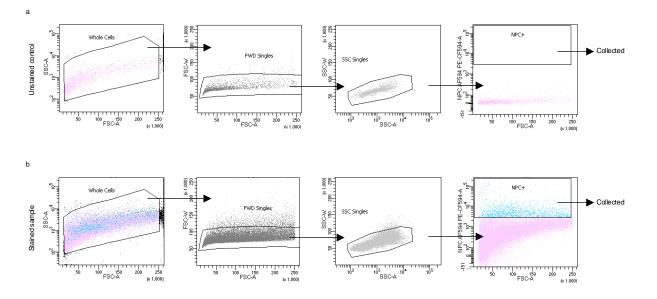

Supplementary Figure 1.

Supplementary Figure 1. Quality metrics of protocol data before filtering. a, Violin plot indicating the number of UMI detected per sample. b, Violin plot indicating the number of genes detected per sample. c, Violin plot indicating the percentage of reads mapping to mitochondrial RNAs in each sample. d, Scatter plots showing data complexity in gene count vs UMI count plots for each protocol. e, Scatter plots showing data complexity in gene count vs UMI count plots for each protocol. e, Scatter plots showing data complexity in gene count vs UMI count plots for each protocol. e, Scatter plots showing data complexity in gene count vs UMI count plots for pooled protocol data.

Supplementary Figure 2.


Supplementary Figure 2. Quality metrics of protocol data after filtering. a, Violin plot indicating the number of UMI detected per sample. b, Violin plot indicating the number of genes detected per sample. c, Violin plot indicating the percentage of reads mapping to mitochondrial RNAs in each sample. d, Scatter plots showing data complexity in gene count vs UMI count plots for each protocol. e, Scatter plots showing data complexity in gene count vs UMI count plots for each protocol. e, Scatter plots showing data complexity in gene count vs UMI count plots for each protocol. e, Scatter plots showing data complexity in gene count vs UMI count plots for each protocol.

Supplementary Figure 3.

Supplementary Figure 3. Characterization of clusters 0 and 3. a, Split violin plots showing the number of genes detected per sample in either filtered (white) or sorted (gray) preparations within each cluster. b, Split violin plots showing the number of UMI detected per sample in either filtered (white) or sorted (gray) preparations within each cluster. c, Split violin plots showing the percentage of reads mapping to mitochondrial RNAs in either filtered (white) or sorted (gray) preparations within each cluster. d, Over representation analysis. *Box plots show median, 25th, and 75th percentiles.

Supplementary Figure 4.

Supplementary Figure 4. Example sort logic for flow cytometric enrichment for filtered cell capture. a, Unstained control sort logic shown for whole cells after filtration. Arrows indicate gated parent cell population displayed in subsequent window. b, Stained sample sort logic shown for whole cells after filtration. Cells were collected from NPC+ gate for downstream analysis. Sort logic is identical to that used for filtered nuclei.

1 Supplemental Note 1: Detailed protocol of cell isolation and imaging

2 3

Reagents

4

Item	Supplier	Part number
AllProtect® Tissue Reagent	Qiagen	76405
Phosphate Buffered Saline (PBS) pH 7.2	Quality Biological	111-056
Bovine Serum Albumin	Millipore Sigma	A7888-50G
RNaseOUT [™] Recombinant Ribonuclease Inhibitor	ThermoFisher	10777019
EASYstrainer, 70 µM, small diameter	Greiner Bio-one	542170
EASYstrainer, 40 µM, small diameter	Greiner Bio-one	542140
Nuclei Extraction Buffer	Miltenyi	130-128-024
Nuclei Buffer (20X)	10X Genomics	2000153
Alexa Fluor® 594 anti-Nuclear Pore Complex Proteins Antibody	BioLegend	682202
DAPI solution (1 mg/mL)	ThermoFisher	62248

5 6 7 8

Buffer annotation

Notation	Contents
pBSA	0.04% Bovine Serum Albumin in Phosphate Buffered Saline (pH 7.2) + 1 U/µL RNaseOUT
NucB	1X Nuclei Buffer (diluted in nuclease-free water) + 1 U/µL RNaseOUT
NEB	1X Nuclei Extraction Buffer
NPC-AF594	Alexa Fluor® 594 anti-Nuclear Pore Complex Proteins Antibody

*Buffers and solutions should be prepared and filtered through a 0.22 µm PES strainer immediately before use *Keep all buffers and solutions on ice

