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SUPPLEMENTARY NOTE 1 : EXPERIMENTAL DETAILS

The scattering experiments were performed on a coaligned mosaic of 82 single crystals of UTe2. The crystals were
mounted on a custom mount consisting of stackable plates machine from OHFC copper, pictured in Fig 1 using CYTOP
polymer epoxy. All sample were aligned by using a laue diffractometer, with a sample diffraction pattern shown in
Fig. 1(b). Seven of the crystals were grown by a salt flux method, with the remainder grown by more traditional
chemical vapor transport (CVT). The long rod-like samples are the salt flux samples, which characteristically grow
such that the long axis of the sample is along the lattice a direction. The CVT samples are rock-like, and often have
an (001) facet which was used to mount, but more commonly have large (011) facets.

The CVT samples were grown using a ratio of U to Te of 5:9 by mass. The materials were sealed in argon in a
quartz tube and heated 900/830 C for two weeks. The same method was used in Ref. [1] and is explained in more
detail. The salt flux samples were grown in a 50:50 mixture by mass of KCl and NaCl, with starting ratios of U to
Te of 1.71. These components were placed into an aluminia crucible and sealed in argon, then heated to 900 C, then
slowly cooled in steps to 750 C [2]. The superconducting transition temperature Tc is Tc ≥ 1.8 K for all samples,
indicating higher sample quality than older samples with Tc ≈1.6 K used in previous INS measurements. While the
mosaic combined many crystals from a number of batches, representative measurements of specific heat and transport
are provided in Fig. 2. The sharp transition in specific heat is indicative of high sample quality, and is compared to
lower temperature specific heat data from Ref. [3]

The reported mosaic misalignment in the (hk0) plane of 5o is derived from sample rotation scans of the nuclear
Bragg peaks. These scans are shown in Fig. 4(a-c). The full map of elastic scattering in the (hk0) plane integrated
in an energy window of ℏω ∈ (−0.1, 0.1) meV is shown in Fig. 3. Like the inelastic scattering, the elastic scattering
is almost entirely field-independent, as shown by the difference data in Fig. 3(c). There may be small diffuse finite
intensity, but it is clear from the disordered peaks that emerge at 11 T that at least one crystallite shifted from its
initial position. This was likely a result of mechanical vibrations during the experiment, but accounts for a negligible
amount of the spectral weight as evidenced by the nuclear Bragg peaks in Fig. 4(a,c,e). Our experiment is not
well optimized for a detailed analysis of field-dependent elastic diffuse scattering, and did not find any statistically
significant change.

SUPPLEMENTARY NOTE 2 : DFT+DMFT CALCULATION DETAILS

Fully charge self-consistent DFT+DMFT calculations [4–7] implemented in the WIEN2k package [8] were per-
formed using the experimentally determined crystal structure. Continuous-time quantum Monte Carlo (CTQMC)
[9, 10] was adopted as a local impurity solver. We chose a wide hybridization energy window from -10 eV to 10
eV with respect to the chemical potential. The fully rotationally invariant form was applied for the local Coulomb
interaction Hamiltonian, with on-site Coulomb repulsion U=6 eV and Hund’s coupling JH=0.57 eV. The values of U
and JH explain aspects of the experimental ARPES [11] and optical conductivity [12] data. The maximum entropy
method [13] was used for analytical continuation to obtain the self-energy on the real frequency axis.

SUPPLEMENTARY NOTE 3 : UPPER LIMIT ON FROZEN MOMENT

In the main text, we report an upper limit on the field-induced static moment. This is derived from the integrated
Bragg intensities shown in Fig. 4. For elastic scattering from a magnetically ordered Bravais crystal, the elastic
cross-section of ordered spins at a particular miller index of (hkl) may be written as [14]
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Where γ is the neutron gyromagnetic ratio r0; is the classical electron radius, g is the Lande g-factor, F(Qhkl) is the
nuclear structure factor for a particular nuclear Bragg peak of index (hkl), e−2W is the Debye-Waller factor which
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Supplementary Figure 1 : (a) Assembled mosaic of single crystal samples used in neutron scattering experiment of
UTe2 aligned such that the alignment is in the (hk0) scattering plane. Four examples plates of aligned and mounted
crystals are shown on the right. (b) Laue scattering pattern from one representative aligned crystal. The green dots
are a calculated scattering pattern.
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Supplementary Figure 2 : Characterization of representative samples of UTe2 from growths used in the INS
experiment. Heat capacity down to T=1.8 K is shown in (a) for two CVT batches, and transport for four CVT
batches is shown in (b-e). A comparison to specific heat of a well-characterized sample from Ref. [3] is shown in (a).
In the resistance curves shown in (b,c,d) were measured using an adiabatic demagnetization refrigerator insert
allowing for the measurement of temperatures below T = 1.8 K, points above T=1.8 K were measured using the
standard PPMS AC transport option. The highest Tc comes from the salt-flux samples, shown in (f).

