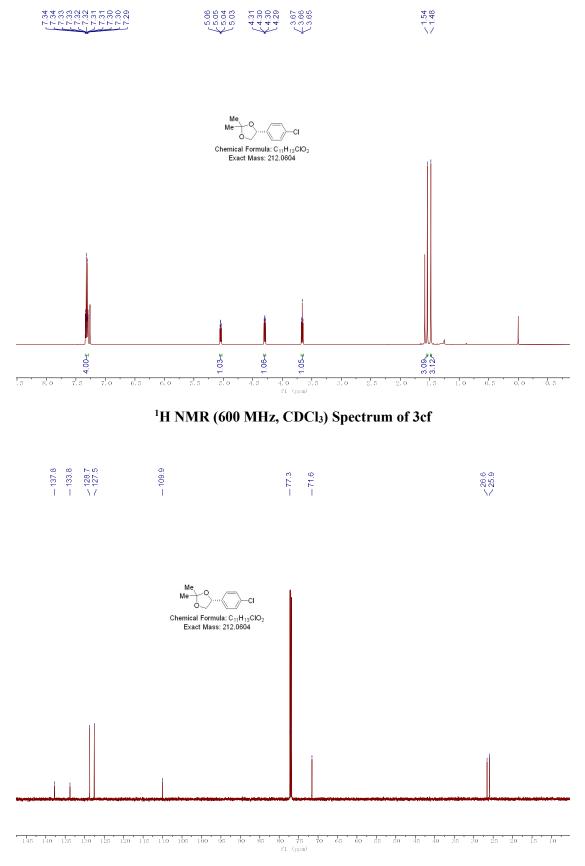


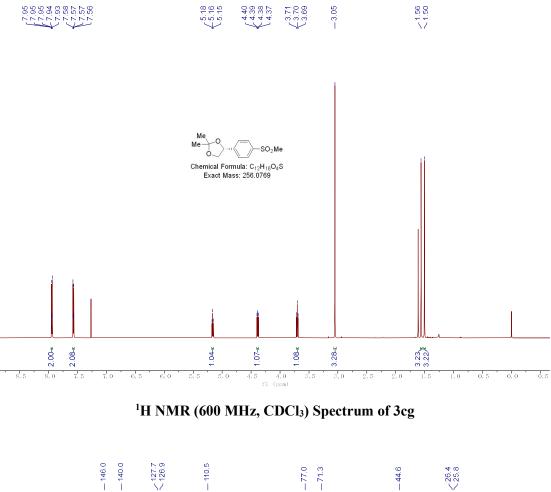
10 0 -10 -20 -30 -40 50 -60 70 -80 -90 -100 -110 -120 -130 -140 -150 -160 170 -180 -190 -200 -210 f1 (ppm)

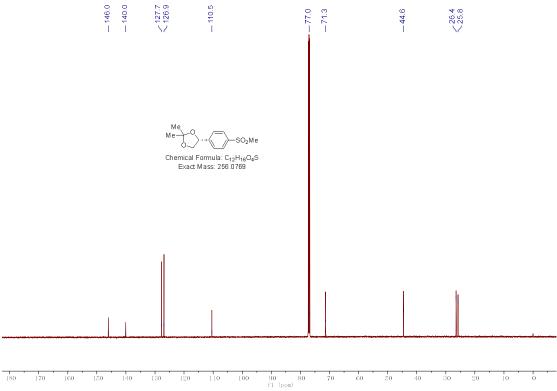
¹⁹F NMR (565 MHz, CDCl₃) Spectrum of 3cc



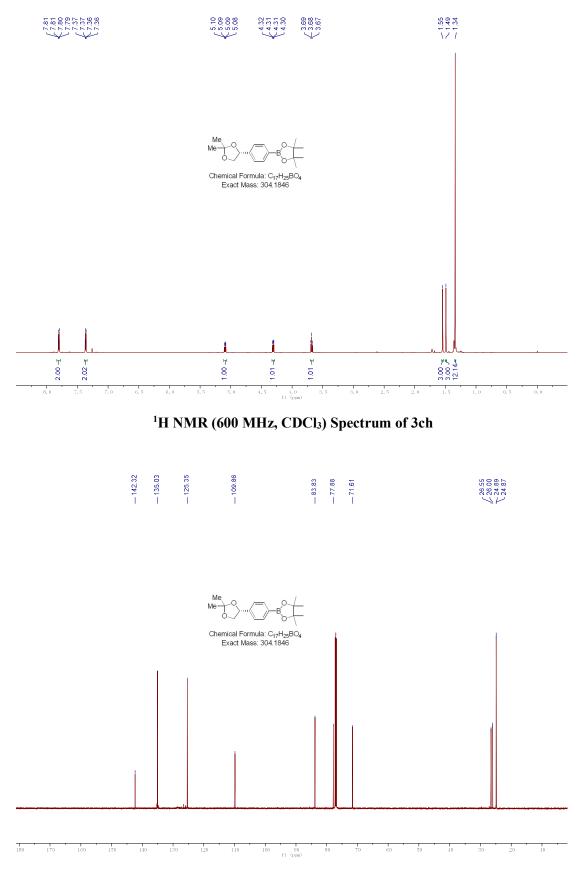

¹³C NMR (151 MHz, CDCl₃) Spectrum of 3cd


¹³C NMR (151 MHz, CDCl₃) Spectrum of 3ce

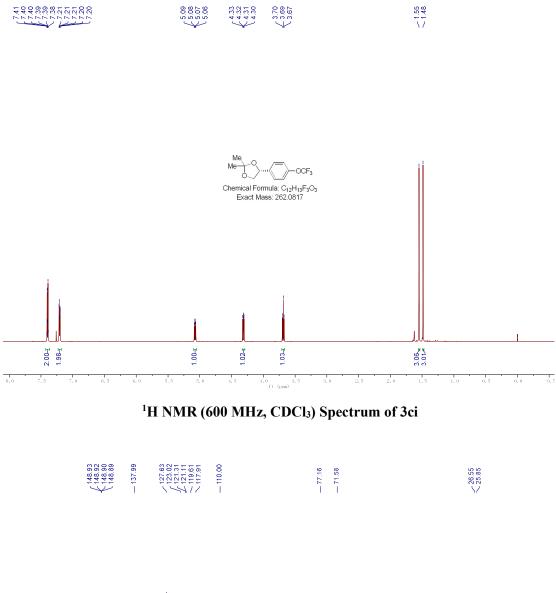


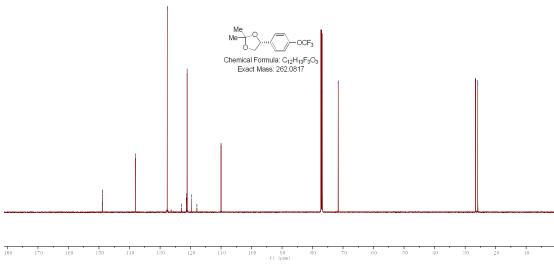


¹⁹F NMR (565 MHz, CDCl₃) Spectrum of 3ce

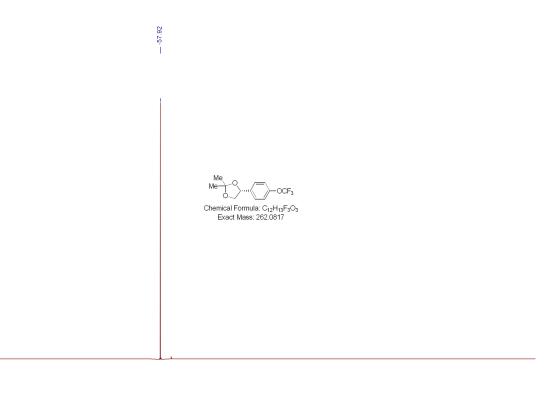


¹³C NMR (151 MHz, CDCl₃) Spectrum of 3cf

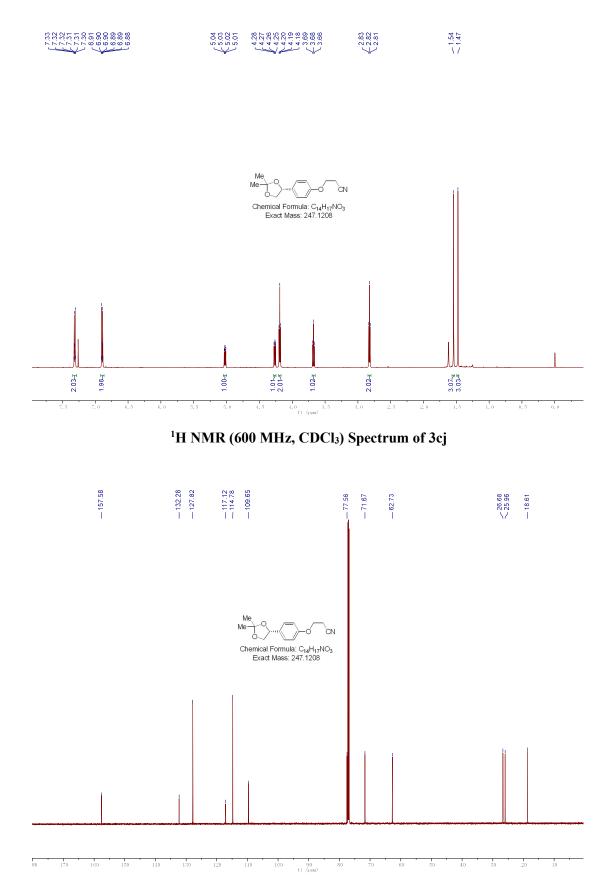




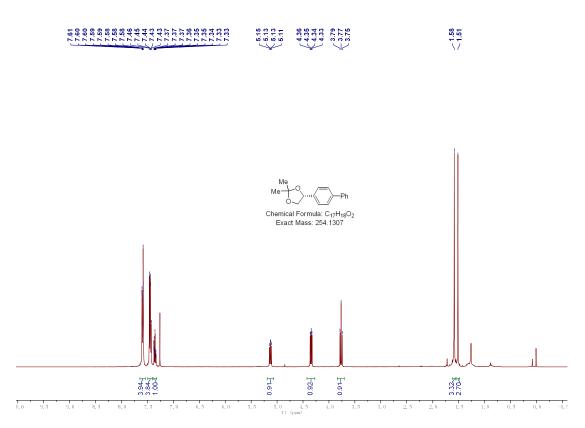
¹³C NMR (151 MHz, CDCl₃) Spectrum of 3cg



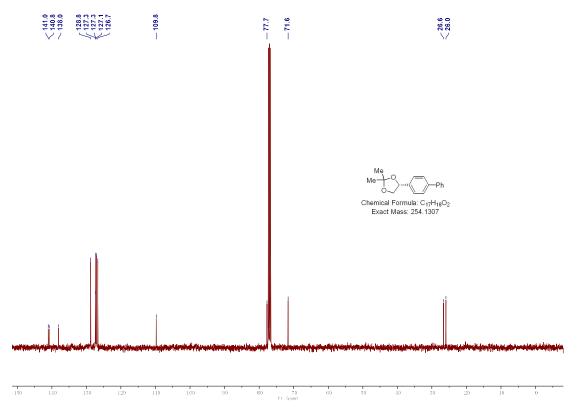
¹³C NMR (151 MHz, CDCl₃) Spectrum of 3ch

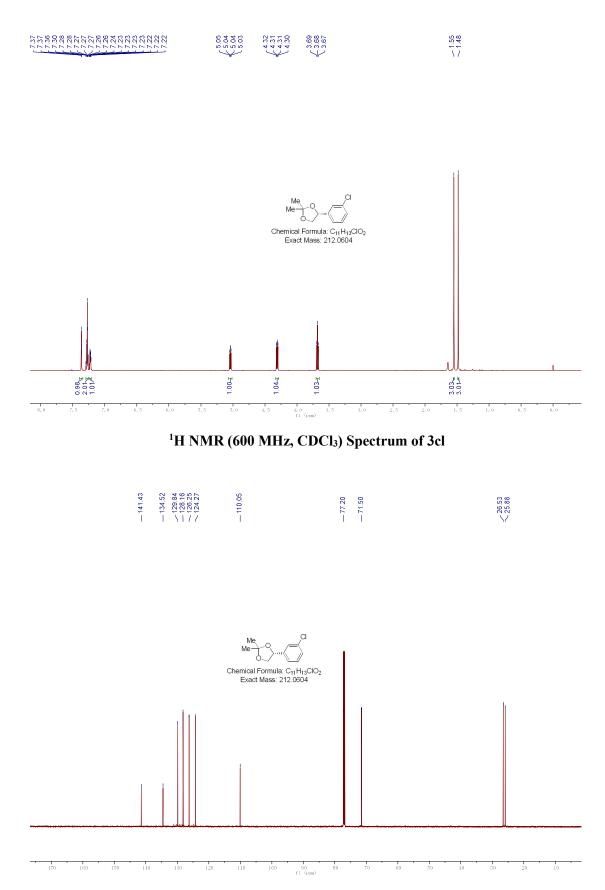


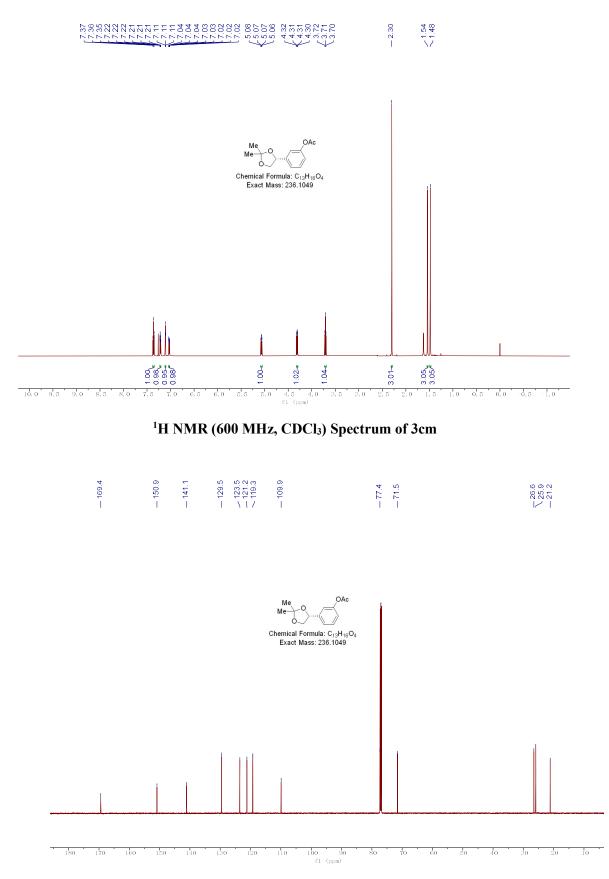
¹³C NMR (151 MHz, CDCl₃) Spectrum of 3ci

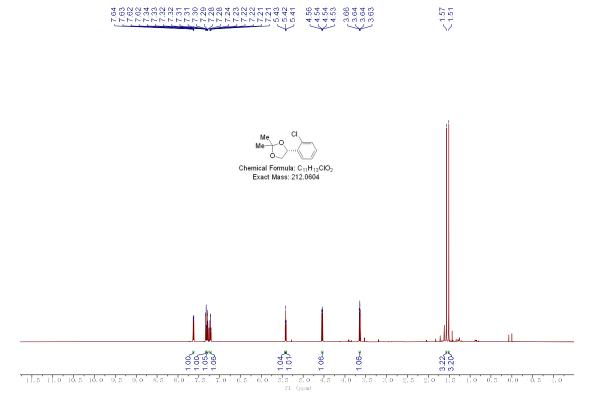


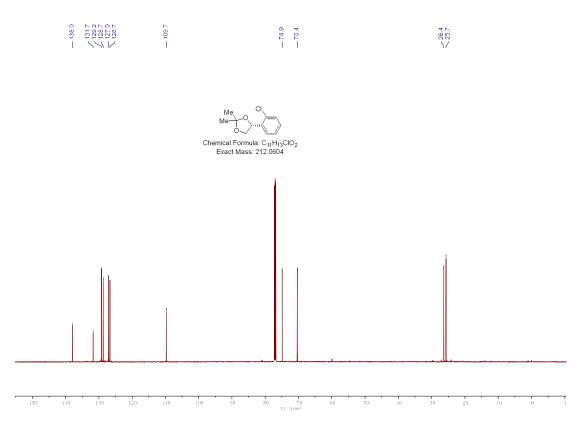
1 0 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 11 (rgm)

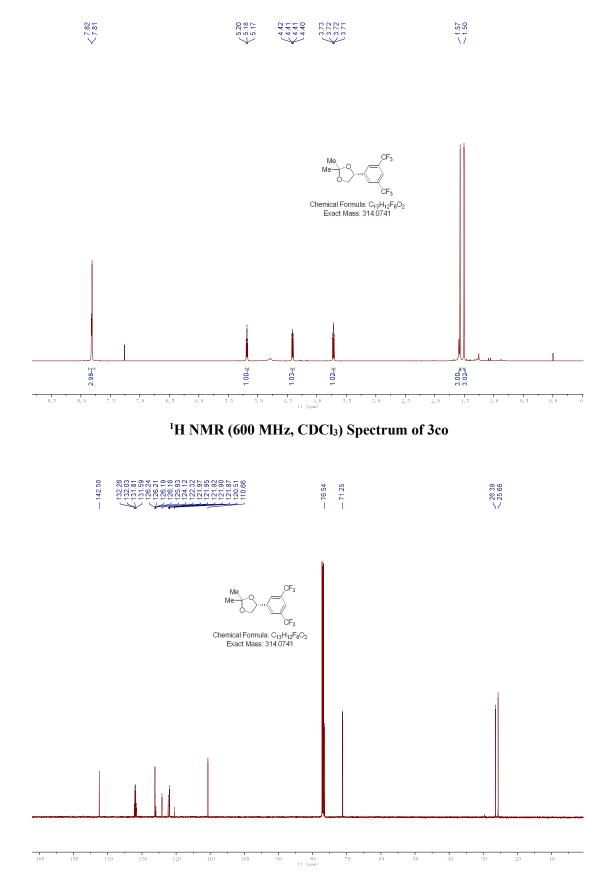

¹⁹F NMR (565 MHz, CDCl₃) Spectrum of 3ci

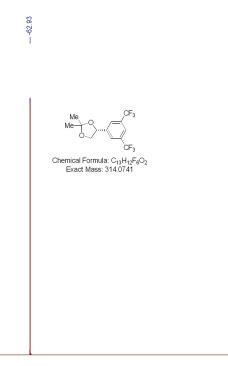

¹³C NMR (151 MHz, CDCl₃) Spectrum of 3cj


¹H NMR (400 MHz, CDCl₃) Spectrum of 3ck

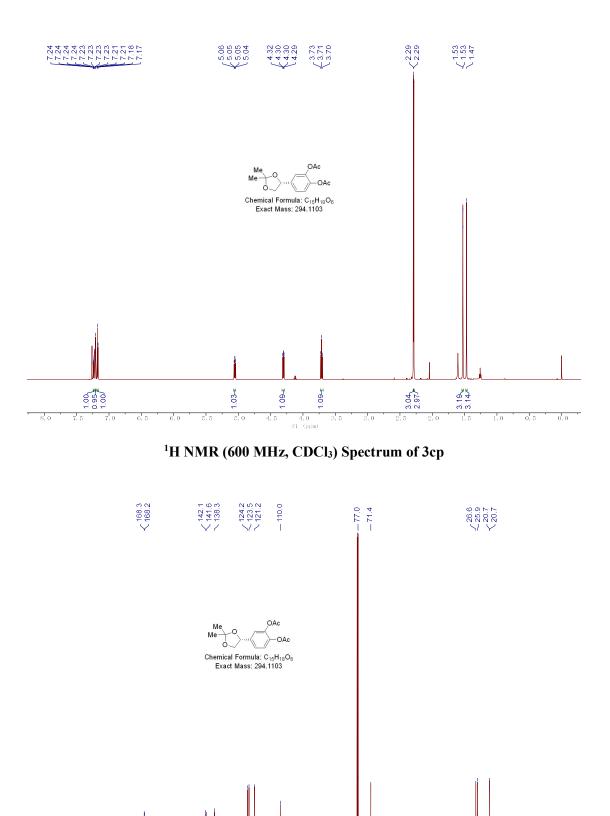

¹³C NMR (101 MHz, CDCl₃) Spectrum of 3ck

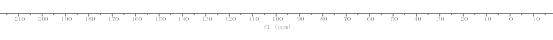

¹³C NMR (151 MHz, CDCl₃) Spectrum of 3cl

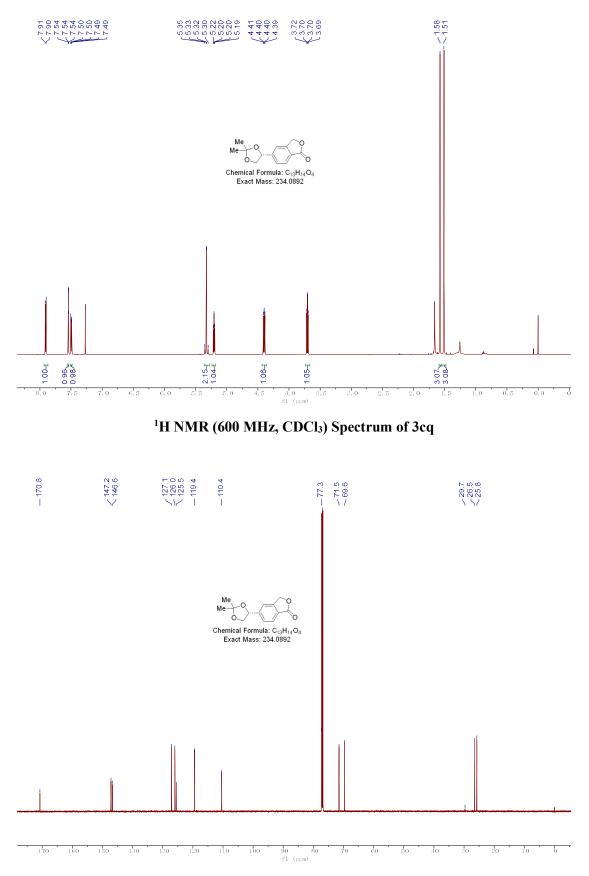

¹³C NMR (151 MHz, CDCl₃) Spectrum of 3cm


¹H NMR (600 MHz, CDCl₃) Spectrum of 3cn

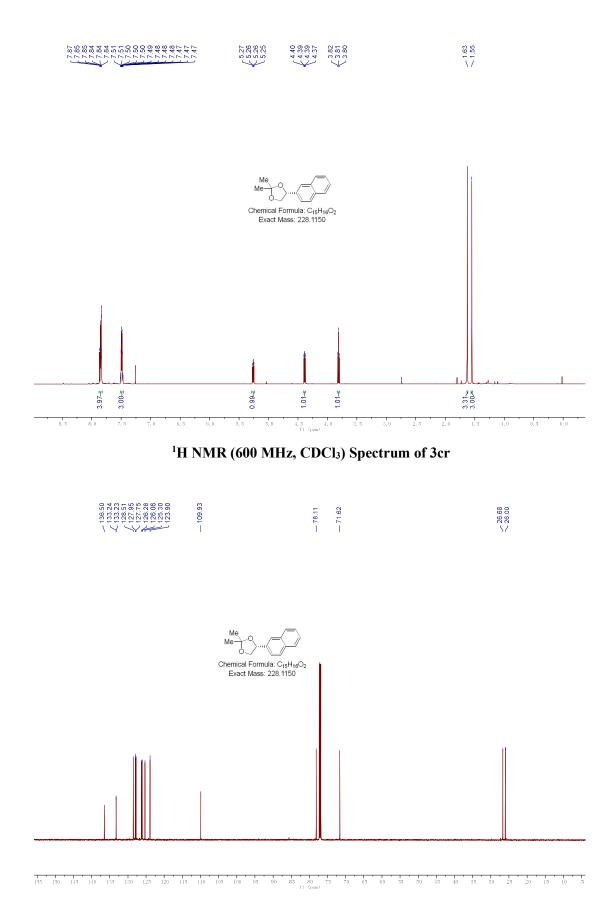
¹³C NMR (151 MHz, CDCl₃) Spectrum of 3cn



