
Article
Effects of gene dosage on
 cognitive ability: A
function-based association study across brain and
non-brain processes
Graphical abstract
Highlights
d CNV-GWAS reveals the first positive impact on cognition for

the 2q12.3 duplication

d The effects of deletions/duplications on cognitive ability are

negatively correlated

d A new metric, tagDS, defines the gene-dosage-effect

specificity of any set of genes

d Significant impact of genes expressed in non-brain tissues on

cognitive ability
Huguet et al., 2024, Cell Genomics 4, 100721
December 11, 2024 ª 2024 The Authors. Published by Elsevier In
https://doi.org/10.1016/j.xgen.2024.100721
Authors

Guillaume Huguet, Thomas Renne,

Cécile Poulain, ..., Laura Almasy,

David C. Glahn, Sébastien Jacquemont
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26These authors contributed equally
27Lead contact

*Correspondence: guillaumeaf.huguet@gmail.com (G.H.), sebastien.jacquemont@umontreal.ca (S.J.)

https://doi.org/10.1016/j.xgen.2024.100721
SUMMARY
Copy-number variants (CNVs) that increase the risk for neurodevelopmental disorders also affect cognitive
ability. However, such CNVs remain challenging to study due to their scarcity, limiting our understanding of
gene-dosage-sensitive biological processes linked to cognitive ability. We performed a genome-wide asso-
ciation study (GWAS) in 258,292 individuals, which identified—for the first time—aduplication at 2q12.3 asso-
ciated with higher cognitive performance. We developed a functional-burden analysis, which tested the as-
sociation between cognition and CNVs disrupting 6,502 gene sets biologically defined across tissues, cell
types, and ontologies. Among those, 864 gene sets were associated with cognition, and effect sizes of dele-
tion and duplication were negatively correlated. The latter suggested that functions across all biological pro-
cesses were sensitive to either deletions (e.g., subcortical regions, postsynaptic) or duplications (e.g., cere-
bral cortex, presynaptic). Associations between non-brain tissues and cognition were driven partly by
constrained genes, which may shed light on medical comorbidities in neurodevelopmental disorders.
Cell Genomics 4, 100721, December 11, 2024 ª 2024 The Authors. Published by Elsevier Inc. 1
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INTRODUCTION

Copy-number variants (CNVs) are deletions or duplications

larger than 1,000 base pairs.1 CNVs are major contributors to

risk for neurodevelopmental disorders (NDDs),2 including intel-

lectual disability (ID),3–5 autism spectrum disorder (ASD),6–8

and schizophrenia.8–10 CNVs that increase the risk of psychiatric

conditions also invariably affect cognitive abilities in individuals

with or without a psychiatric diagnosis and regardless of ascer-

tainment.11–13 Such CNVs are often associated with multi-

morbidity in the clinic.11–13 Whole-genome CNV detection is

a first-tier diagnostic test routinely implemented in children

referred to the clinic for NDDs.14 Medical diagnostic laboratories

attempt to classify CNVs as either benign or putative pathogenic,

but beyond these categories, the effect sizes of CNVs on

cognitive ability have been used to provide more nuanced infor-

mation on the severity of a variant and to quantify the risk for

NDDs. Indeed, cognitive ability remains one of the traits most

commonly used in the pediatric clinic because it is predictive

of the outcome and adaptive skills of children with neurodeve-

lopmental symptoms.15

Due to statistical power, most studies have repeatedly

analyzed a small set of the most frequently recurrent CNVs (pop-

ulation frequency > 1/10,000),16–18 which collectively affect only

approximately 2% of the coding genome.19 As a result, our un-

derstanding of gene functions sensitive to gene dosage is highly

biased. However, the vastmajority of CNVs affecting neurodeve-

lopmental and cognitive ability are ultra-rare (<1/10,000),17 and

associations have been established based on their size and

gene content using burden analyses.12,19–22 Such CNVs cover

a large proportion of the coding genome and remain difficult to

study individually with currently available sample sizes. Beyond

CNVs, more generally, our understanding of gene-disrupting

variants associated with cognitive ability and NDDs stems from

approximately 200 genes disrupted by de novo variants.4,23

Their functions are enriched in chromatin and transcription regu-

lation, regulation of nervous system development, central ner-

vous system neuron differentiation, and regulation of synapse

structure and activity.4,23 It is unclear, however, if these functions

are most representative of cognitive ability or genetic constraint.

In addition, previous studies reporting on the functional enrich-

ment of ID- or NDD-associated genes have not stratified their

findings based on classes of disrupting variants. It is, therefore,

unknown whether specific biological functions and traits are

preferentially sensitive to different classes of genomic variants

(i.e., opposing gene dosage alterations such as deletions and

duplications).

Knowledge gap: overall, it has been difficult to investigate

the broad landscape of ultra-rare CNVs potentially involved in

neurodevelopmental traits, such as cognitive ability. As a result,

we have a limited understanding of the full range of gene-

dosage-sensitive biological processes linked to cognitive

ability. To circumvent the issue of power, research groups,

including ours, have implemented alternative approaches aggre-

gating rare variants disrupting genes with similar constraint

scores in order to perform ‘‘constraint burden’’ association

studies.11,12,19–21,24 These burden analyses showed that genes

with increasing intolerance to haploinsufficiency were associ-
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ated with increasing effect sizes on cognitive ability and risk for

psychiatric illnesses, such as ASD, schizophrenia, and bipolar

disorder.19,21 Similarly, studies have developed methods to

aggregate common variants,25 demonstrating that a robust as-

sociation with a condition (e.g., ASD) can be established at the

group level when individual single-nucleotide polymorphisms

(SNPs) do not meet genome-wide criteria for association.

In this study, we aimed to investigate the full range of gene-

dosage-sensitive biological processes linked to cognitive ability.