we take to be one, and the summation is related to the neutron polarization factor. For a ferromagnet with many
domains, we may rewrite Eq. 1 as

dσel

dΩ
= N(γr0/2)

2 (2π)
3

V0
(gF(Qhkl))

2e−2W {1− ( ˆQhkl · M̂)2avg}⟨Sz⟩2. (2)

Here, the mean-squared moment along the field-direction is ⟨Sz⟩2, and the polarization summation is captured by

{1− ( ˆQhkl · M̂)2avg} = 1. We seek to put an upper bound on the field-induced magnetic moment, which we assume to

be along the field direction of the c-axis. Thus, for the high field measruement the term {1 − ( ˆQhkl · M̂)2avg} = 1 as
the induced moment should be along ĉ and the scattering is in the (hk0) plane. We now assume that for zero field,
there is no net moment i.e. ⟨Sz⟩2 = 0. Then, the only scattering component is the nuclear Bragg peak which has a
cross section of the well known form

dσ

dΩτ
= N

(2π)3

V0
|F(Q)|2δ(Q− τ )e−2W . (3)

Of course, this contribution also exists in the high field data. We may write the following convenient relation
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Supplementary Figure 3 : Elastic Scattering slices integrated from -0.1 meV to 0.1 meV. The zero field (a) and 11 T
(b) measurements are identical, as shown by the subtracted data in (c).
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Supplementary Figure 4 : Scans over azimuthal angle of nuclear Bragg peaks. The black points in (a,c,e) are the
directly measured intensities for the zero field and 11 T measurements, respectively. (b,d,e) High field 11 T scans
subtracted by the zero field measurements to put an upper limit on the field-induced static moment. All error bars
represent one standard deviation.
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Here, it is assumed that the nuclear Bragg scattering cross section is the same for both fields. We may further
simplify this by noting that the term in brackets is unity, giving the final expression used of
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⟨Sz⟩2 =
R
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In our case, the mean value of R from the three available Bragg peaks is about 0.003(0.05). A more careful
measurement of a single crystal sample, rather than a moasic, should be able to resolve this detail more clearly, as
was done in Ref. [15].

SUPPLEMENTARY NOTE 4 : BACKGROUND SUBTRACTION

The unique configuration of the CAMEA instrument allows for scattering analysis over nearly continuous energy
transfers, with the standard binning step along the energy dimension being δℏω = 35 µeV. This is because of its
utilization of what is known as the prismatic effect, where a position sensitive detector infers small changes in neutron
energy from different Bragg reflection angles from the post-sample analyzer. Thanks to this, CAMEA grants full access
to the three dimensional dynamical correlation function S(Qx,Qy, ℏω), where Qx and Qy are momentum transfer
components in the scattering plane. Typically, to isolate magnetic scattering one requires a sample out background,
temperature dependence, or field dependence. In our case, the scattering had no field dependence and we did not have
enough time to devote to a high temperature measurement. Instead, we turn to an approach that takes advantage of
CAMEA’s broad coverage.

First, we make the assumption that the non-sample background only depdends on |Q| and ℏω, i.e. it is not sensitive
to sample rotation and behaves like a powder. In almost all cases this is a good assumption, presuming that the
sample environment has full rotational symmetry. Secondly, it must be true that all scattering from the sample obeys
the symmetry of the Immm space group. In the case of the (hk0) plane for UTe2, this translates to a C2m symmetry.
From this point, the procedure to extract a background may be summarized as the following:

1. Plot a constant energy slice integrated in an energy window large enough such that any magnetic scattering is
clearly discerned by inspection. In our case, this is ℏω ∈ {E0−0.1, E0+0.1} meV, where E0 is the mean energy
of the slice.