9

- 10 Tissue homogenization
- 1. Thaw tissue stored in AllProtect® Tissue Reagent on ice 11
- 12 2. Serially dilute and exchange AllProtect® Tissue Reagent with PBS until all storage reagent 13 has been removed
- 14 3. Resuspend in 0.5 mL pBSA
- 15 4. Pulverize tissue to single cell suspension with single-use microtube homogenizer
- 16 5. Filter through 70 µm strainer into fresh 1.5 mL tube
- 17 6. Rinse strainer with 0.5 mL pBSA
- 18 7. Centrifuge for 5 min at 300xg, 4°C
- 19 8. Remove supernatant and resuspend in 0.5 mL pBSA
- 20 9. Filter through 40 µm strainer into fresh 1.5 mL tube
- 21 10. Rinse strainer with 0.5 mL pBSA
- 22 11. This preparation will subsequently be referred to as filtered cells

23

24	Filtere	d cell (FC) capture preparation:		
25	1.	Start with <u>filtered cells</u>		
26	2.	Remove ~60,000 cells to fresh 1.5 mL tube		
27	3.	Centrifuge for 5 min at 300 xg, 4°C		
28	4.	Resuspend 60,000 cells in 30 μL pBSA		
29	5.	Proceed to Chromium Single Cell 5' Library & Gel Bead Kit v2 sample capture		
30	Filtered nuclei (FN) capture preparation:			
31	1.	Start with filtered cells		
32	2.	Remove 250,000 cells to fresh 1.5 mL tube		
33	3.	Centrifuge for 5 min at 300 xg, 4°C		
34	4.	Resuspend in 100 µL Nuclei Extraction Buffer		
35	5.	Incubate on ice, 5 min		
36	6.	Centrifuge for 5 min at 300 xg, 4°C		
37	7.	Resuspend in 30 µL Nuclei Buffer		
38	8.	Proceed to Chromium Single Cell 5' Library & Gel Bead Kit v2 sample capture		
39	9 Staining and flow cytometry enrichment			
40	1.	Start with filtered cells		
41	2.	Remove 50,000 cells as an unstained cell control (bring minimum volume to 100 μ L)		
42	3.	Stain 500,000 cells with a final concentration of 25 μ g/mL NPC-AF594		
43	4.	Incubate on ice, 30 min		
44	5.	Bring all volumes to 1 mL		
45	6.	Centrifuge for 5 min at 300xg, 4°C		
46	7.	Resuspend in 300 μL pBSA		
47	8.	Sort NPC-AF594+ cells on a Becton Dickinson FACS Aria Fusion using 70 μm nozzle into a		
48		collection tube on ice		
49	9.	This preparation will subsequently be referred to as sorted cells		
50	Sorted	I cell (SC) capture preparation:		
51	1.	Start with sorted cells		
52	2.	Remove ~100,000 cells to fresh 1.5 mL tube		
53	3.	Centrifuge for 5 min at 300 xg, 4°C		
54	4.	Resuspend 60,000 cells in 30 µL pBSA		
55	5.	Proceed to Chromium Single Cell 5' Library & Gel Bead Kit v2 sample capture		
56	Sorted	I nuclei (SN) capture preparation:		
57	1.	Start with sorted cells		
58	2.	Remove 250,000 cells to fresh 1.5 mL tube		
59	3.	Centrifuge for 5 min at 300 xg, 4°C		
60	4.	Resuspend in 100 µL Nuclei Extraction Buffer		

- 61 5. Incubate on ice, 5 min
- 62 6. Centrifuge for 5 min at 300 xg, 4°C
- 63 7. Resuspend in 30 μL Nuclei Buffer
- 64 8. Proceed to Chromium Single Cell 5' Library & Gel Bead Kit v2 sample capture

65 Staining for confocal microscopy

- Start with up to 50,000 sorted cells (sorted cell capture preparation) or 50,000 sorted nuclei
 (sorted nuclei capture preparation) in 100 μL pBSA
- 68 2. Stain with a final concentration of 100 μg/mL NPC-AF594 + 50 μg/mL DAPI
- 69 3. Incubate on ice, 20 min
- 70 4. Centrifuge for 5 min at 300 xg, 4°C
- 5. Resuspend in 300 µL pBSA
- 72 6. Transfer suspension to a 35 mm 1.5 coverslip dish
- 73 7. Imaging was performed on an LSM 880 Airyscan Confocal microscope (Zeiss) with a 63x/1.4
- 74 oil objective and captured with Zen_2.3 software (Zeiss).