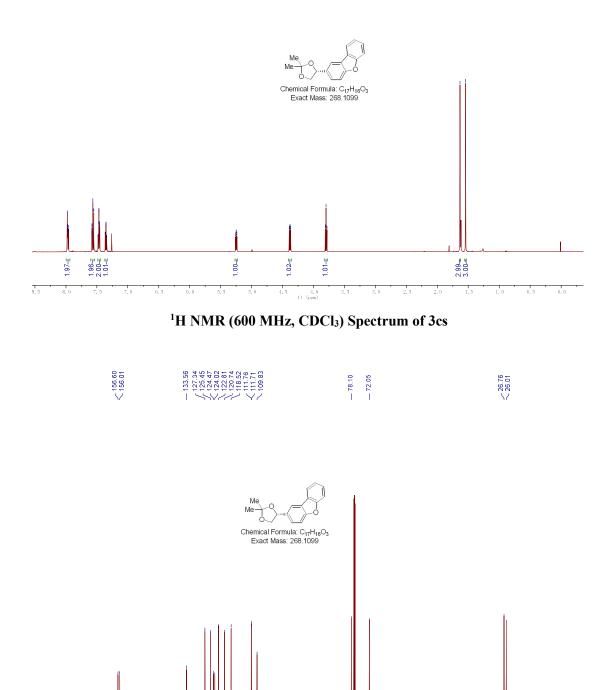

¹³C NMR (151 MHz, CDCl₃) Spectrum of 3co


10 0 -10 -20 -30 -10 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -11 (rpm)

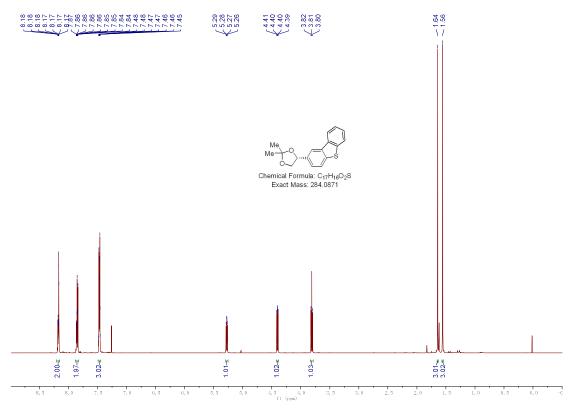
¹⁹F NMR (565 MHz, CDCl₃) Spectrum of 3co

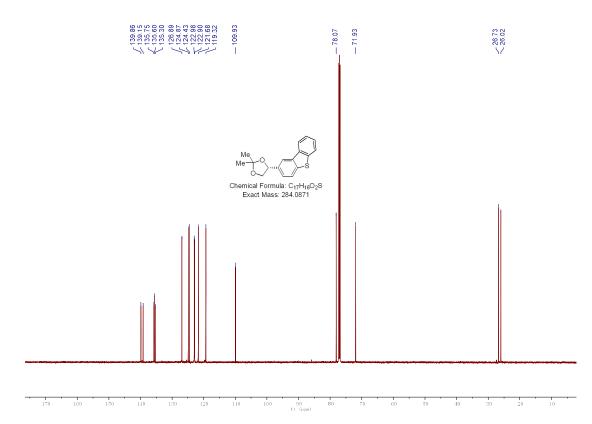


¹³C NMR (151 MHz, CDCl₃) Spectrum of 3cp

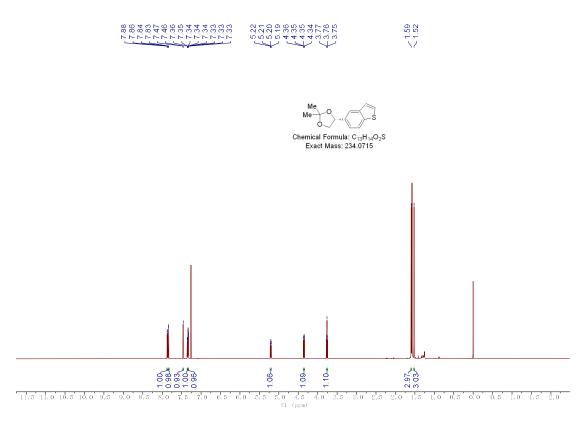


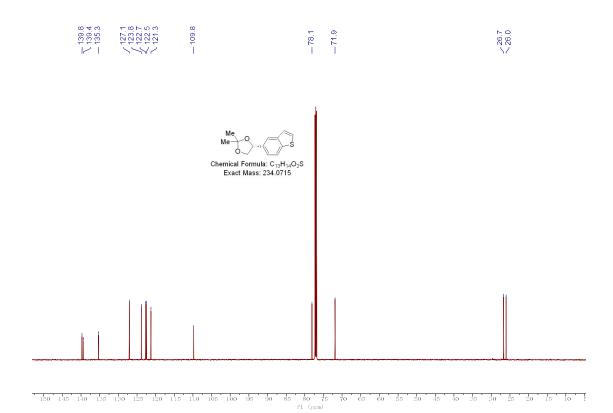
¹³C NMR (151 MHz, CDCl₃) Spectrum of 3cq

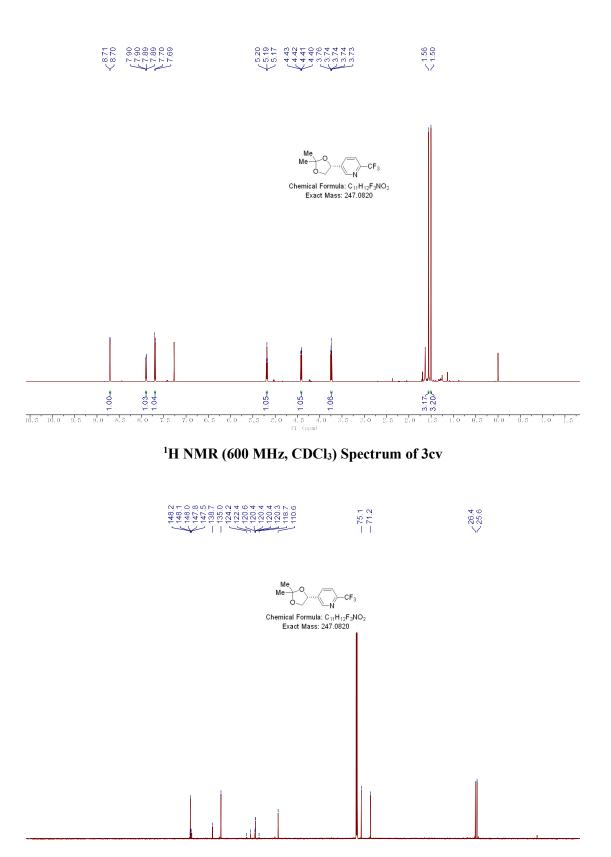

¹³C NMR (151 MHz, CDCl₃) Spectrum of 3cr

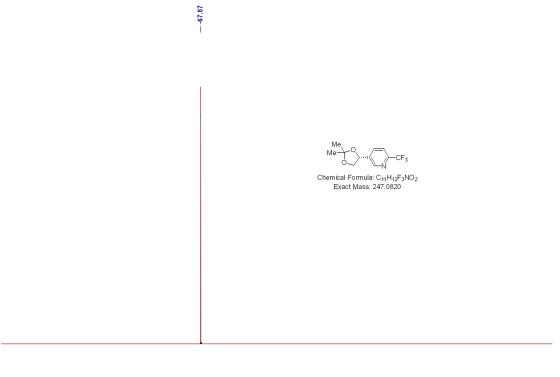


¹³C NMR (151 MHz, CDCl₃) Spectrum of 3cs

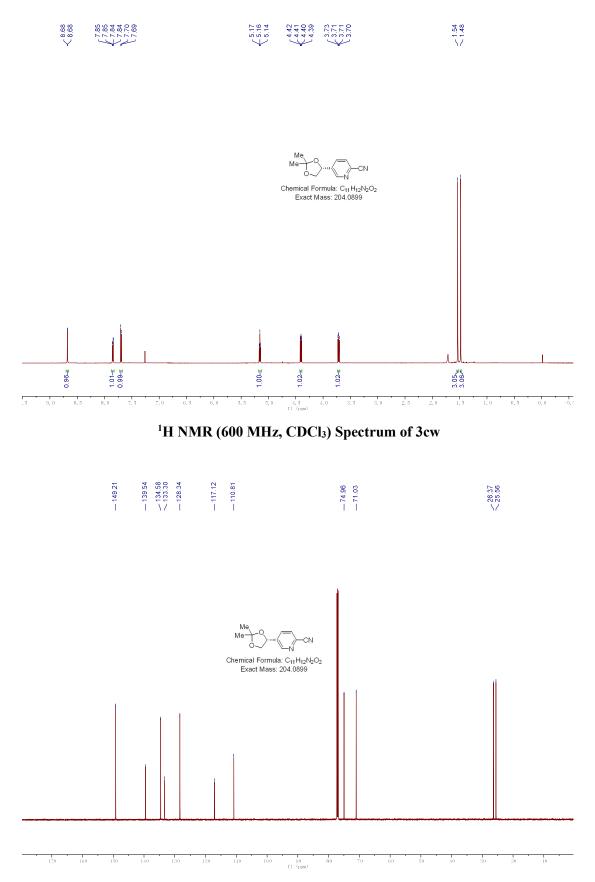

140 130 120 110 100 50 80 70 f1 (ρρμή)


¹H NMR (600 MHz, CDCl₃) Spectrum of 3ct

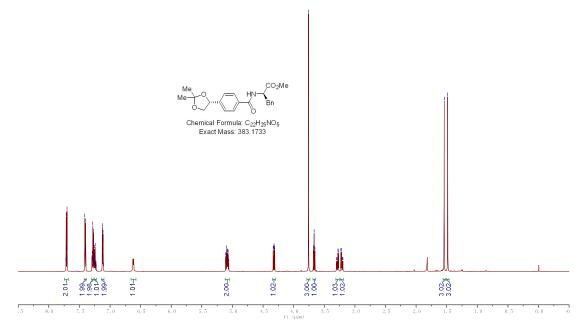

¹³C NMR (151 MHz, CDCl₃) Spectrum of 3cT



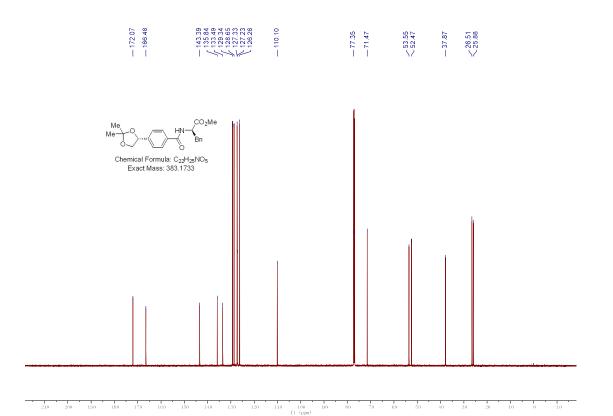
¹³C NMR (151 MHz, CDCl₃) Spectrum of 3cu


210 200 150 180 170 180 150 140 150 120 110 100 50 80 70 60 80 70 60 50 20 10 6 -10 f1 (span)

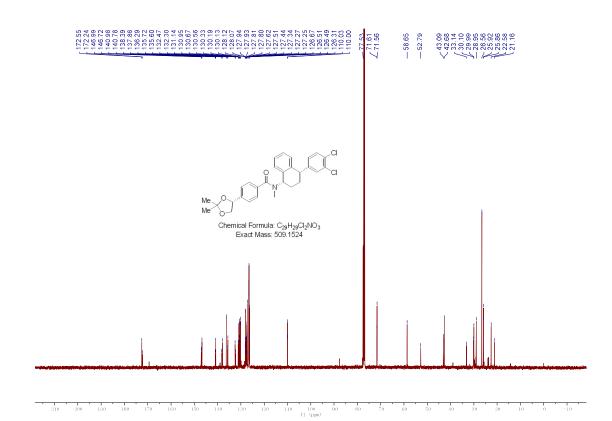
¹³C NMR (151 MHz, CDCl₃) Spectrum of 3cv

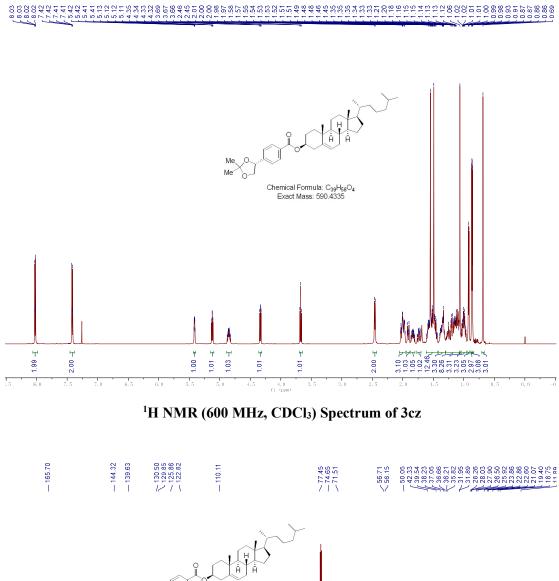


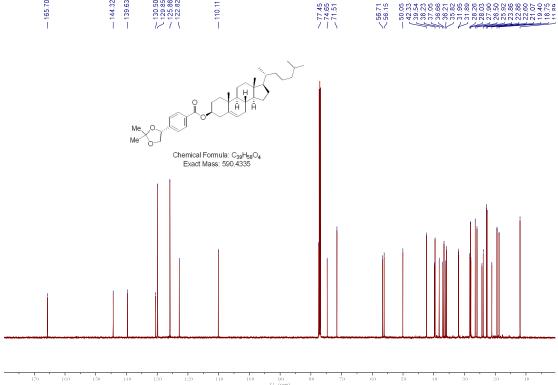
10 0 -10 -20 -30 -10 -50 -50 -70 -80 -90 -100 -110 -120 -30 -140 -150 -150 -150 -150 -200 -210 -210 -11 (rgm)


¹⁹F NMR (565 MHz, CDCl₃) Spectrum of 3cv

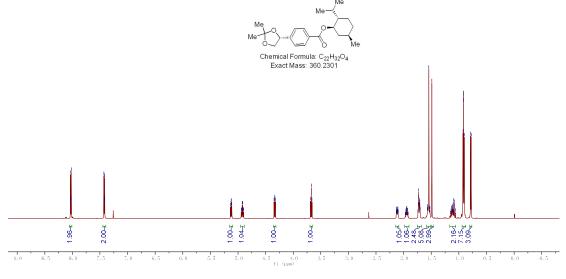
¹³C NMR (151 MHz, CDCl₃) Spectrum of 3cw

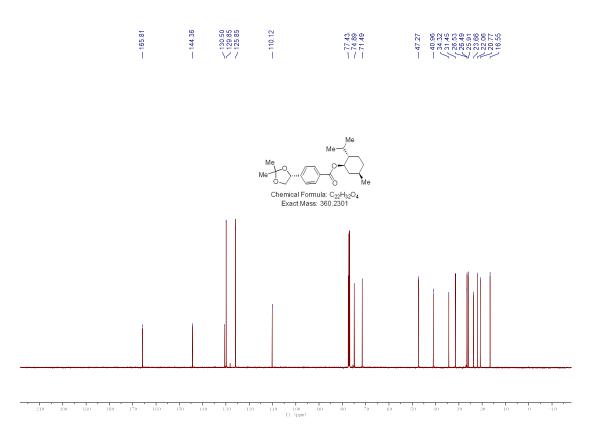

¹H NMR (600 MHz, CDCl₃) Spectrum of 3cx


¹³C NMR (151 MHz, CDCl₃) Spectrum of 3cx

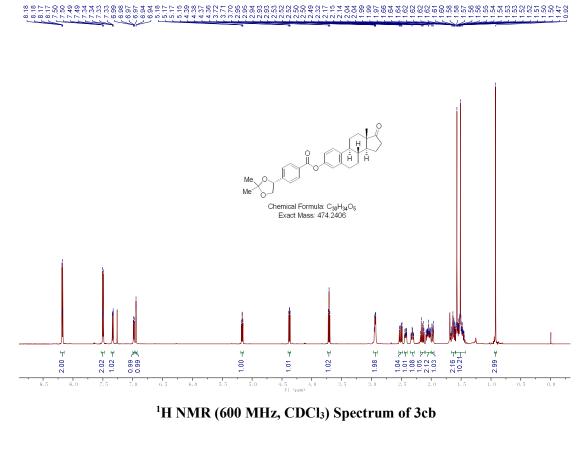


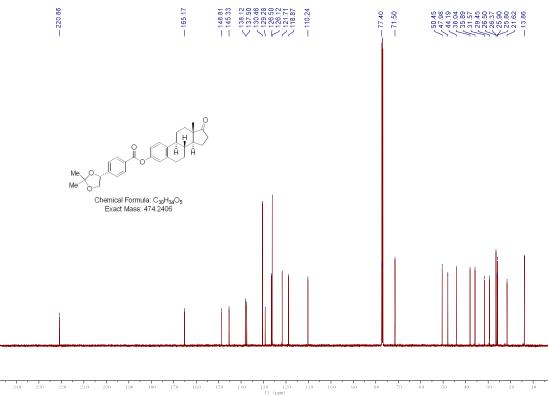
¹H NMR (600 MHz, CDCl₃) Spectrum of 3cy


¹³C NMR (151 MHz, CDCl₃) Spectrum of 3cy

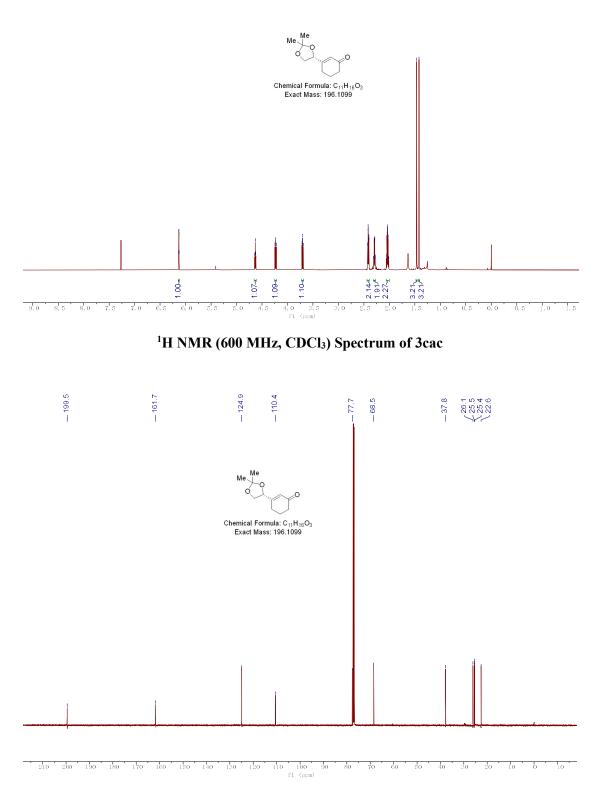


¹³C NMR (151 MHz, CDCl₃) Spectrum of 3cz

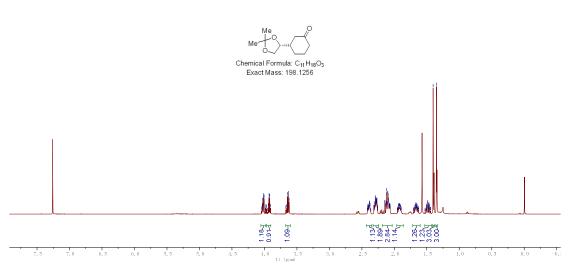

90 fl (ppm)