2. Manually apply a mask to any regions with elevated intensity that obeys the C2m symmetry, or are known to
include magnetic scattering from previous experiments. This was made more robust by referring to previous
INS results [16? ].

3. The new masked dataset is taken to be a nonmagnetic background. A momentum averaging is performed to get
a generic Q, ℏω dependent background,

Ibkg(Q,ω) =

∫
dΩ

4π
I(Q, ω). (7)

4. For every point in the measurement, the newly generated background is subtracted from the direct signal to
extract the magnetic intensity.

A more common approach in triple axis experiments is to pick a region of equivalent Q to the signal of interest where
one expects zero magnetic intensity, and assume it as background. This is the approach used in Refs. [15–17]. The
technique used here is a natural evolution of this method, that makes use of more of the (hk0) scattering plane. A
schematic of this method, along with the background used in our measurement, is depicted in Fig. 5

SUPPLEMENTARY NOTE 5 : PREFERENTIAL MOMENT ORIENTATION DETAILS

Inelastic magnetic neutron scattering carries an overall prefactor to the observed intensity given by

C ∝
∑
αβ

(δαβ − q̂αq̂β). (8)

Eq. 8 is a sum over the cartesian spin components and laboratory momentum transfer coordinates, α, β ∈ {x, y, z}.
As neutrons are only sensitive to the perpendicular component of the magnetic moment to the momentum transfer,
one may rewrite Eq. 8 as

C ∝ (1− (Q · M̂)2

|Q|2
). (9)
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Supplementary Figure 5 : Demonstration of background subtraction routine used on CAMEA. (a) Constant energy
slices integrated in energy from ℏω=1.8 meV to ℏω=2.2 meV. (b) The same slice, but with regions in the scattering
plane identified as contributing to the scattering signal masked. (c) The powder average of the masked data, which
is subtracted from the reported measurement.

Here Q is the observed momentum transfer and M̂ is the Cartesian spin orientation. In an isotropic system such as
an uncorrelated paramagnet this factor averages to 2

3 . In the case of UTe2, it is well known that the a-axis in UTe2
is the easy-axis from magnetization studies [18], so we assume that the spins prefer to align along the lattice â vector
despite the system lacking long-ranged magnetic order. This is also suggested by previous neutron studies [19] which
reach a similar conclusion. As no magnetic phase transition is observed in UTe2, we may only refine an average spin
orientation rather than a distinct magnetic ordered moment. This average is denoted as θa, which is the deviation
of the moment from the â-lattice vector. The results are summarized in Fig. 6, showing the calculated scattering for
various moment directions using Eq.3 in the main text. No signficant difference was found when allowing for a finite
moment component along the ĉ-lattice vector, apart from an upper limit on the spin angle from the â-axis towards
the ĉ-axis of 35o.

SUPPLEMENTARY NOTE 6 : LOW ENERGY EXCITATION SPECTRA

The main text is focused on the excitation spectra relevant to the band hybridization, where scattering is clearly
seen at energy transfers within ℏω ∈ {1, 6} meV. Previous reports have found evidence of a spin-resonant excitation,
typically assosciated with spin-singlet superconductors, at energies of 1 meV at the Y1 (0,0.6,0) and Y2 (0,1.4,0)
points [15, 16]. We are unable to reproduce this excitation in our inelastic scattering. To demonstrate this more
clearly, the scattering intensity versus energy transfer with and without background subtraction is shown in Fig. 7.
As the scattering in Ref. [16] was reported in absolute units, no scaling factors are required to directly compare the
measurements provided that the same integration window is used. Both measurements are compatible within the
ranges of the error both above and below the renergies of the resonant excitation.
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Supplementary Figure 6 : (a) Unsymmetrized integrated scattering in the (hk0) plane integrated in energy from
ℏω ∈ {1.7, 2.3} meV. (b-e) Calculated scattering using the model described by Eq. 3 in the main text, for various
values of θa, where θa is the angular deviation of the magnetic moment from the â-axis, and the moment is
constrained to be in the ab-plane. The best fit value of θa=16.7 degrees is shown in (d). (f) Variation of χ2 goodness
of fit parameter versus θa, where all other fit parameters are freely refined for every θa. The red line represents the
maximum value of χ2 from which the error bar is defined.
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