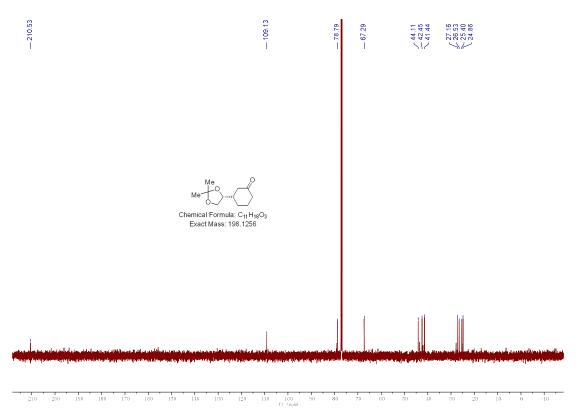


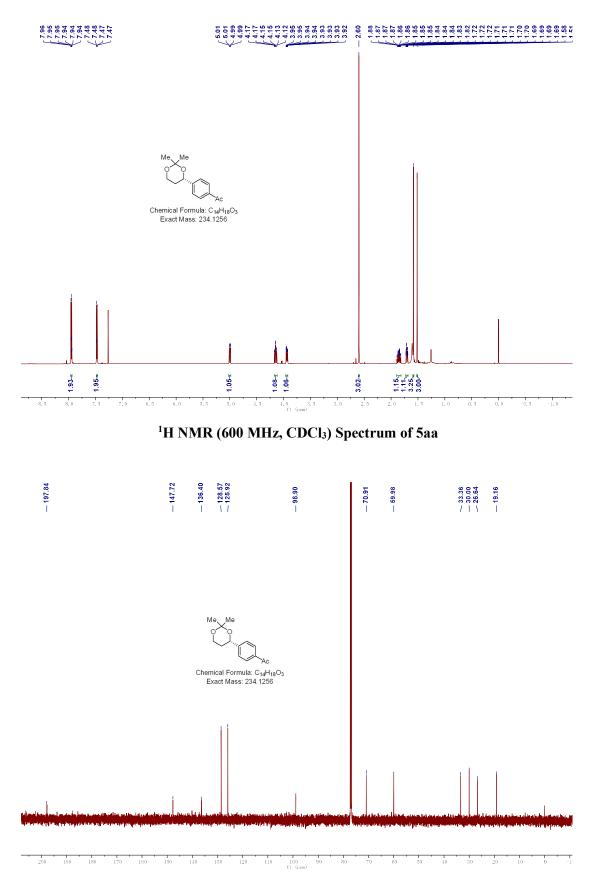
¹H NMR (600 MHz, CDCl₃) Spectrum of 3caa

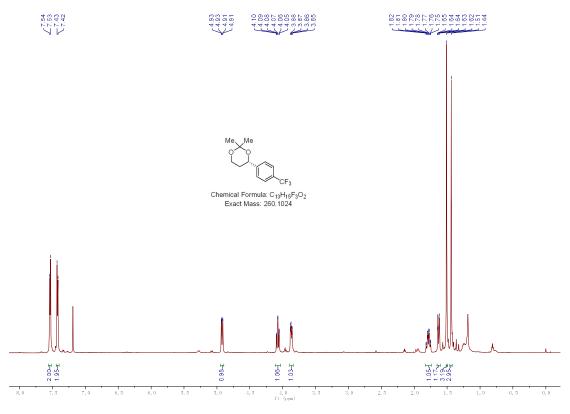


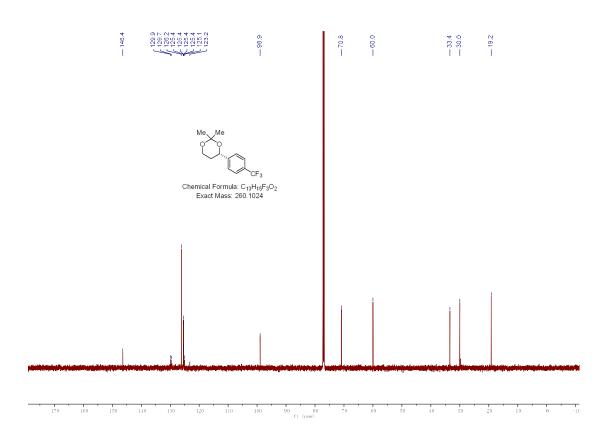
¹³C NMR (151 MHz, CDCl₃) Spectrum of 3caa

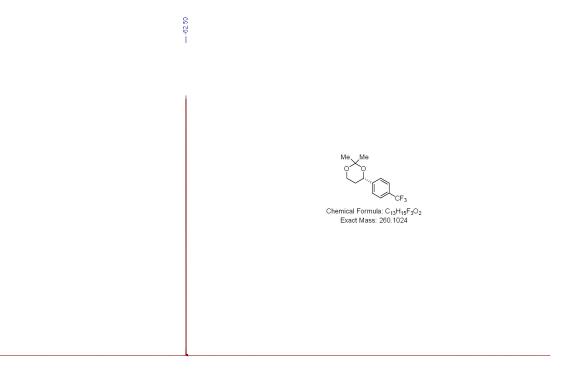



¹³C NMR (151 MHz, CDCl₃) Spectrum of 3cab

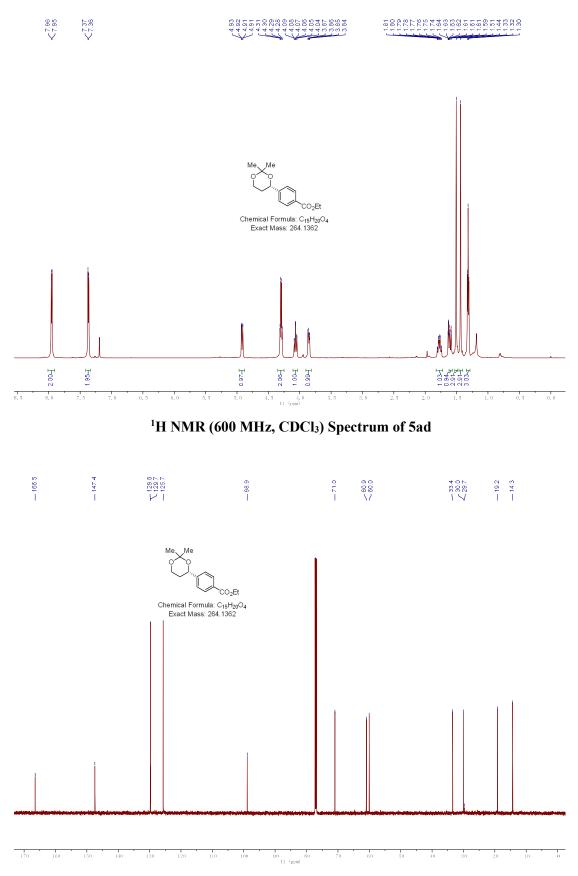

¹³C NMR (151 MHz, CDCl₃) Spectrum of 3cac


¹H NMR (600 MHz, CDCl₃) Spectrum of 3cad

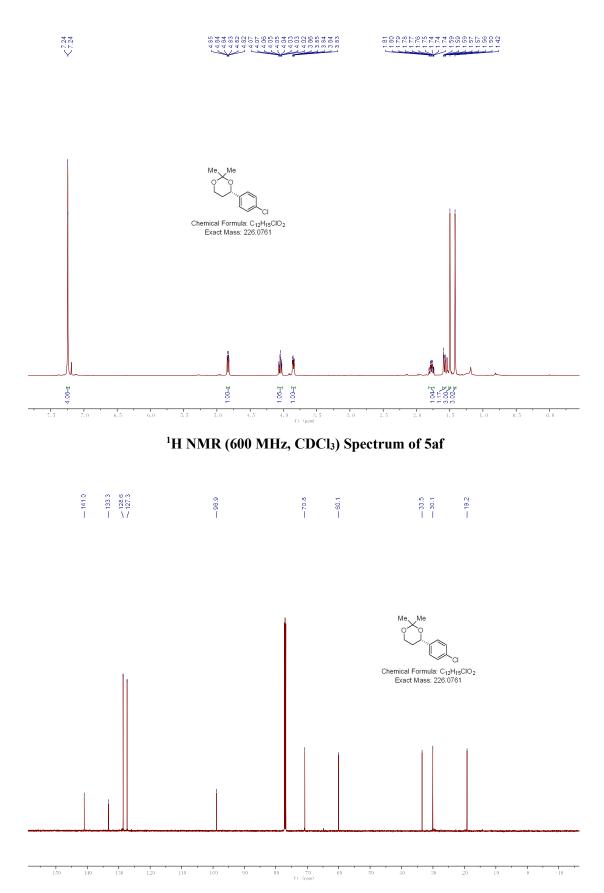

¹³C NMR (151 MHz, CDCl₃) Spectrum of 3cad


¹³C NMR (151 MHz, CDCl₃) Spectrum of 5aa

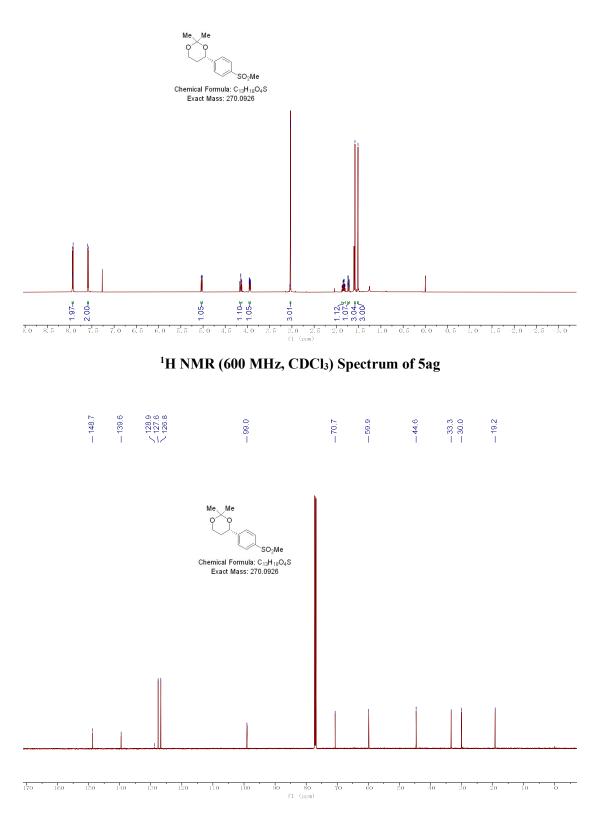
¹H NMR (600 MHz, CDCl₃) Spectrum of 5ac



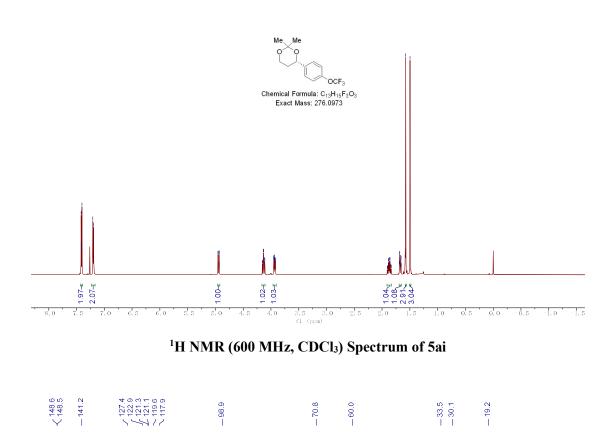
¹³C NMR (151 MHz, CDCl₃) Spectrum of 5ac

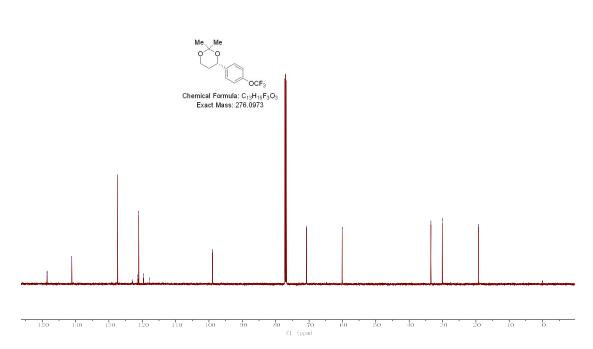


10 0 -10 -20 -30 -40 -50 -50 -70 -80 -90 -100 -110 -120 -30 -140 -150 -150 -150 -150 -200 -210 -210 -11 (ram)

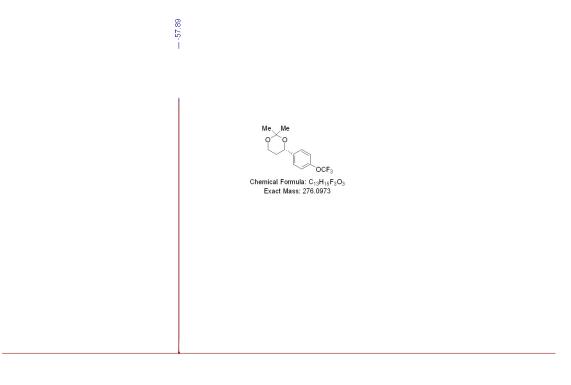

¹⁹F NMR (565 MHz, CDCl₃) Spectrum of 5ac

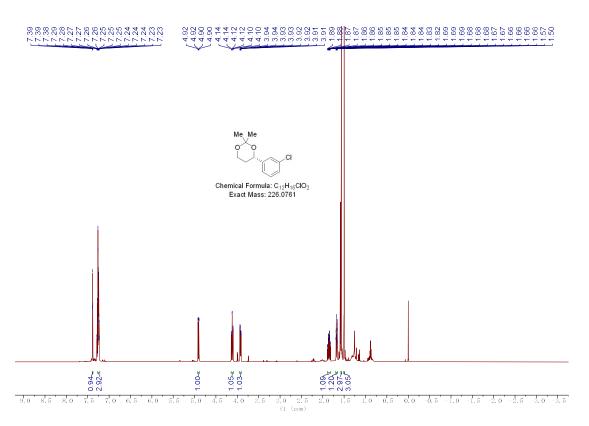
¹³C NMR (151 MHz, CDCl₃) Spectrum of 5ad


¹³C NMR (151 MHz, CDCl₃) Spectrum of 5af

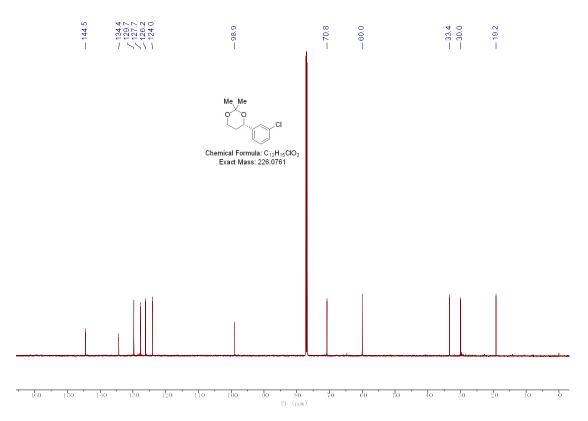


¹³C NMR (151 MHz, CDCl₃) Spectrum of 5ag

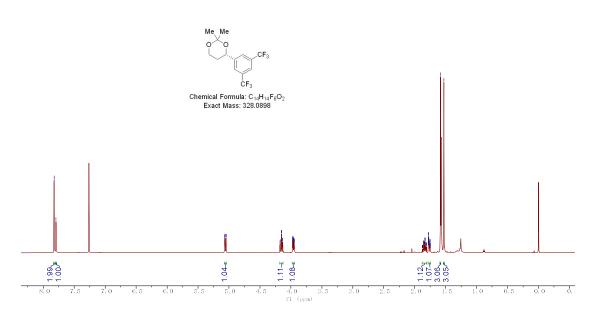




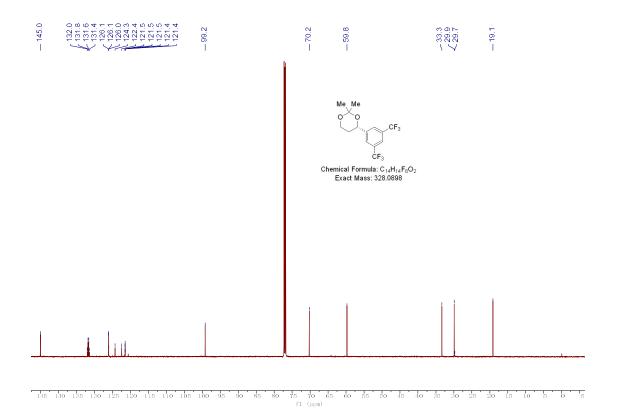
¹³C NMR (151 MHz, CDCl₃) Spectrum of 5ai



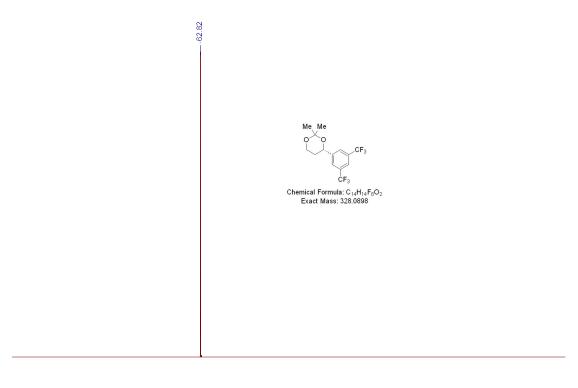
10 0 -10 -20 30 -40 50 -60 70 -80 90 -100 -110 120 -130 -140 -150 -160 170 -180 -190 -200 -210 f1 (ppm)


¹⁹F NMR (565 MHz, CDCl₃) Spectrum of 5ai

¹H NMR (600 MHz, CDCl₃) Spectrum of 5al

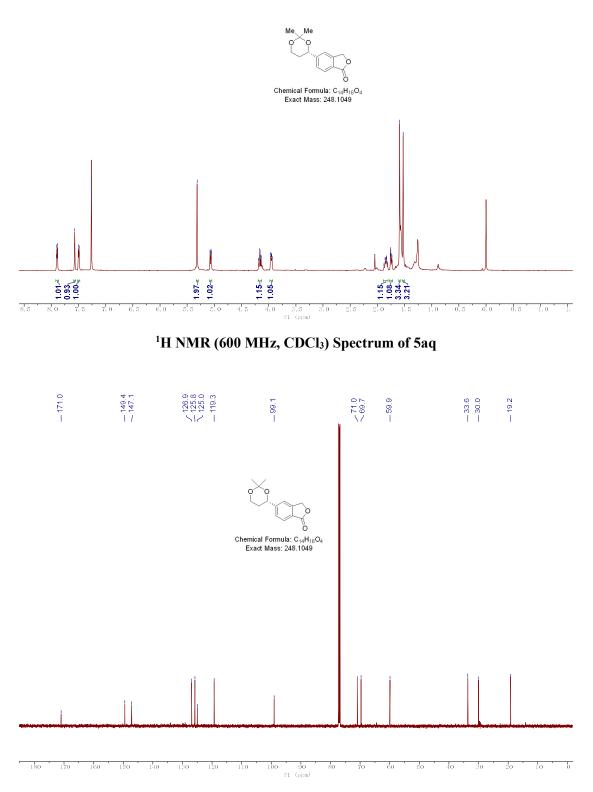


¹³C NMR (151 MHz, CDCl₃) Spectrum of 5al

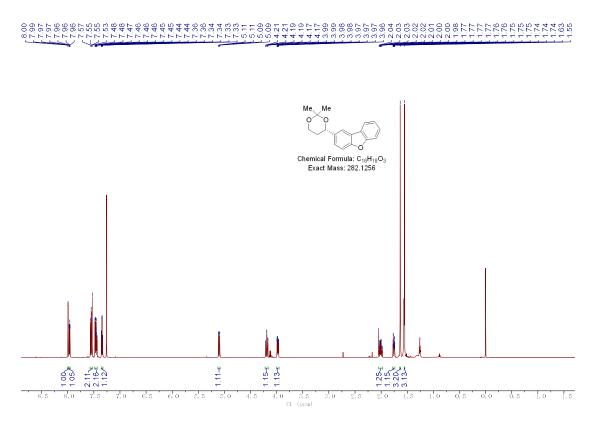


 $<_{7.79}^{7.83}$

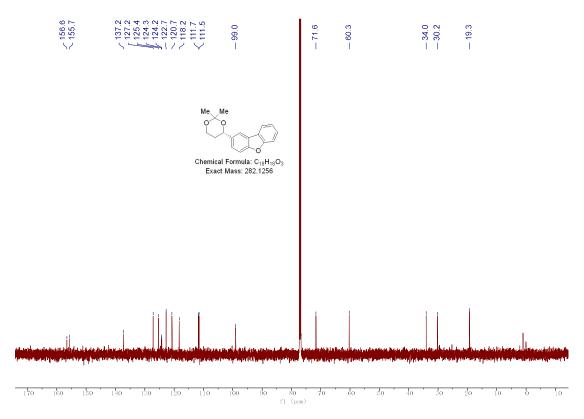
¹H NMR (600 MHz, CDCl₃) Spectrum of 5ao

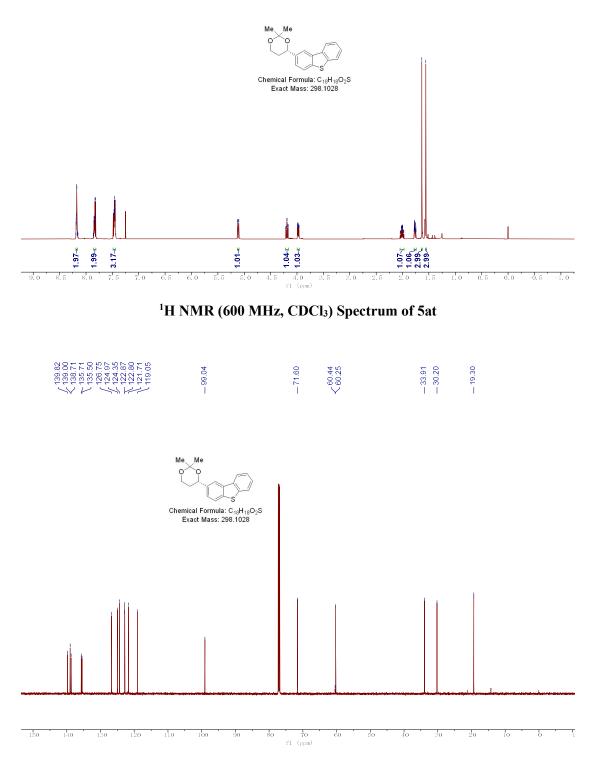


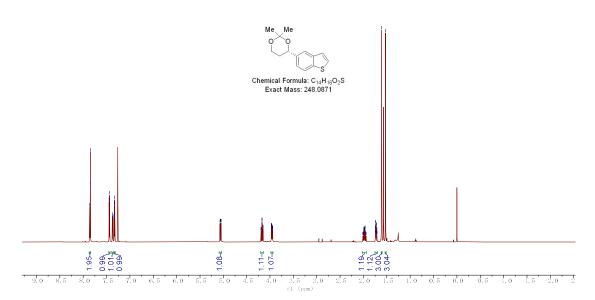
¹³C NMR (151 MHz, CDCl₃) Spectrum of 5ao

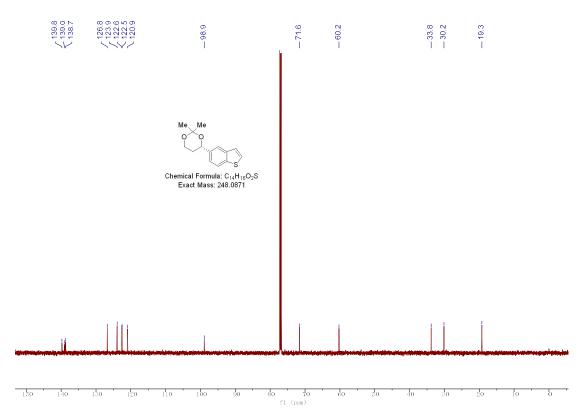


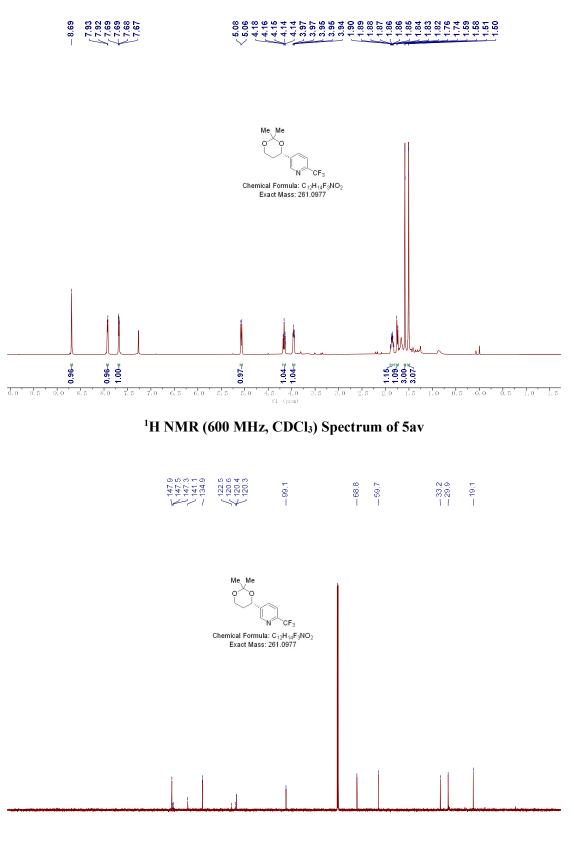
¹⁹F NMR (565 MHz, CDCl₃) Spectrum of 5ao

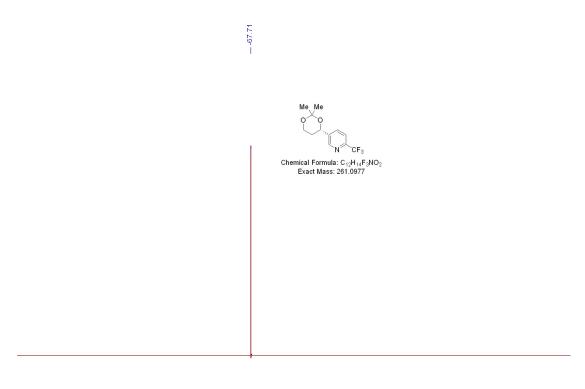



¹³C NMR (151 MHz, CDCl₃) Spectrum of 5aq

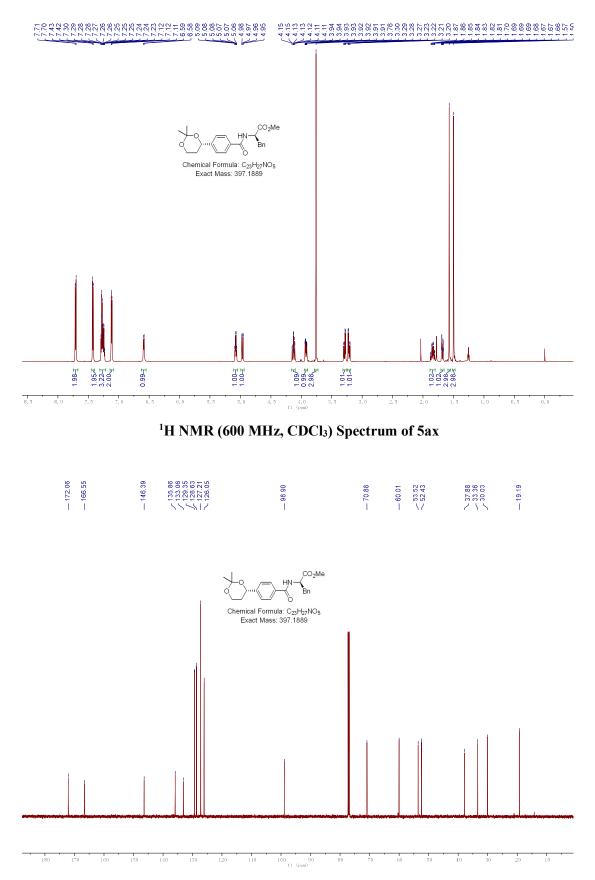



¹³C NMR (151 MHz, CDCl₃) Spectrum of 5as

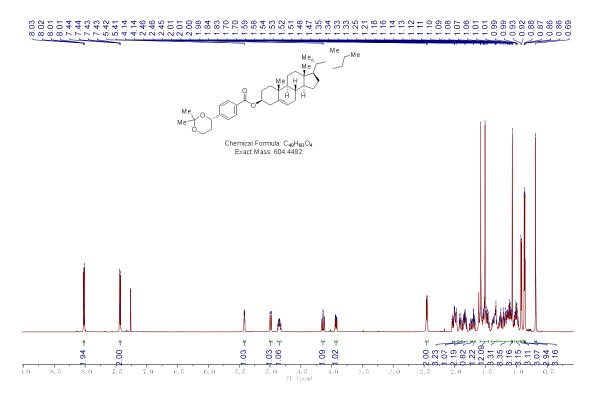

¹³C NMR (151 MHz, CDCl₃) Spectrum of 5at



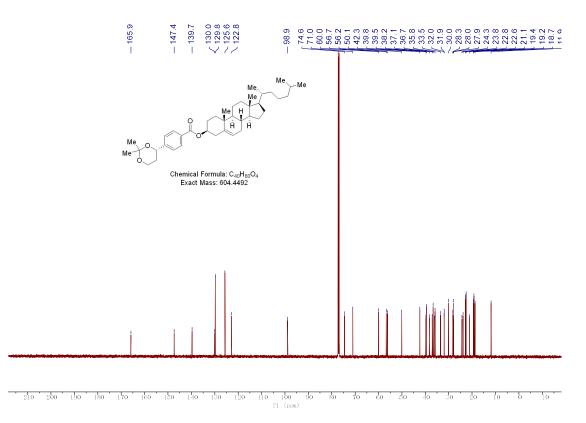
¹³C NMR (151 MHz, CDCl₃) Spectrum of 5au

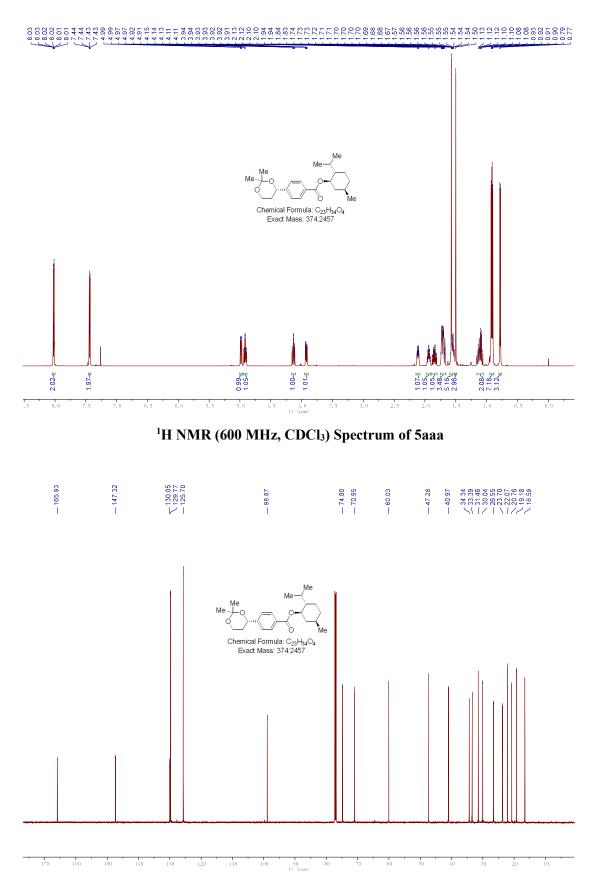

210 200 150 150 160 150 140 150 110 100 50 50 70 60 50 40 50 20 10 0 -10 f1 (ppm)

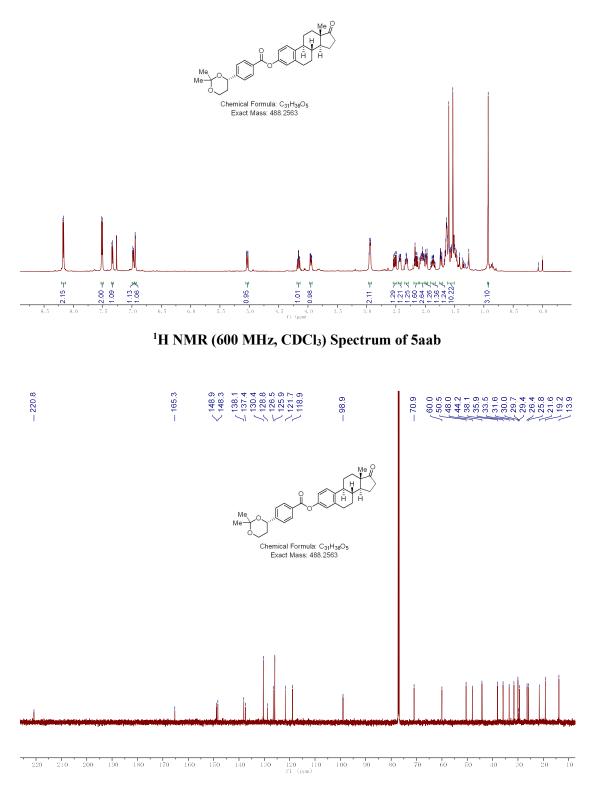
¹³C NMR (151 MHz, CDCl₃) Spectrum of 5av



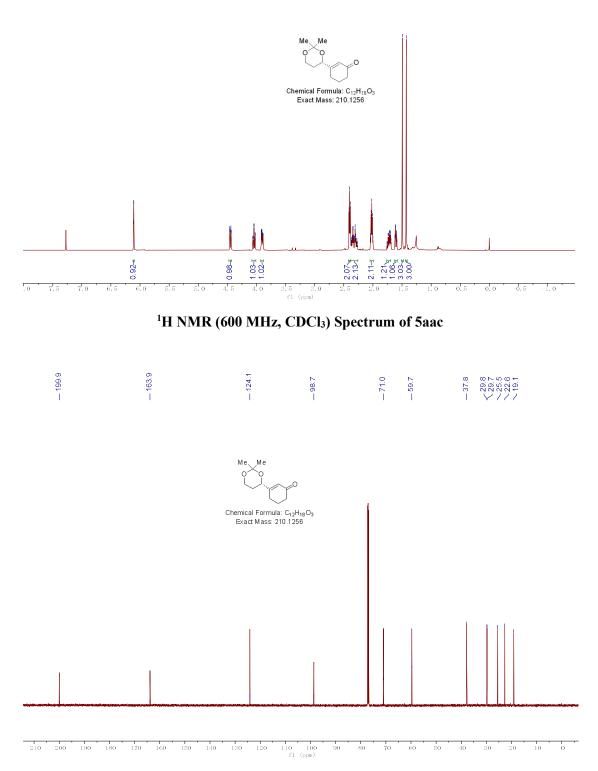
100 80 60 40 20 0 20 40 60 80 -100 120 140 60 -180 200 220 240 260 280 -300 F1 (ppm)


¹⁹F NMR (565 MHz, CDCl₃) Spectrum of 5av

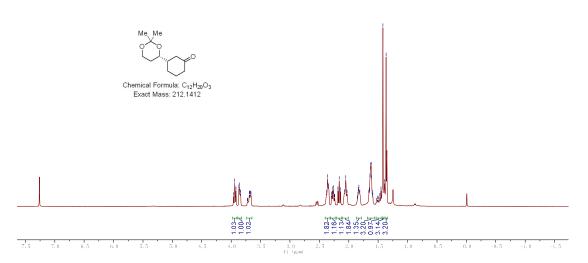

¹³C NMR (151 MHz, CDCl₃) Spectrum of 5ax


¹H NMR (600 MHz, CDCl₃) Spectrum of 5az

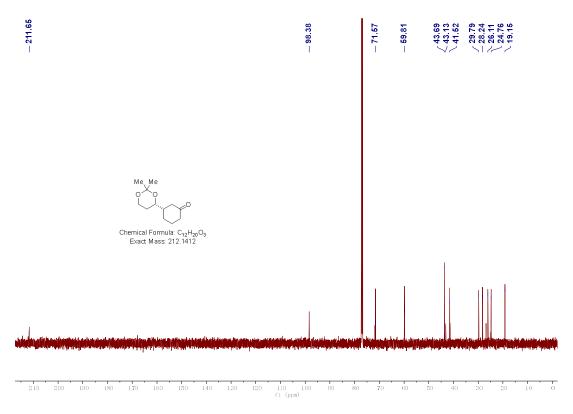
¹³C NMR (151 MHz, CDCl₃) Spectrum of 5az

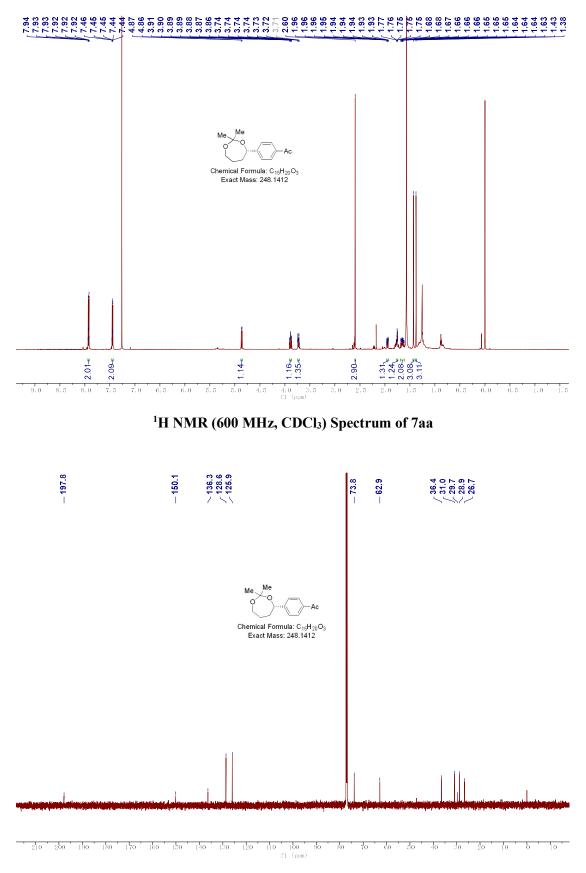


¹³C NMR (151 MHz, CDCl₃) Spectrum of 5aaa

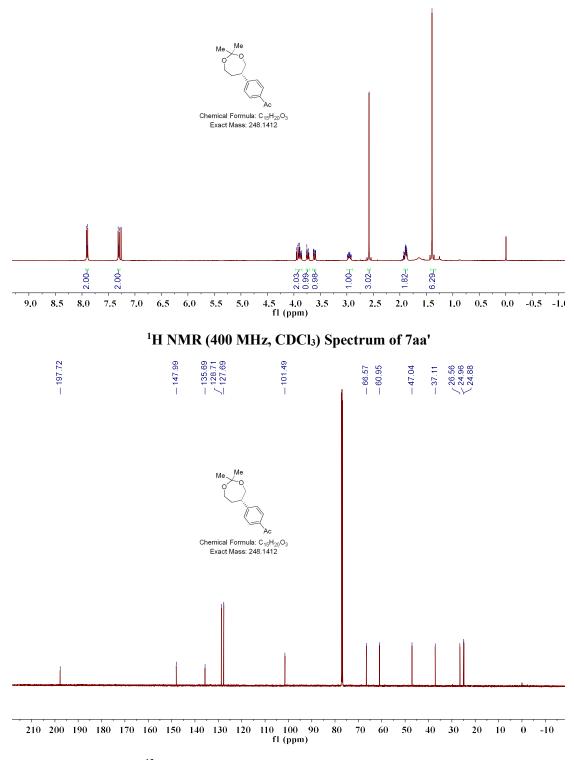


¹³C NMR (151 MHz, CDCl₃) Spectrum of 5aab

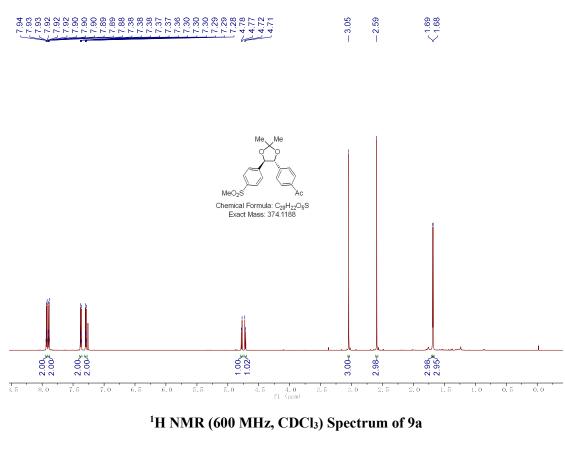

 $\bigwedge_{6.11}^{6.11}$

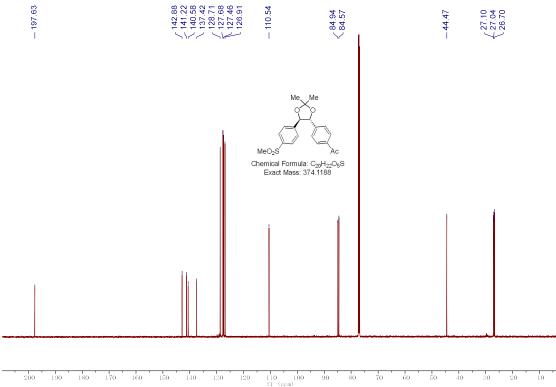

¹³C NMR (151 MHz, CDCl₃) Spectrum of 5aac

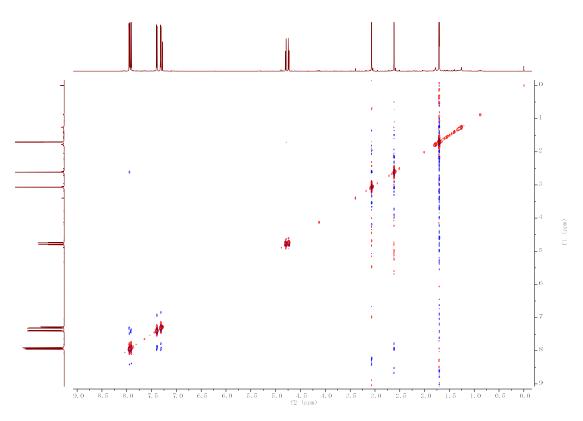
¹H NMR (600 MHz, CDCl₃) Spectrum of 5aad



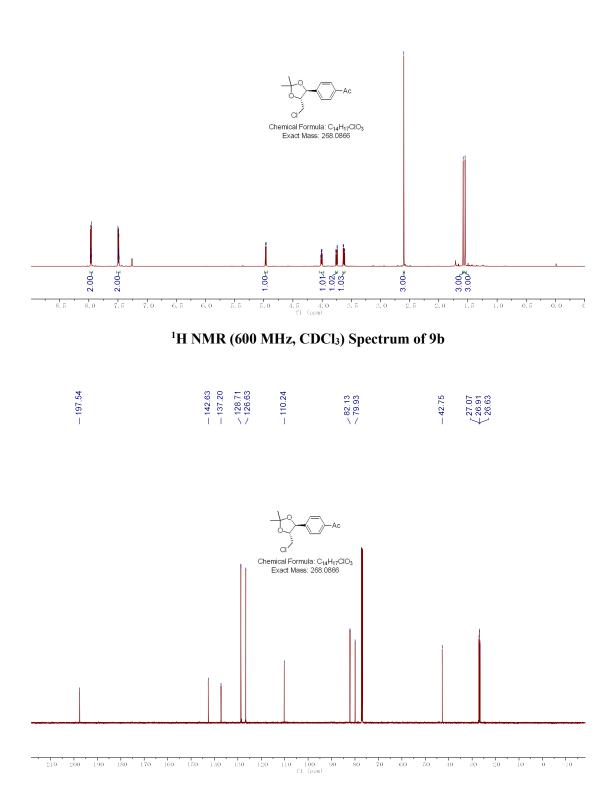
¹³C NMR (151 MHz, CDCl₃) Spectrum of 5aad



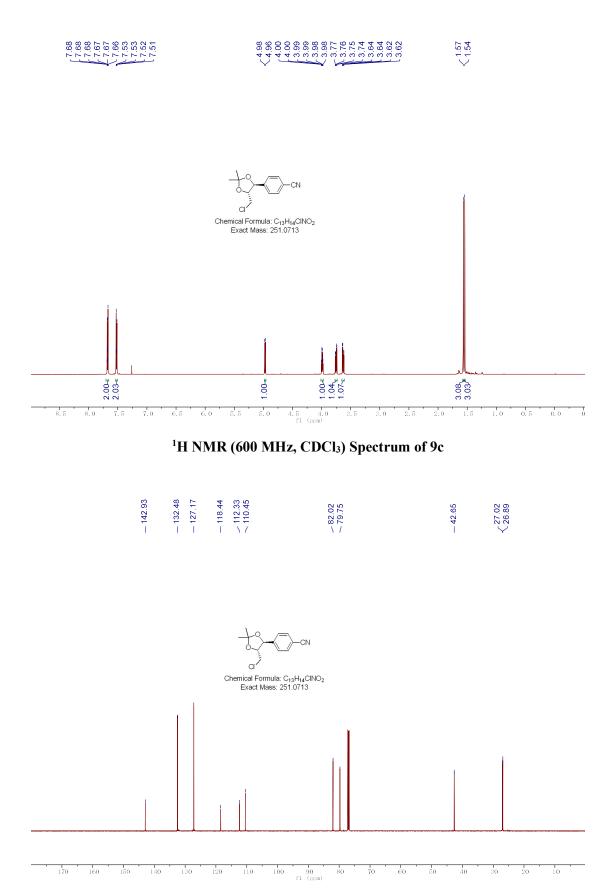

¹³C NMR (151 MHz, CDCl₃) Spectrum of 7aa



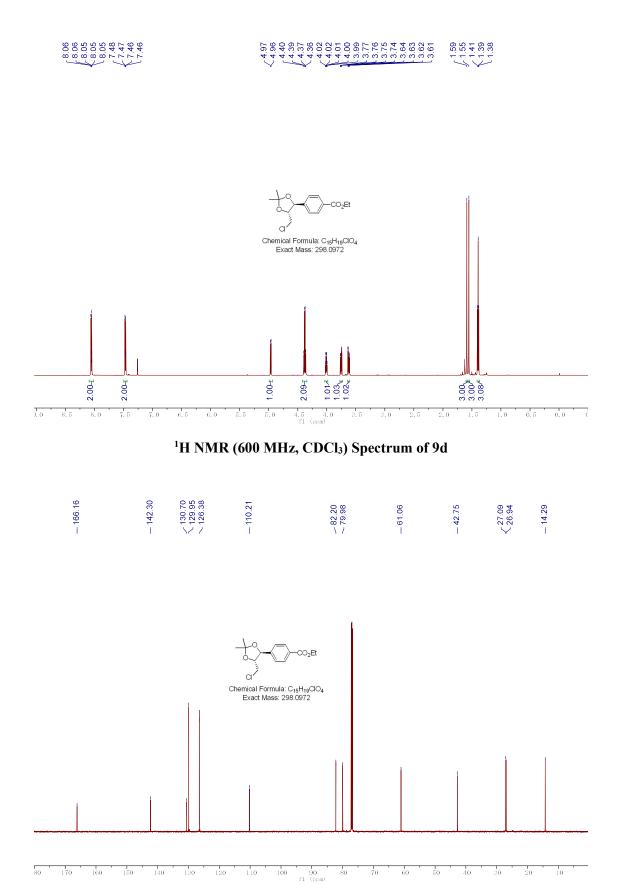
¹³C NMR (151 MHz, CDCl₃) Spectrum of 7aa'

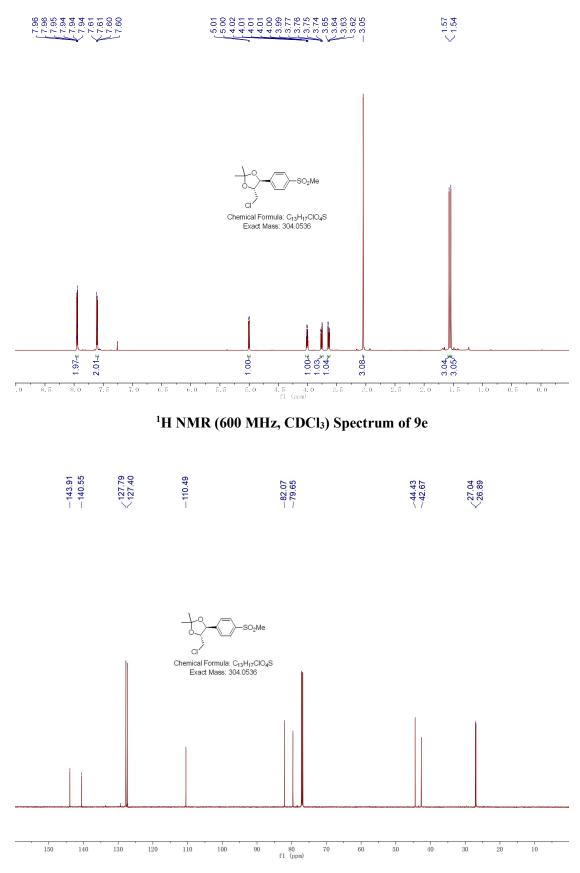


¹³C NMR (151 MHz, CDCl₃) Spectrum of 9a

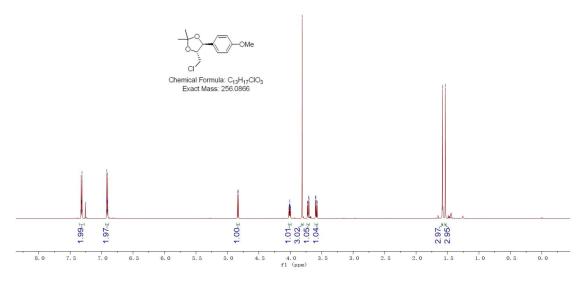


NOE Spectrum of 9a

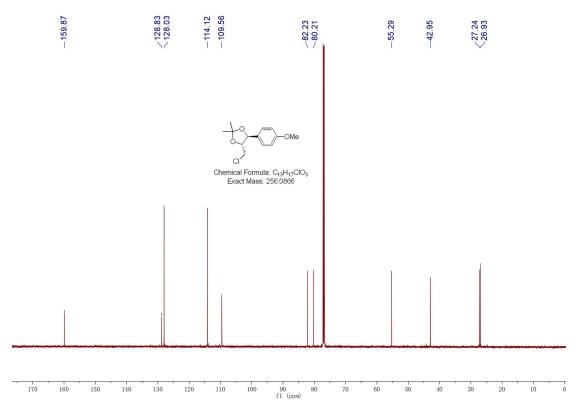



¹³C NMR (151 MHz, CDCl₃) Spectrum of 9b

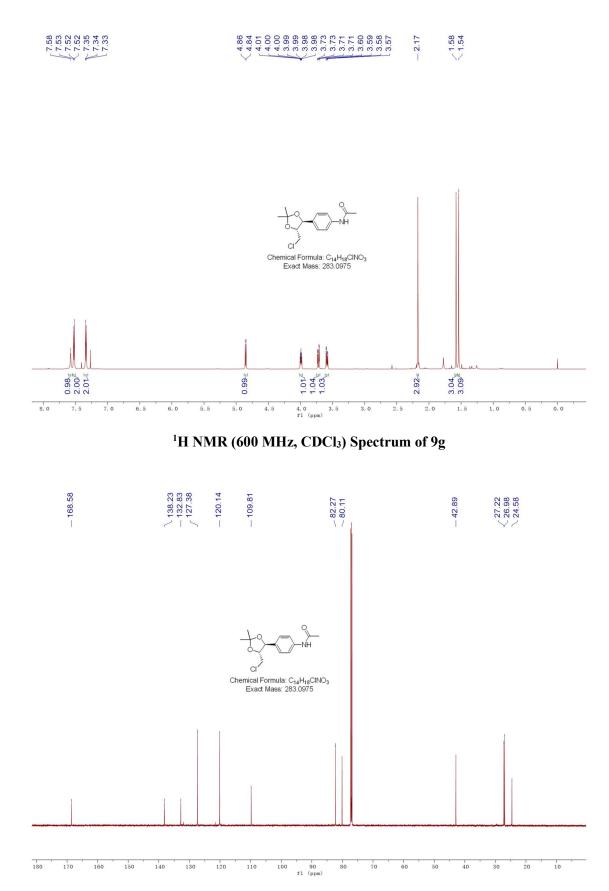
¹³C NMR (151 MHz, CDCl₃) Spectrum of 9c

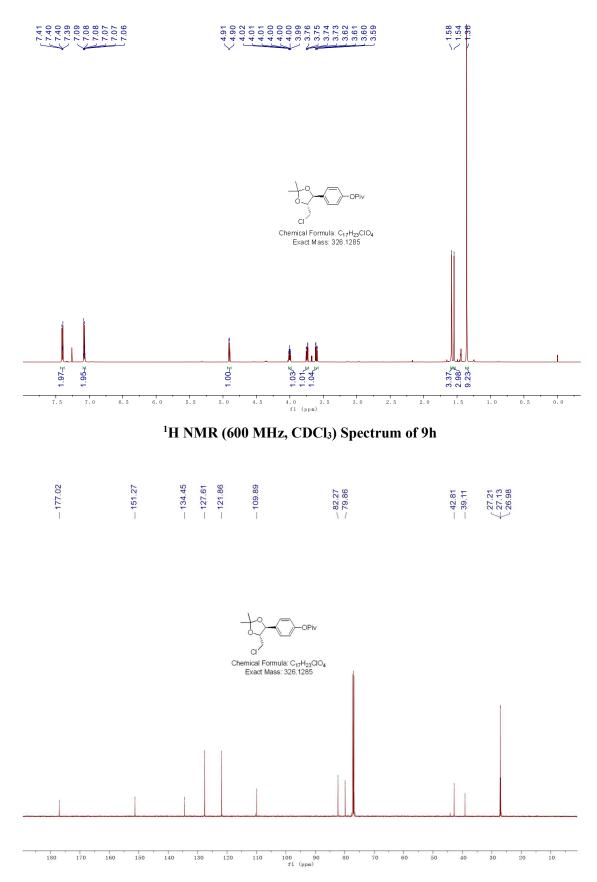


¹³C NMR (151 MHz, CDCl₃) Spectrum of 9d



¹³C NMR (151 MHz, CDCl₃) Spectrum of 9e

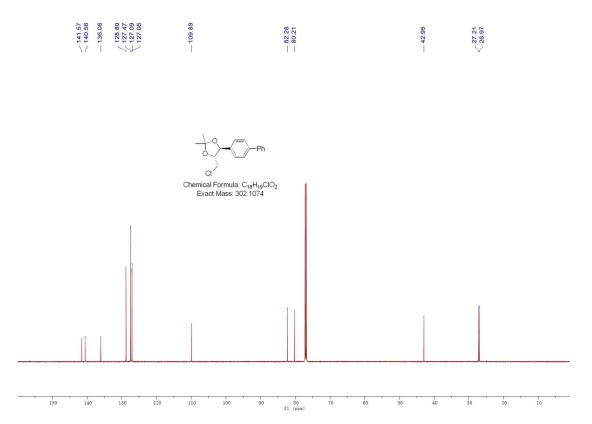


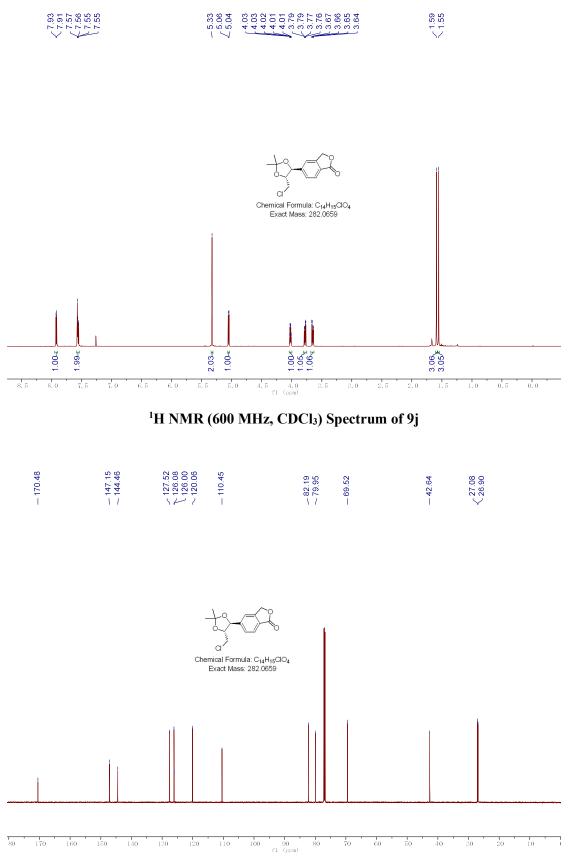

¹H NMR (600 MHz, CDCl₃) Spectrum of 9f

¹³C NMR (151 MHz, CDCl₃) Spectrum of 9f

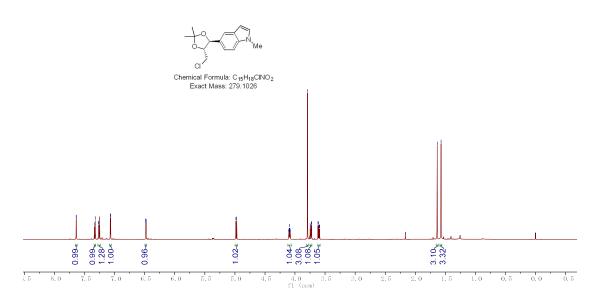


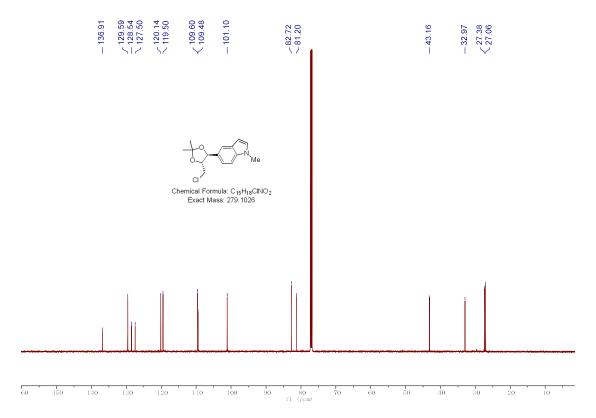
¹³C NMR (151 MHz, CDCl₃) Spectrum of 9g

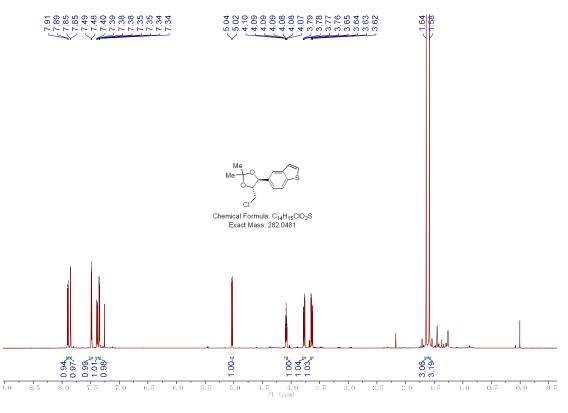

¹³C NMR (151 MHz, CDCl₃) Spectrum of 9h

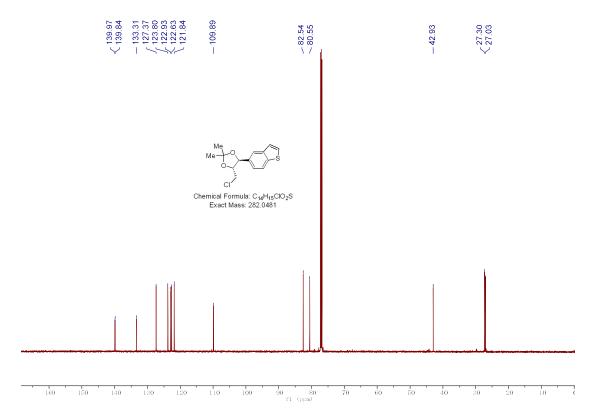


1.63

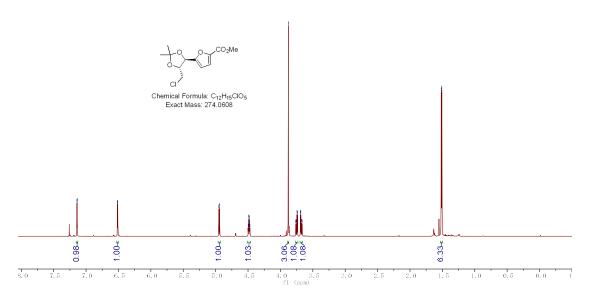

¹³C NMR (151 MHz, CDCl₃) Spectrum of 9i

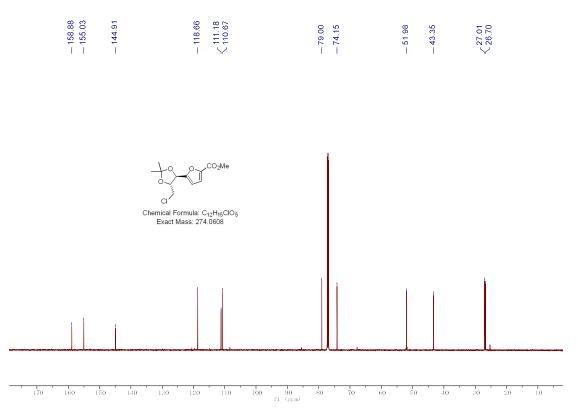

¹³C NMR (151 MHz, CDCl₃) Spectrum of 9j


7.05 7.05 7.05 7.07 7.07 6.48 6.48

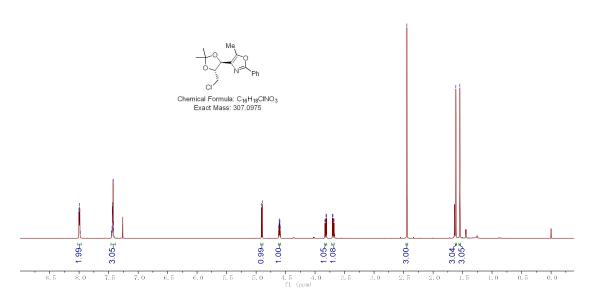


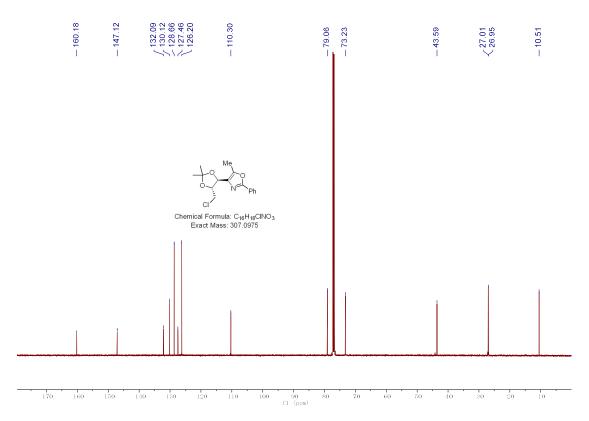
¹³C NMR (151 MHz, CDCl₃) Spectrum of 9k



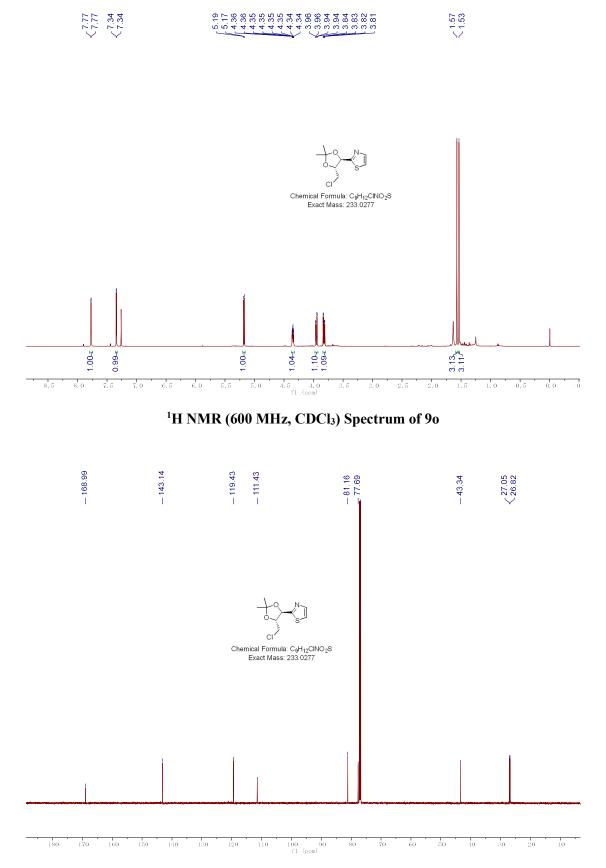


¹³C NMR (151 MHz, CDCl₃) Spectrum of 91

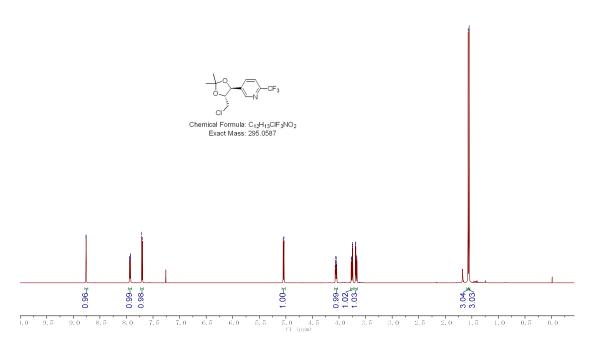




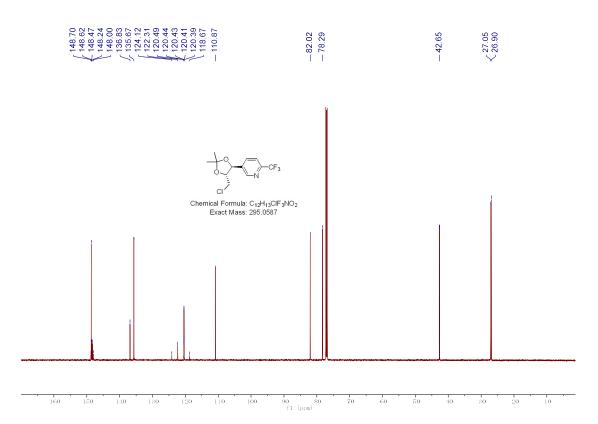
¹³C NMR (151 MHz, CDCl₃) Spectrum of 9m



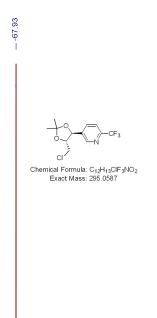
¹H NMR (600 MHz, CDCl₃) Spectrum of 9n



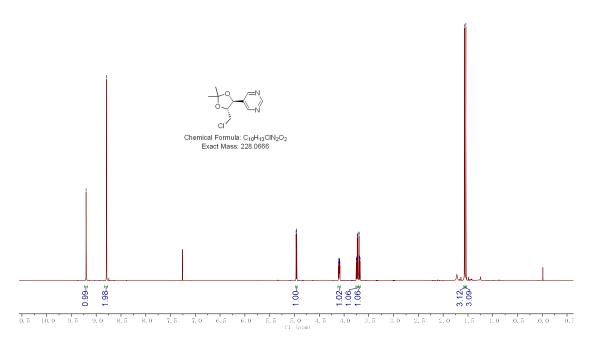
¹³C NMR (151 MHz, CDCl₃) Spectrum of 9n

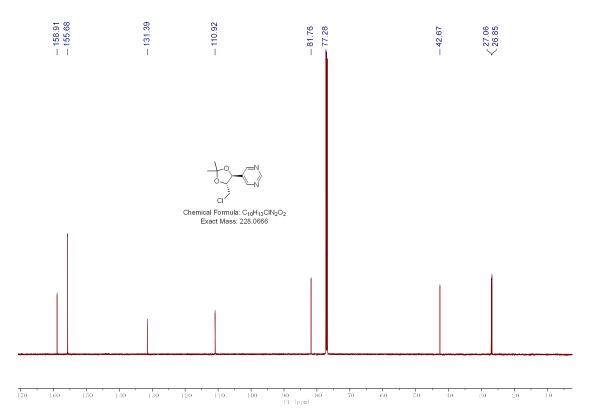


¹³C NMR (151 MHz, CDCl₃) Spectrum of 90

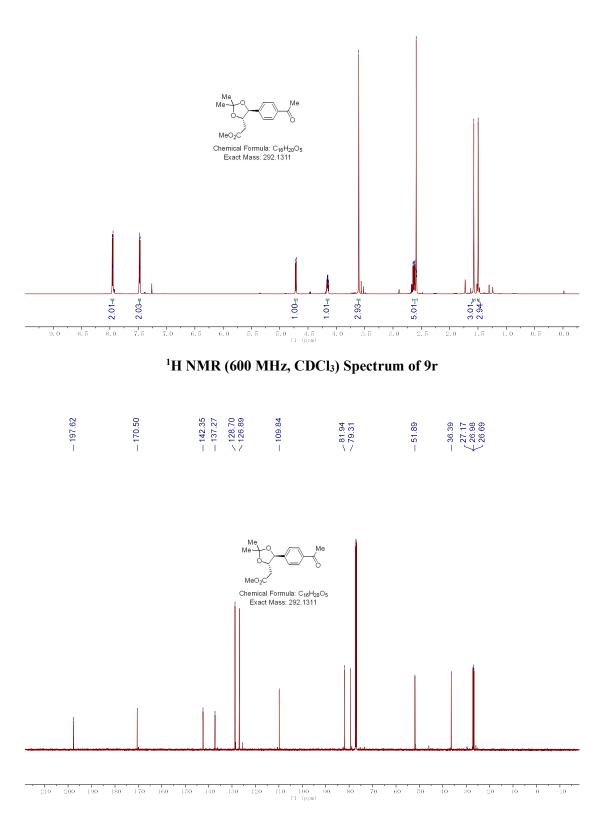


¹H NMR (600 MHz, CDCl₃) Spectrum of 9p

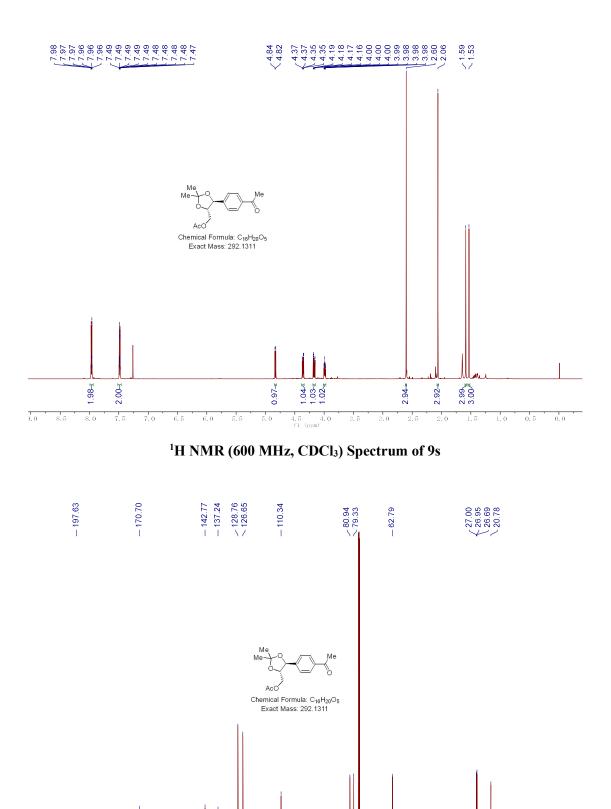

¹³C NMR (151 MHz, CDCl₃) Spectrum of 9p


10 0 -10 20 -30 40 -50 -60 70 -80 90 -100 -110 120 -130 140 -150 -160 170 -180 190 -200 -210 fl (ppm)

¹⁹F NMR (565 MHz, CDCl₃) Spectrum of 9p

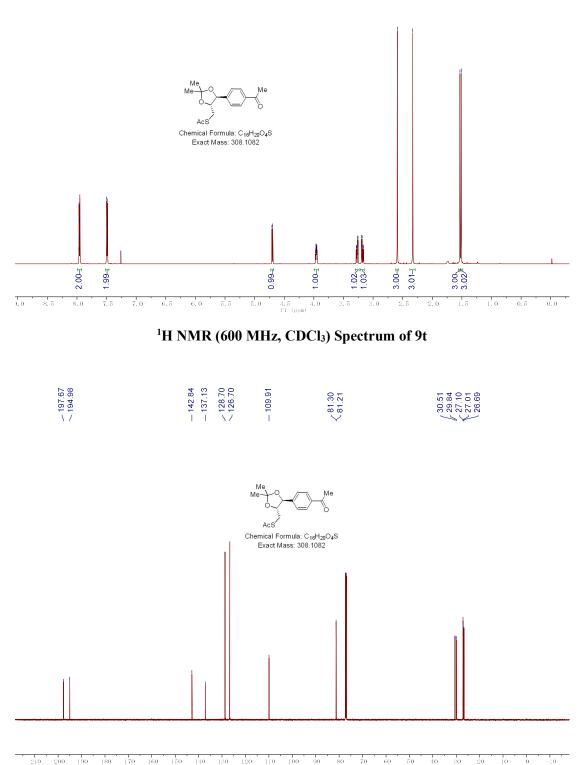


¹H NMR (600 MHz, CDCl₃) Spectrum of 9q

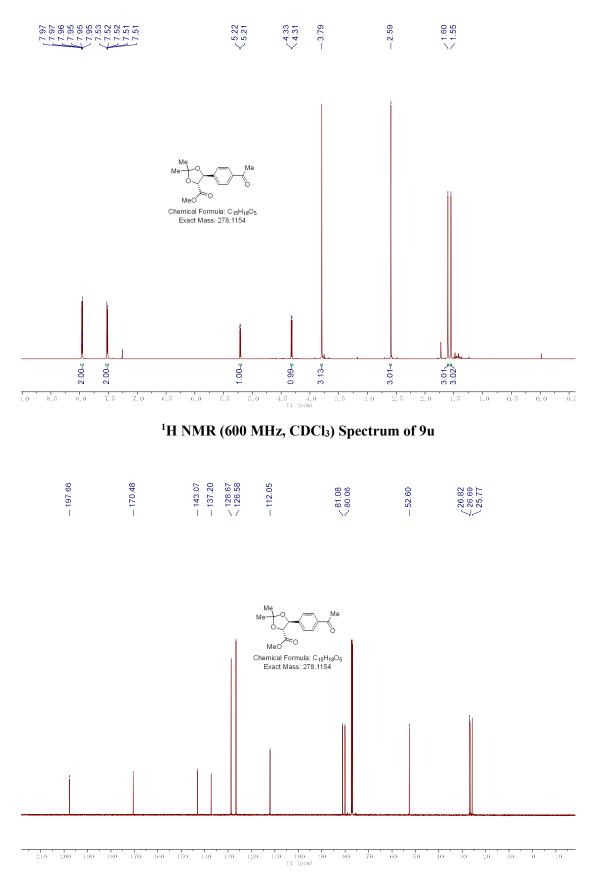


¹³C NMR (565 MHz, CDCl₃) Spectrum of 9q

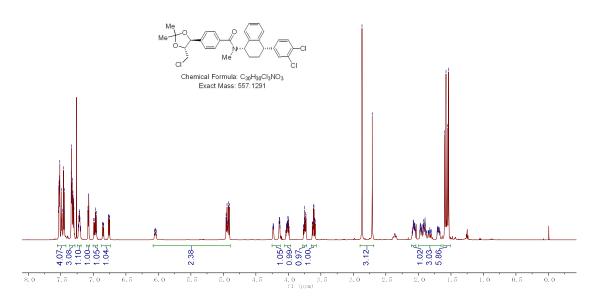
¹³C NMR (151 MHz, CDCl₃) Spectrum of 9r



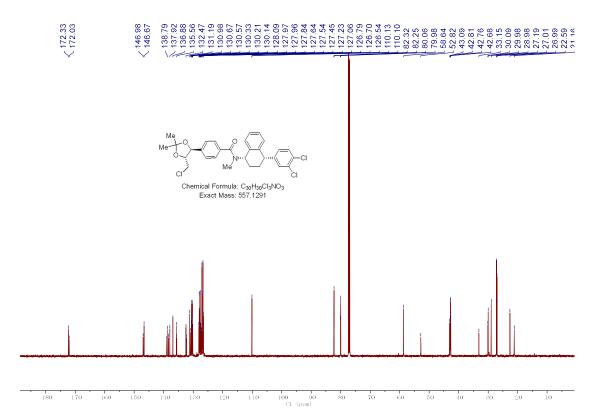
¹³C NMR (151 MHz, CDCl₃) Spectrum of 9s


$<^{1.53}_{1.51}$

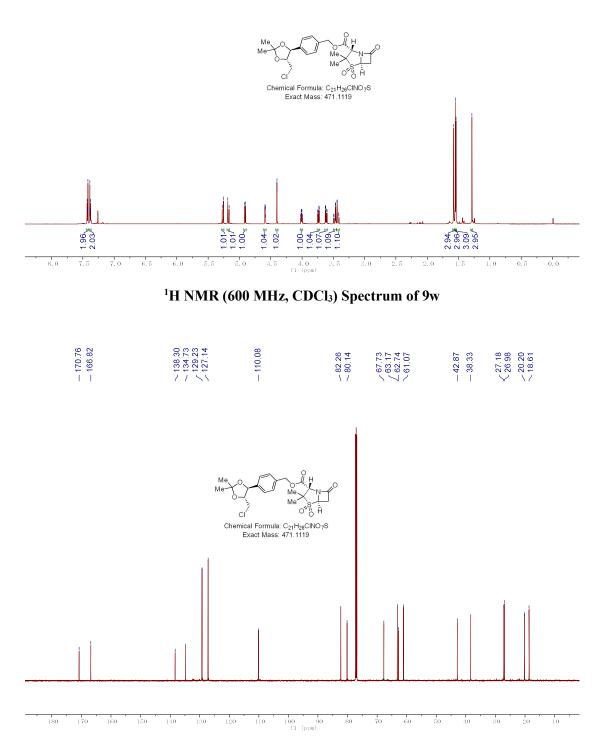
7.97 7.97 7.95 7.95 7.95 7.95 7.50 7.49 7.49



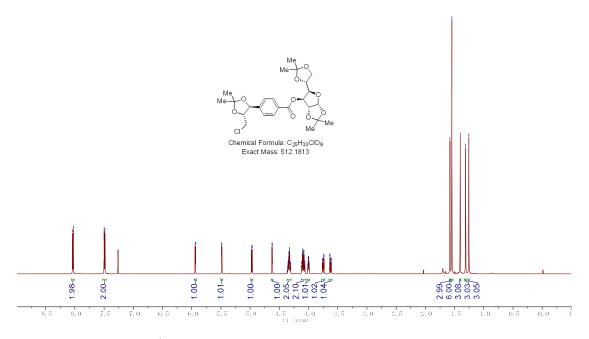
210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 f1 (ppm)

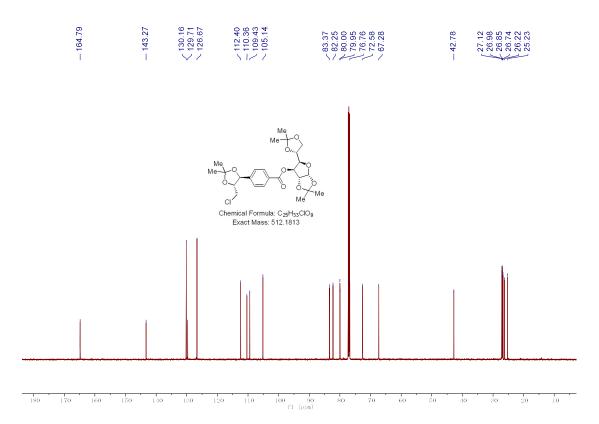

¹³C NMR (151 MHz, CDCl₃) Spectrum of 9t

¹³C NMR (151 MHz, CDCl₃) Spectrum of 9u

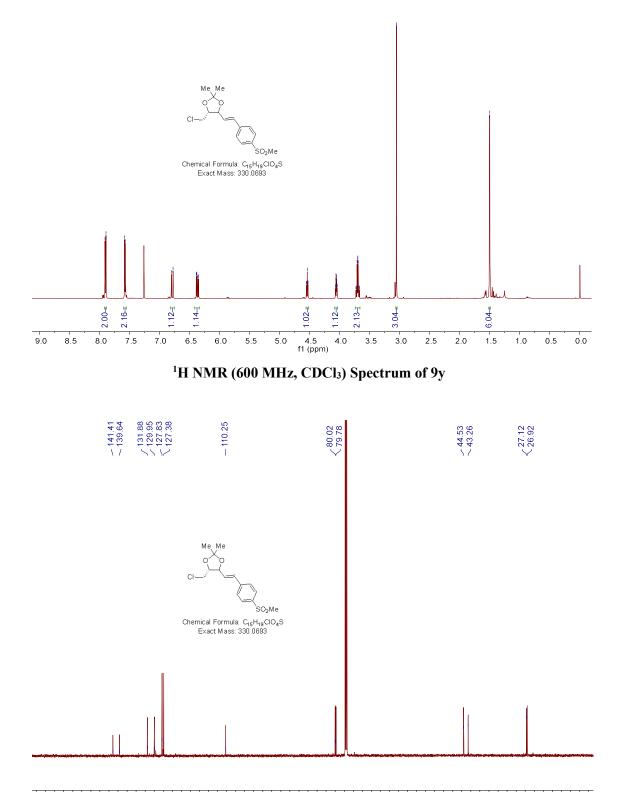

¹H NMR (600 MHz, CDCl₃) Spectrum of 9v

¹³C NMR (151 MHz, CDCl₃) Spectrum of 9v


7.43 7.43 7.42 7.42 7.39 7.39 7.38

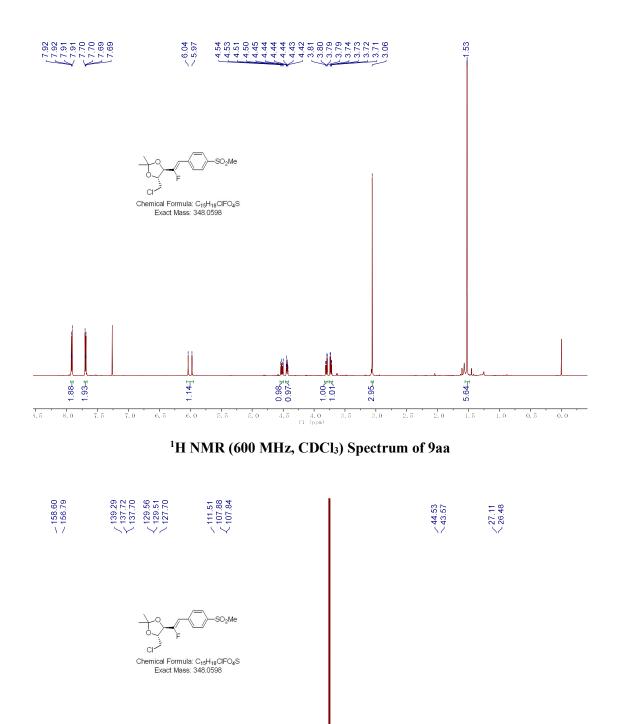


¹³C NMR (151 MHz, CDCl₃) Spectrum of 9w

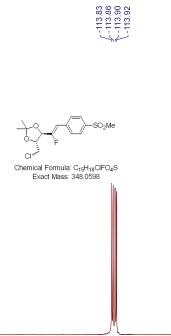


¹H NMR (600 MHz, CDCl₃) Spectrum of 9x

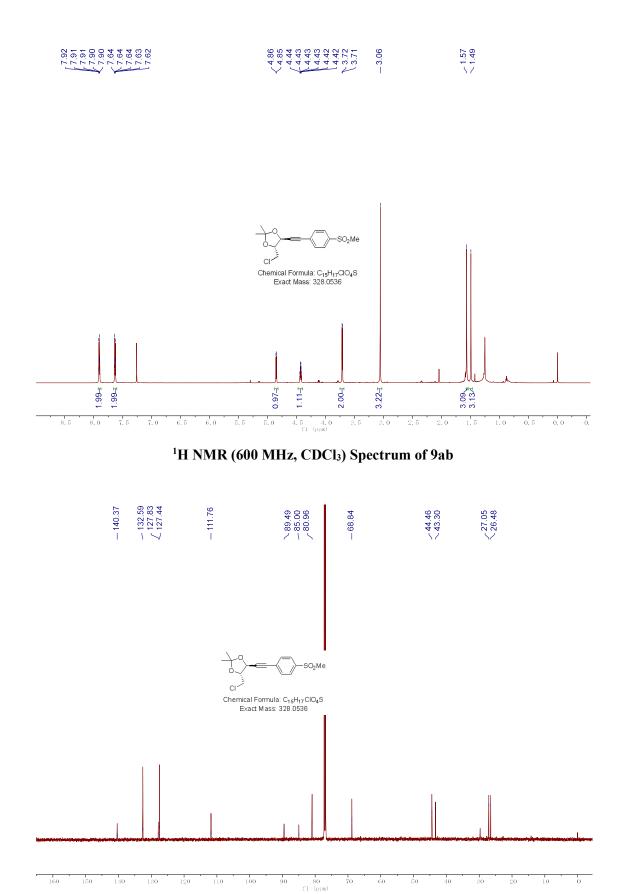

¹³C NMR (151 MHz, CDCl₃) Spectrum of 9x



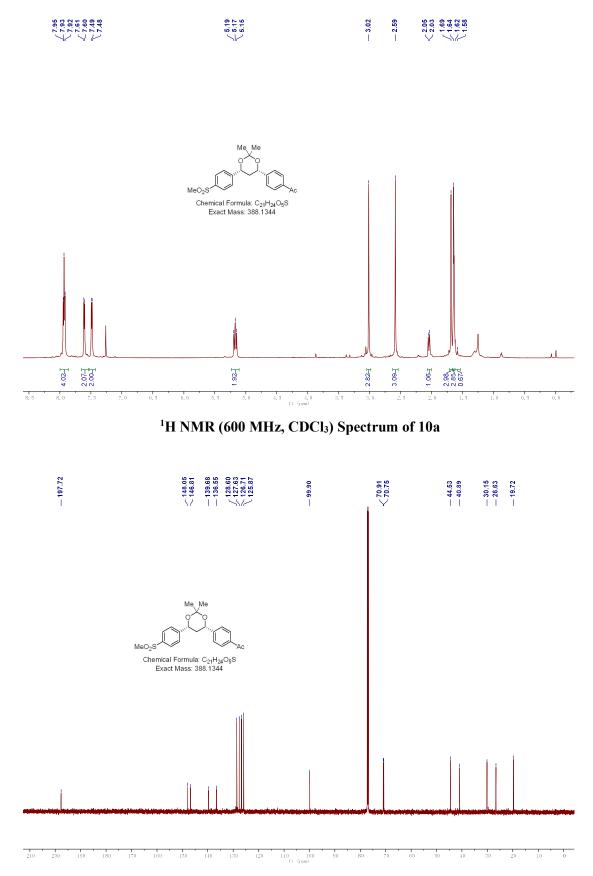
160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 1C f1 (ppm)


¹³C NMR (151 MHz, CDCl₃) Spectrum of 9y

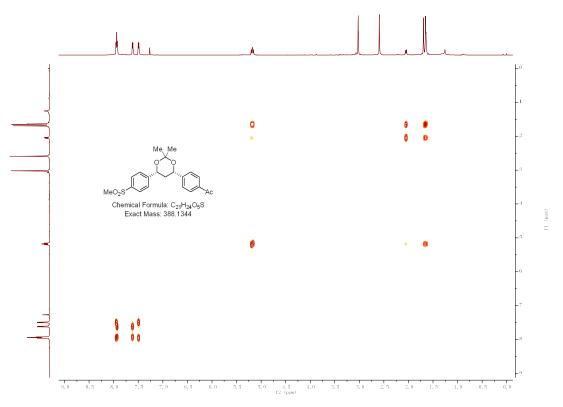
¹³C NMR (151 MHz, CDCl₃) Spectrum of 9z

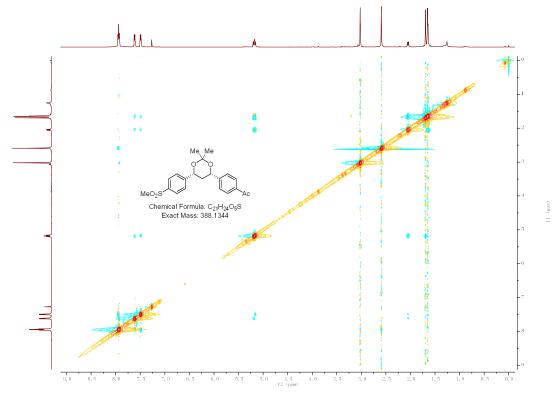


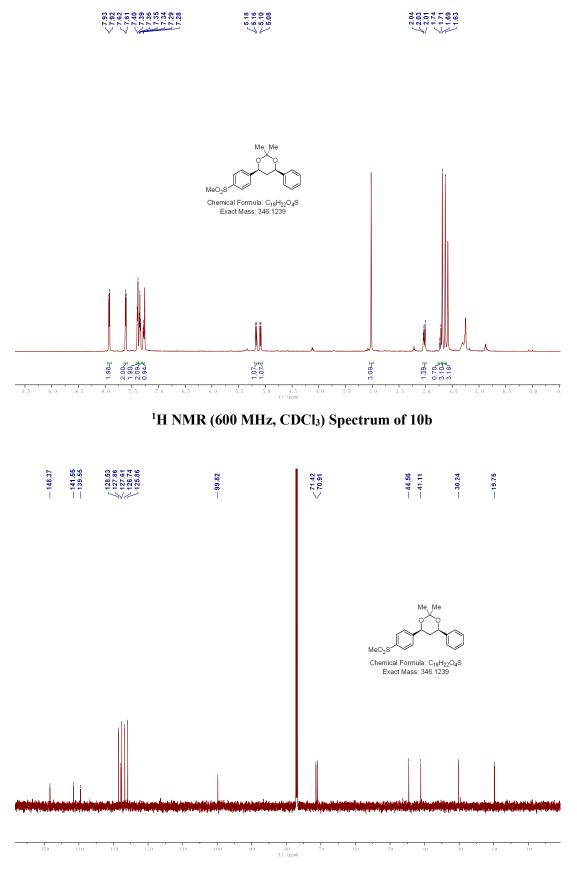
¹³C NMR (151 MHz, CDCl₃) Spectrum of 9aa

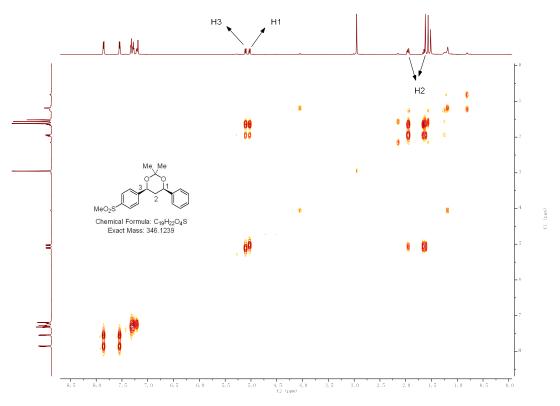

90 80 fl (ppm)

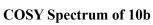
-110.0 -110.5 -111.0 -111.5 -112.0 -112.5 -113.0 -113.5 -114.0 -114.5 -115.0 -115.5 -116.0 -116.5 -117.0 -117.5 -118.0 -118.5 -119.0 -119.5 -120.0 -120.5 f1 (ppm)

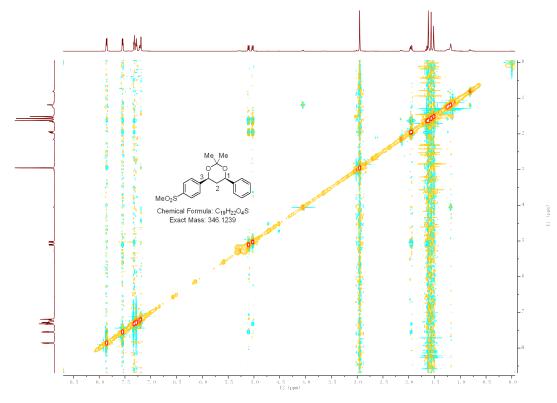

¹⁹F NMR (565 MHz, CDCl₃) Spectrum of 9aa

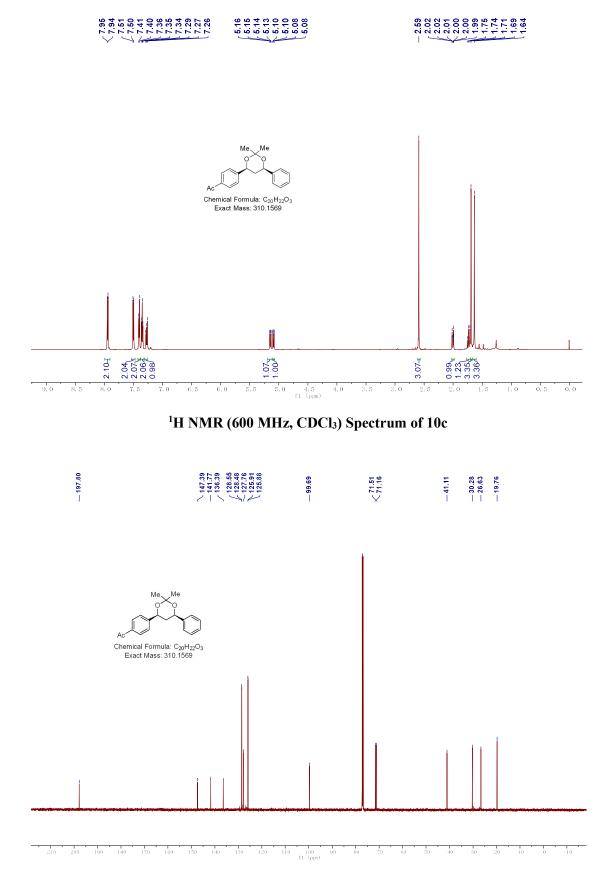

¹³C NMR (151 MHz, CDCl₃) Spectrum of 9ab

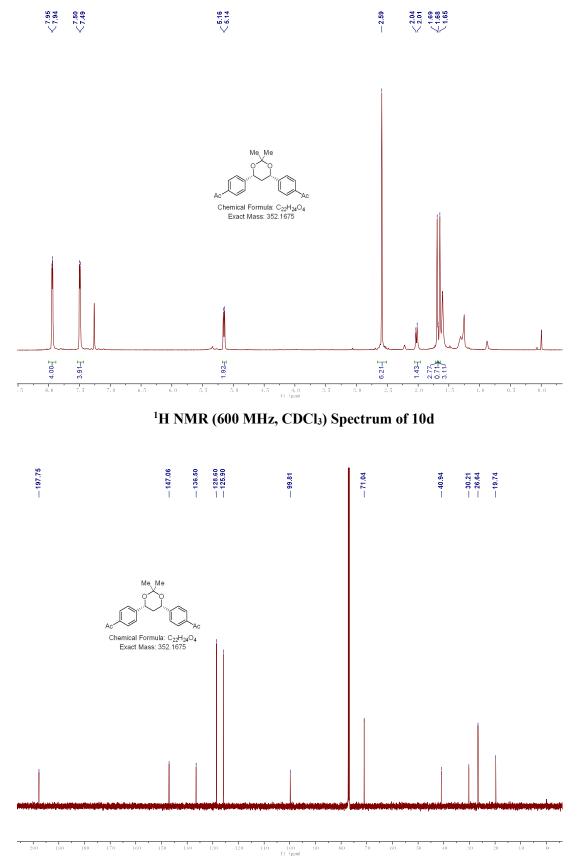

¹³C NMR (151 MHz, CDCl₃) Spectrum of 10a

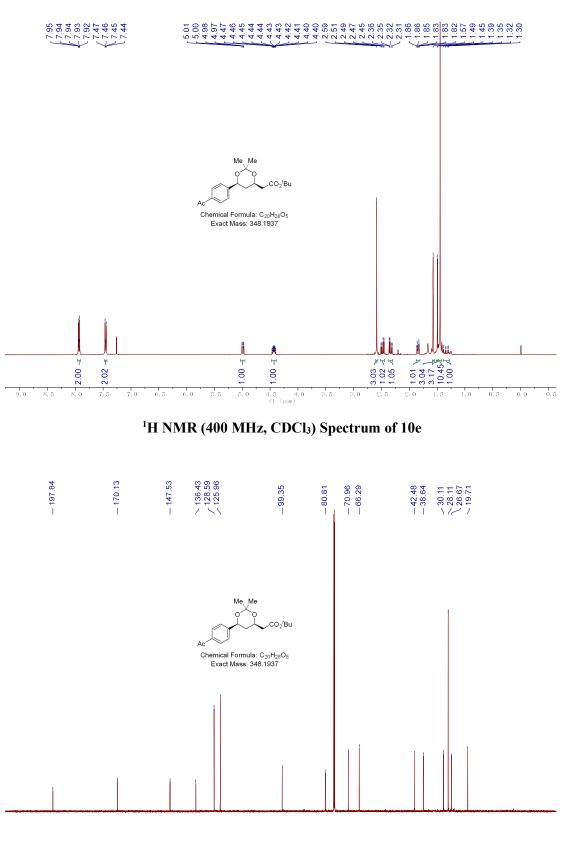




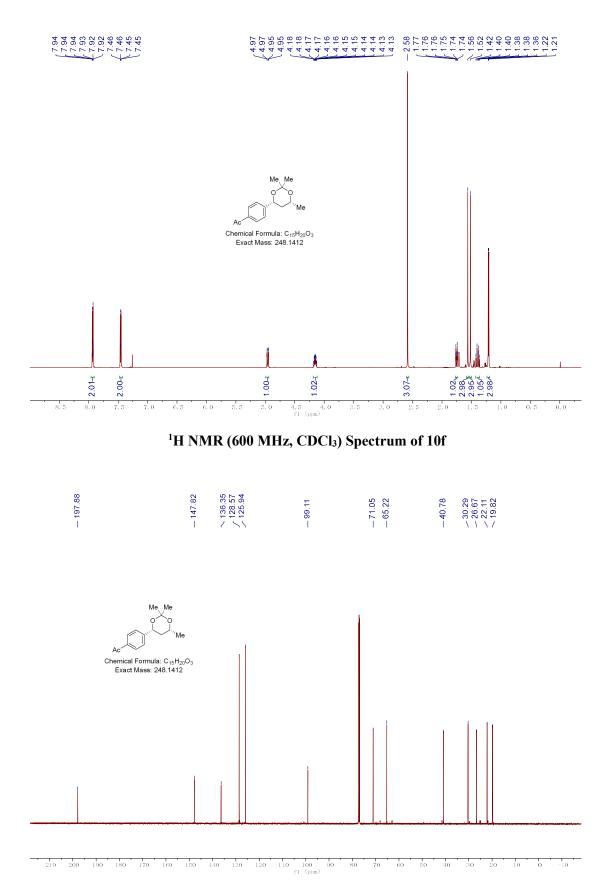

NOE Spectrum of 10a


¹³C NMR (151 MHz, CDCl₃) Spectrum of 10b

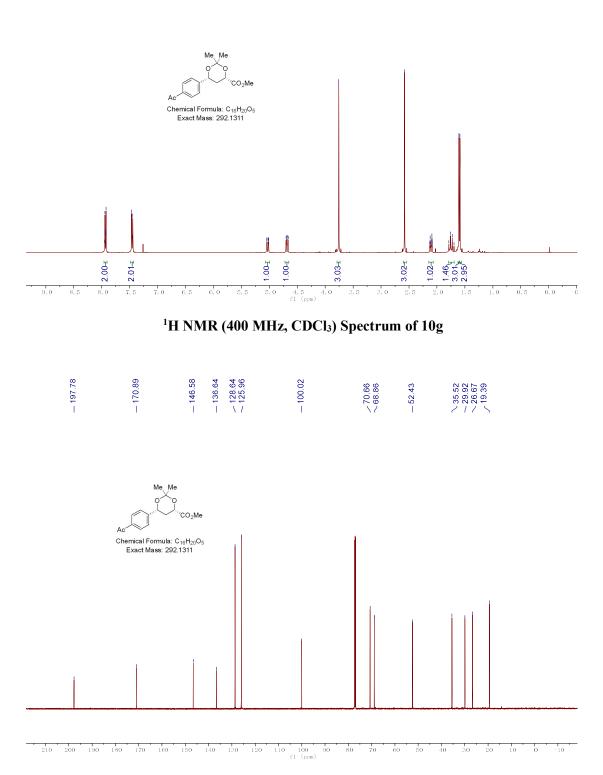



NOE Spectrum of 10b

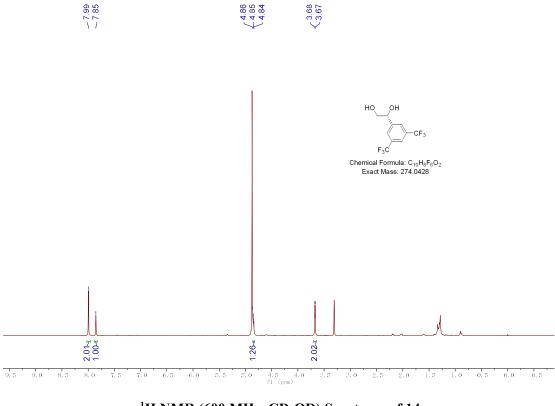
¹³C NMR (151 MHz, CDCl₃) Spectrum of 10c



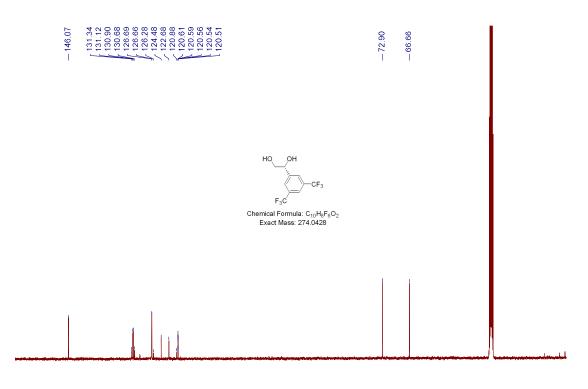
¹³C NMR (151 MHz, CDCl₃) Spectrum of 10d


210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

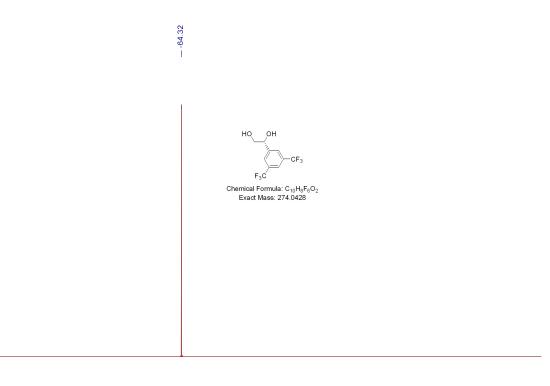
¹³C NMR (151 MHz, CDCl₃) Spectrum of 10e



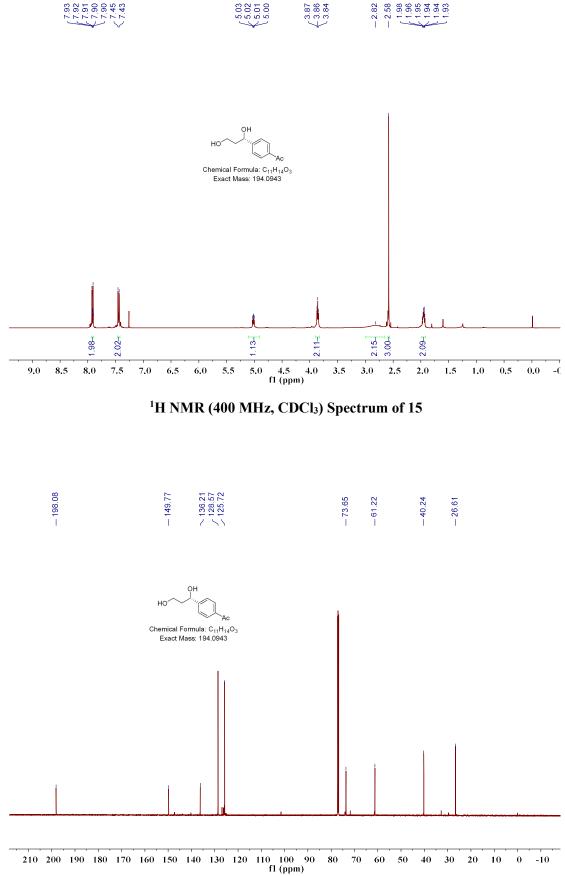
¹³C NMR (151 MHz, CDCl₃) Spectrum of 10f



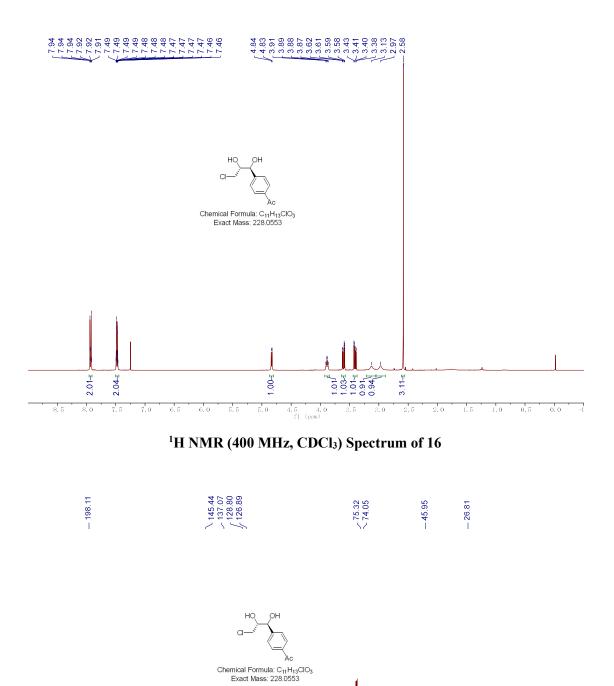
¹³C NMR (151 MHz, CDCl₃) Spectrum of 10g



¹H NMR (600 MHz, CD₃OD) Spectrum of 14

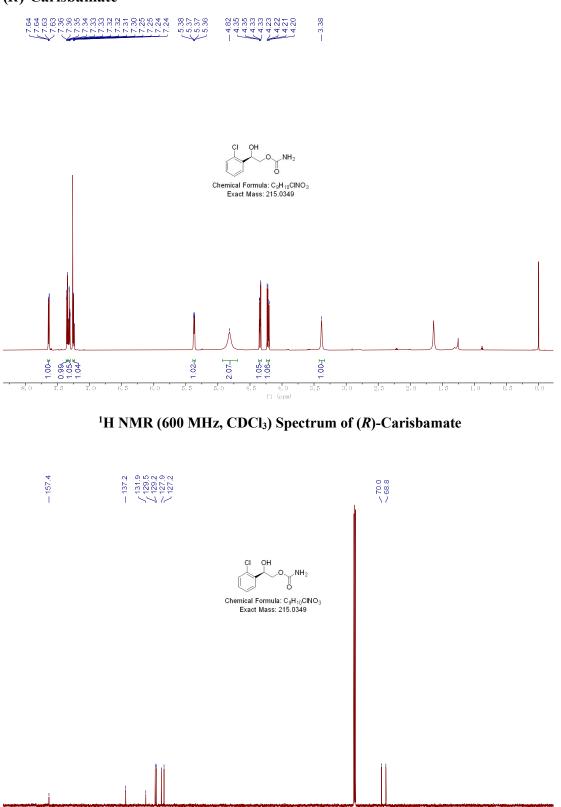

155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 fl (ppm)

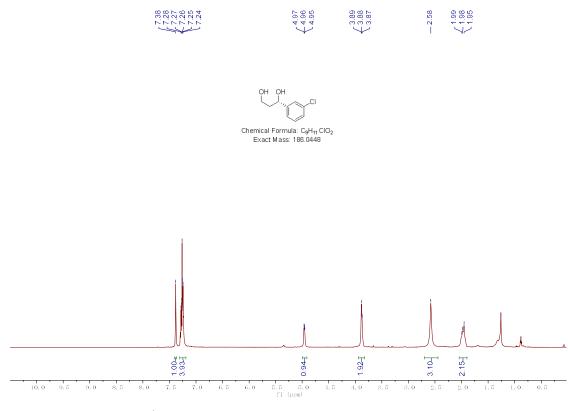
¹³C NMR (151 MHz, CD₃OD) Spectrum of 14

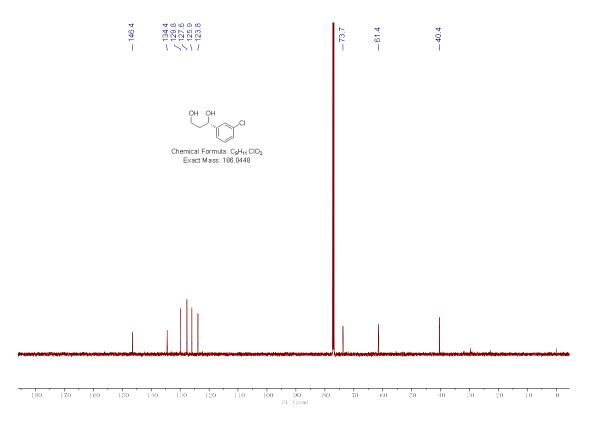



10 0 -10 20 -30 40 50 -60 70 -80 90 100 -110 120 -130 -140 -150 -160 170 -180 -190 -200 -210 f1 (ppm)

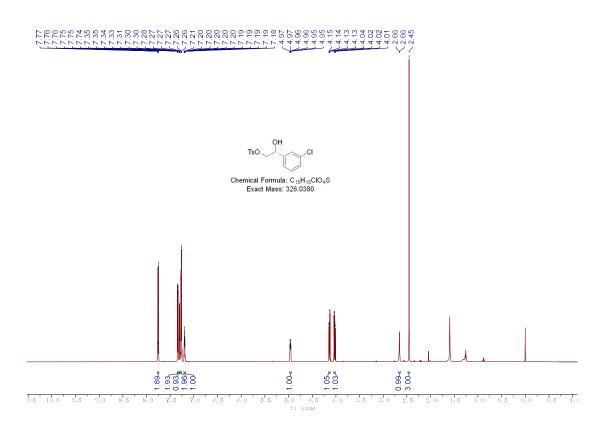
¹⁹F NMR (565 MHz, CD₃OD) Spectrum of 14

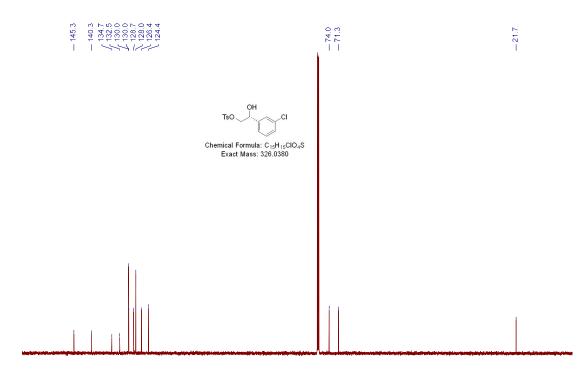

¹³C NMR (151 MHz, CDCl₃) Spectrum of 15


¹³C NMR (101 MHz, CDCl₃) Spectrum of 16

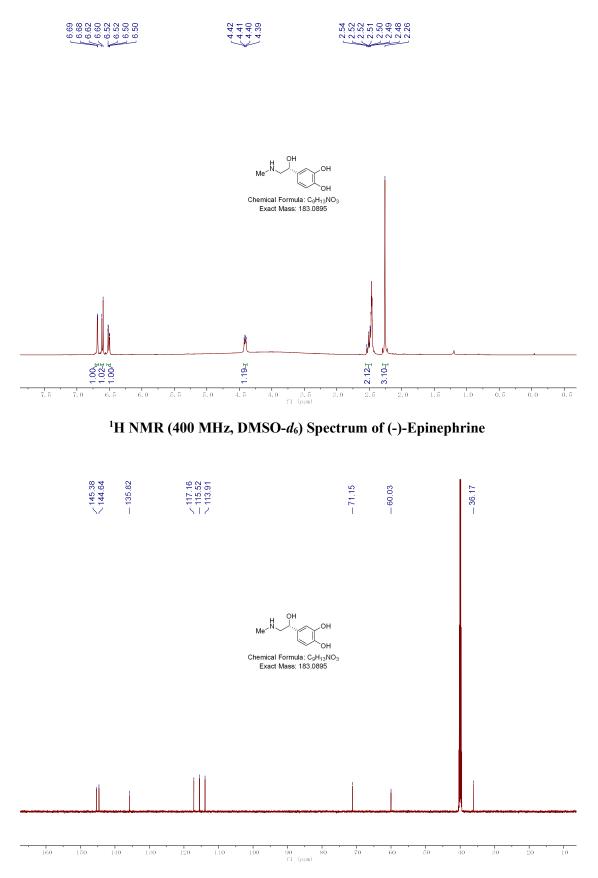


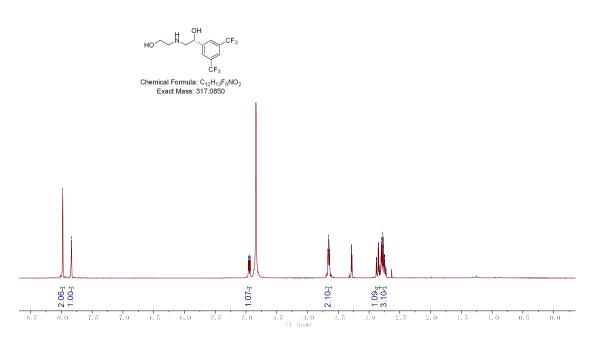
i 185 180 185 180 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 85 80 85 80 45 50 45 40 35 30 2 11 (ppm)


¹³C NMR (151 MHz, CDCl₃) Spectrum of (*R*)-Carisbamate

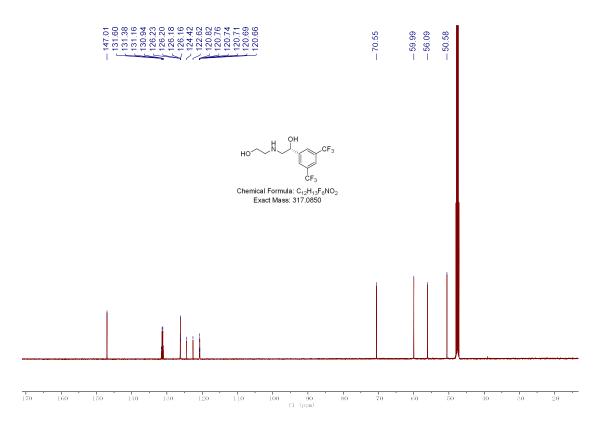


¹³C NMR (151 MHz, CDCl₃) Spectrum of 17




135 150 145 140 135 130 125 120 115 110 105 100 96 90 85 80 75 70 66 60 55 50 45 40 35 30 25 20 15 10 f1 (ppm)

¹³C NMR (151 MHz, CDCl₃) Spectrum of 18

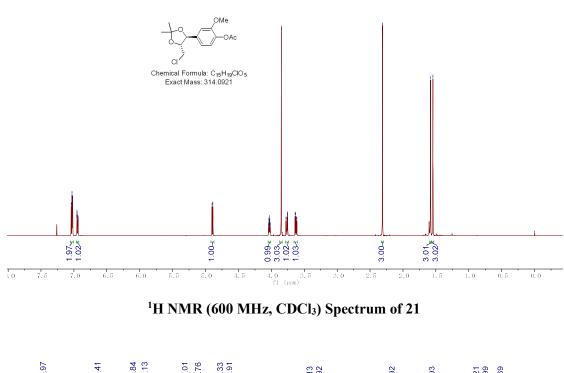

¹³C NMR (151 MHz, DMSO-*d*₆) Spectrum of (-)-Epinephrine

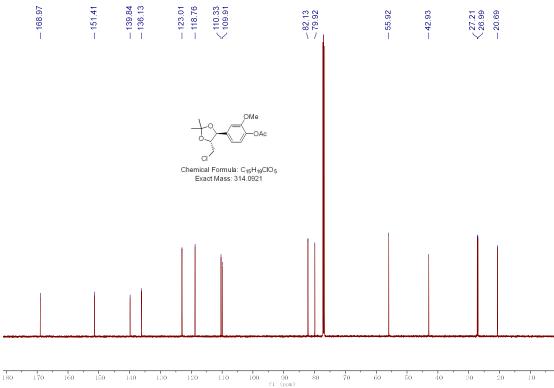
4995 364 4995 364 4995 364 4995 364 4995 364 4995 364 4995 364 4995 365 </tr

- 7.98 - 7.84

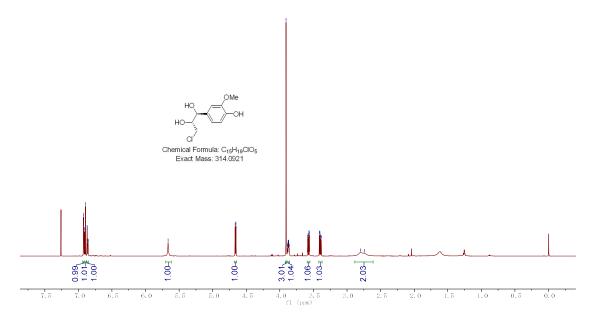
¹H NMR (400 MHz, Methanol-d₄) Spectrum of 20

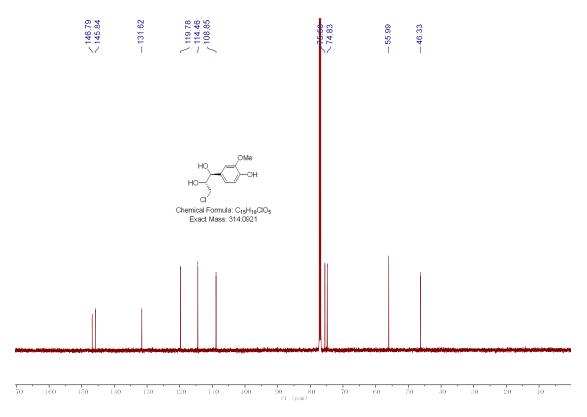
¹³C NMR (151 MHz, Methanol-*d*₄) Spectrum of 20



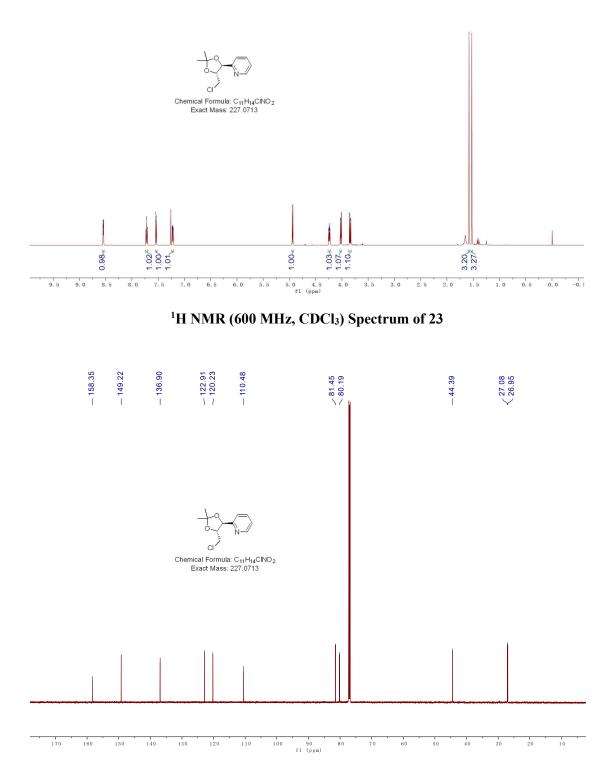

-56 -57 -58 -59 -60 -61 -62 -63 -64 -65 -66 -67 -68 -69 -70 -71 -72 -73 -74 -75 -76 -77 -78 -79 -80 -81 -82 -83 -84 -85 -86 -87 -71 (ppm)

¹⁹F NMR (565 MHz, Methanol-*d*₄) Spectrum of 20

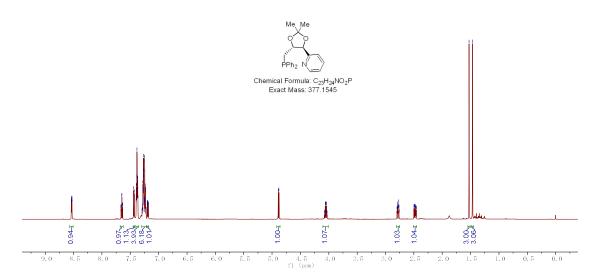




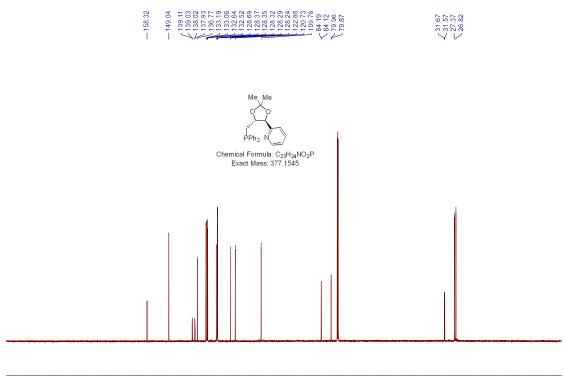
¹³C NMR (151 MHz, CDCl₃) Spectrum of 21



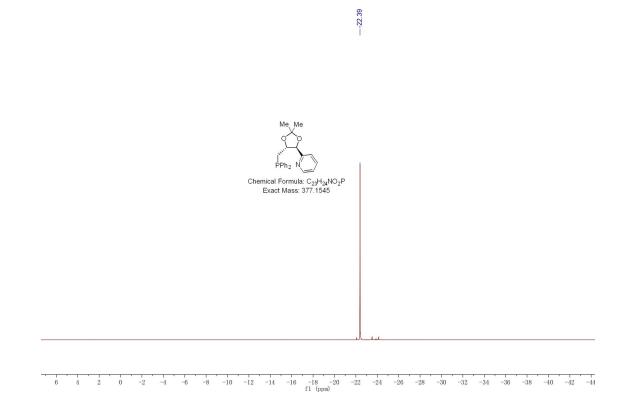
¹H NMR (600 MHz, CDCl₃) Spectrum of 22



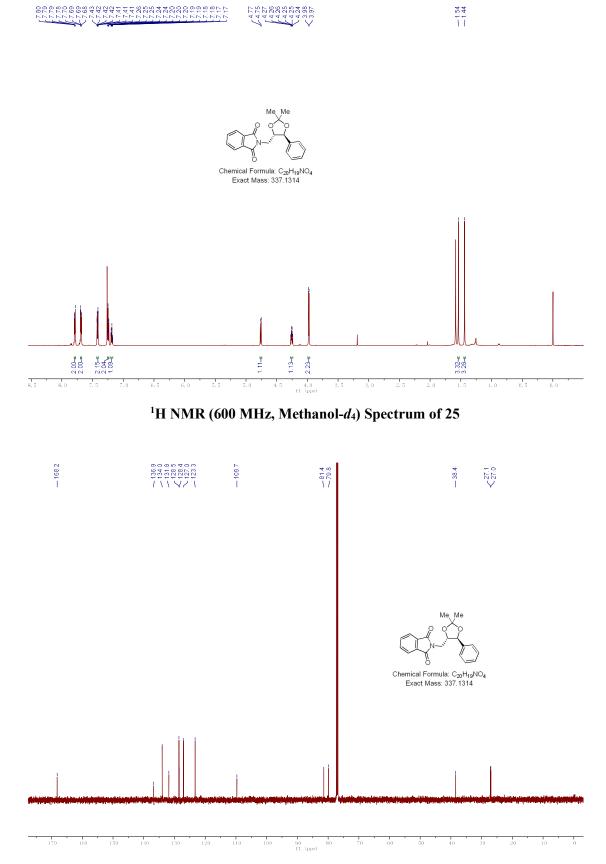
¹³C NMR (151 MHz, CDCl₃) Spectrum of 22



¹³C NMR (151 MHz, CDCl₃) Spectrum of 23

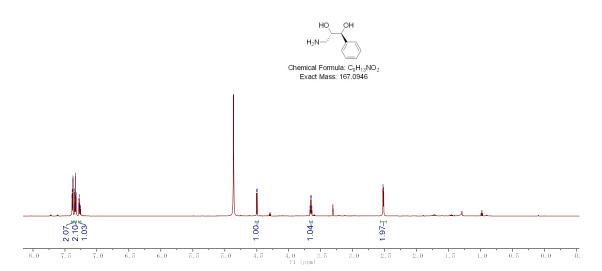


¹H NMR (600 MHz, CDCl₃) Spectrum of 24

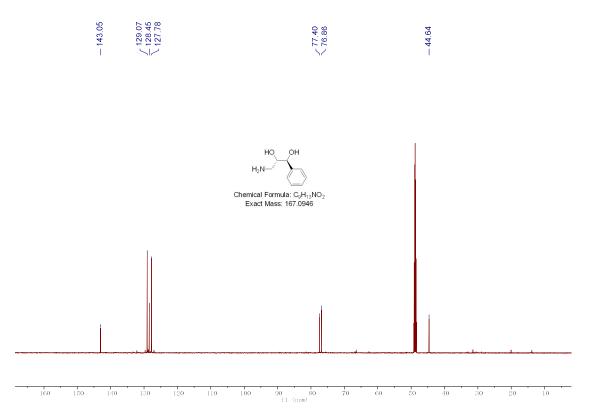


210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

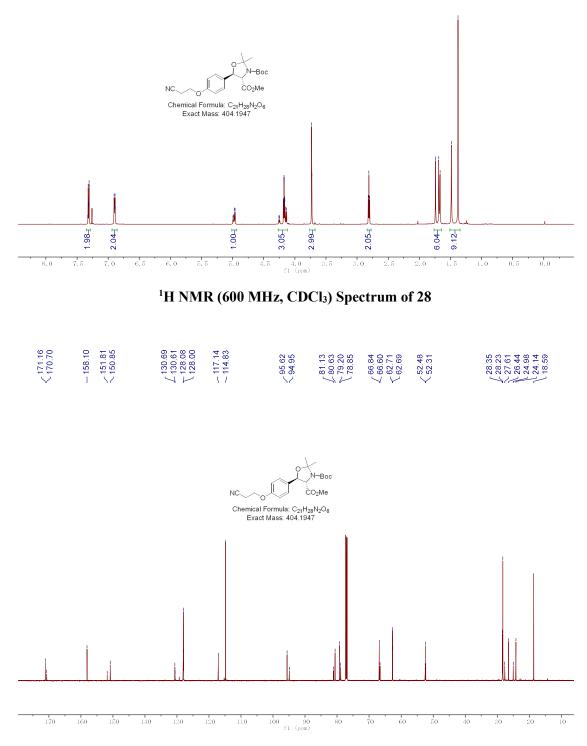
¹³C NMR (151 MHz, CDCl₃) Spectrum of 24



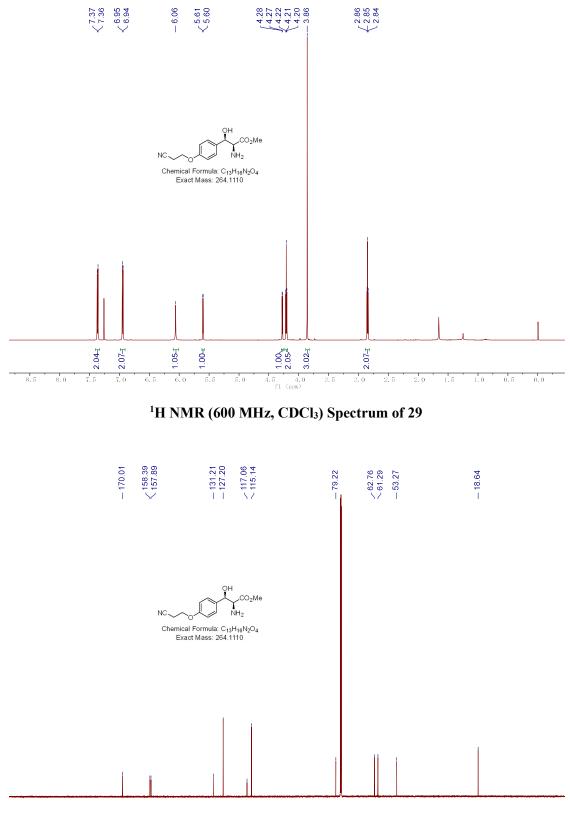
¹³P NMR (243 MHz, CDCl₃) Spectrum of 20



¹³C NMR (151 MHz, Methanol-d₄) Spectrum of 25



¹H NMR (600 MHz, CDCl₃) Spectrum of 26



¹³C NMR (151MHz, CDCl₃) Spectrum of 26

¹³C NMR (151 MHz, CDCl₃) Spectrum of 28

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹³C NMR (151 MHz, CDCl₃) Spectrum of 29

9. Supplementary References

1. Buzzetti, L., Prieto, A., Roy, S. & Melchiorre, P. Radical-Based C-C Bond-Forming Processes Enabled by the Photoexcitation of 4-Alkyl-1,4-dihydropyridines. *Angew. Chem. Int. Ed.* **56**, 15039-15043 (2017).

2. Lin Q., Spielvogel E. & Diao T. Carbon-centered radical capture at nickel(II) complexes: Spectroscopic evidence, rates, and selectivity. *Chem* **9**, 1295-1308 (2023).

3. Benjamin, M., Rossbach, K. & Ralf W. Self-Assembled Nanoreactors as Highly Active Catalysts in the Hydrolytic Kinetic Resolution (HKR) of Epoxides in Water. *Angew. Chem. Int. Ed.* **45**, 1309-1312 (2006).

4. Teng, M., Nammalwar, B., Li, X., Perez, C. & Puerta, D. T. Preparation of heterocyclic compounds as antibacterial compounds. WO2022173758 A1 2022-08-18.

5. Schaus, S. E., Brandes, B. D., Larrow, J. F., Tokunaga, M.; Hansen, K. B., Gould, A. E., Furrow, M. E., Jacobsen, E. N. Highly Selective Hydrolytic Kinetic Resolution of TerminalEpoxides Catalyzed by Chiral (salen)CoIIIComplexes.Practical Synthesis of Enantioenriched Terminal Epoxides and 1,2-Diols. *J. Am. Chem. Soc. 124*, 1307-1315 (2002).

6. Choi, Y. M. Sulfamate derivative compound for use in preventing or treating epilepsy. CN106507667A·2017-03-15.

7. Nagata, T., Takai, T., Yamada, T., Imagawa, K. & Mukaiyama, T. Direct and stereoselective preparation of optically active 1, 3-dioxolanes from the corresponding chiral styrene oxides. *Bull. Chem. Soc. Jpn.* **67**, 2614-2616 (1994).

8. Gao, L., Zhou, C., Wang, R., Lan, F., An, B., Huang, X. & Zhang, X. Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. *Chin. Chem. Lett.* **35**, 108832 (2024).

9. Rajput, V. K. & Mukhopadhyay, B. Sulfuric acid immobilized on silica: an efficient reusable catalyst for the synthesis of o-isopropylidene sugar derivatives. *Tetrahedron Lett.* **47**, 5939-5941 (2006).

10. Pye, P. J., Rossen, K., Weissman, S. A., Maliakal, A., Reamer, R. A., Ball, R., Tsou, N., Volante, R. P. & Reider, P. J. Crystallization - Induced Diastereoselection: Asymmetric

Synthesis of Substance P Inhibitors. Chem. Eur. J. 8, 1372-1376 (2002).

11. Cai, J., Wen, Y., Sheng, W., Huang, X., Zheng, Y., Song, C. & Li, J. Electrochemical ringopening 1,3-dihydroxylation of arylcyclopropanes with H₂O. *Green Chem.* **25**, 6618-6622 (2023).

12. Mei, Y., Zhang, Q.-W., Gu, Q., Liu, Z., He, X. & Tian, Y. Pillar[5]arene-Based Fluorescent Sensor Array for Biosensing of Intracellular Multi-neurotransmitters through Host-Guest Recognitions *J. Am. Chem. Soc.* **144**, 2351-2359 (2022).

13. Borowiecki, P.; Wawro, A.; Winska, P.; Wielechowska, M.; Bretner, M. Synthesis of novel chiral TBBt derivatives with hydroxyl moiety. Studies on inhibition of human protein kinase CK2α and cytotoxicity properties. *Eur. J. Med. Chem.* **84**, 364-374 (2014).

14. Cho, B., Yang, W. & Choi, O. Convenient synthesis of optically active 1,2-diol monosulfonates and terminal epoxides *via* oxazaborolidine-catalyzed asymmetric borane reduction of α -sulfonyloxy ketones. *J. Chem. Soc., Perkin Trans.* 1, **2001**, 1204-1211 (2001).

15. Wang, Q., He, K., Li, Y., Li, D., Li, Y. & Hou, Z. Enantioselective Synthesis and Absolute Configuration of the Natural Threo-3-Chloro-1-(4-Hydroxy-3-Methoxyphenyl)Propane-1,2-Diol. *J. Chem. Res.* **2004**, 504-505 (2004).

16. Chelucci, G., Cabras, M. A., Botteghi, C. & Marchetti, M. (-)-(4*S*,5*R*)-4-(2-Pyridyl)-5-(Diphenylphosphino)Methyl-2,2-Dimethyl-1,3-Dioxolane A New Chiral Ligand for Enantioselective Catalysis. *Tetrahedron: Asymmetry* **5**, 299-302 (1994).

17. Liu, C., Lin, Z.W., Zhou, Z.-H. & Chen, H.-B. Stereodivergent synthesis of all the four stereoisomers of antidepressant reboxetine. *Org. Biomol. Chem.* **15**, 5395-5401 (2017).