To this end, we analyzed all CNVs >50 kb in 258,000 individuals

across 6 cohorts from the general population. The CNV-level

genome-wide association study (GWAS) identified the first

CNV associated with higher cognitive ability. To further investi-

gate CNVs too rare to be tested by the CNV-level GWAS, we per-

formed functional-burden analyses. To do so, we aggregated all

CNVs disrupting a group of genes assigned to a given biological

function. Functional-burden associations were performed be-

tween cognitive ability and 6,502 gene sets assigned to biolog-

ical functions at the tissue, cell type, and molecular levels. Func-

tional-burden tests revealed that most functional gene sets were

associated with cognitive ability when either deleted or dupli-

cated, and only a few gene sets showed significant associations

with cognition for bothCNVs. As a result, we observed a negative

correlation between the effect sizes of deletions and duplications

across all functional gene sets, and this was not influenced by

intolerance to haploinsufficiency. This suggests that the effects

of most biological functions on cognitive ability are dependent

on the type of gene dosage.

RESULTS

Gene dosage may be associated with higher cognitive
ability
Among the 258,292 individuals from general population data-

sets, 15.6% carried at least one rare (allele frequency < 1%)

autosomal CNV larger than 50 kb, fully encompassing one or

more coding genes (hg19). Among all autosomal coding genes

with loss-of-function observed/expected upper-bound fraction

(LOEUF) values (n = 18,451), 71.8% were fully encompassed in

one or more CNVs: 35% in deletions, 64.9% in duplications,

and 28.1% in both deletions and duplications (Figures 1A–1C).

Most of the genes encompassed in CNVs were contained in

ultra-rare CNVs (<1/10,000) with fewer than 30 carriers (Fig-

ure 1C). We used a linear regression model (gene-level GWAS;

cf. STAR Methods, statistical model 1) to test the association

of general cognitive ability with 241 and 596 genes covered by

at least 30 deletions or duplications, respectively (Figures 1D

and 1E). We identified 6 deletions encompassing a total of 68

genes and 7 duplications encompassing a total of 122 genes

with previously published negative effects (Table S1) that per-

sisted when we conducted a meta-analysis across 9 sub-co-

horts defined by cognitive assessments (Table 1; Figure 1E).

We identified a novel association between a duplication at

2q12.3 and positive effects (z = 0.434, p = 7.583 10�3) on cogni-

tive ability (Figures 1F and S1). This duplication, observed in 36

individuals, included 4 non-intolerant genes with an LOEUF R

0.35 (EDAR, SH3RF3, SEPT10, SOWAHC) and was observed

at a similar frequency (1–2 in 10,000) across cohorts (Fisher’s
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Figure 1. CNV-GWAS on general cognitive abilities at the gene level

(A) Proportion of genes deleted (red) or duplicated (blue) at least once in the general population pooled dataset among all genes in the human genome (hg19).

Deleted or duplicated genes observed in less than 30 carriers (light color) and 30 or more (dark color), as well the proportion of genes not observed in any CNV

(gray).

(B) The majority of deleted or duplicated genes were observed in more than 30 carriers.

(C) Venn diagram illustrating the overlap between gene content of ultra-rare and rare deletions and duplications, specifically the number of genes deleted and/or

duplicated at least once in these CNVs from the pooled general population datasets.

(D) The Miami plot illustrates the �log10-transformed p value of the association with cognitive ability for each gene included in deletions (red) at the top, and

duplications (blue) at the bottom, along the genome. Adjacent chromosomes are shown in alternating light and dark colors. Triangles represent significant genes

after FDR correction, while circles represent non-significant genes. The direction of the triangle indicates the effect size. The dash line represents the nominal

significant p value threshold.

(E) Data are represented as mean ± standard error for cognitive ability, green diamonds indicate pooled analyses (all cohorts regrouped), and orange diamonds

represent meta-analyses (mean of effect sizes computed for each cohort separately). For meta-analyses, fixed-effect model values were chosen when the

heterogeneity test was not significant (p > 0.1), and a random-effects model was employed when heterogeneity was significant. We displayed the values for the

gene within the CNV that had the highest number of carriers (see also Table S1 and Figure S1).

(F) A specific duplication, chr2:109,510,927–110,376,563 (including EDAR, LOEUF = 0.91; SH3RF3, LOEUF = 0.53; SEPT10, LOEUF = 1.17; and SOWAHC,

LOEUF = 0.77), exhibited a previously unobserved positive effect on cognitive ability in the CNV-GWAS. See also Figure S1.

(G) To further investigate this positive effect, we conducted a post hoc analysis using a two-sided t test (mean ± standard error for cognitive ability) on a ho-

mogeneous cohort with consistent technology, ancestry, and phenotype, aiming to eliminate biases. The t test revealed a significant difference between the two

groups: (1) individual without CNV vs. individual carrying duplication 2q12.3, t = �3.08, degree of freedom (df) = 18.01, p = 0.006, (2) individual without CNV vs.

individual carrying exonic CNVs without duplication 2q12.3, t = 6.96, df = 34314, p = 3.57 3 10�12, and (3) individual carrying duplication 2q12.3 vs. individual

carrying exonic CNVs without duplication 2q12.3, t = 3.31, df = 18.03, p = 0.004. Our focus was specifically on individuals of White British ethnicity in the UK

Biobank (UKBB) with adjusted fluid intelligence (FI). In the left part of the analysis (G), individuals were categorized into three groups: carriers of the CNV of interest

(green), non-carriers of this specific CNV but carrying other exonic CNVs (light orange), and non-carriers of any exonic CNV (blue). The t tests were performed on

(legend continued on next page)
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exact p value corrected for false discovery rate [pFDR] > 0.05).

Results were not related to ancestry, array platform, or cognitive

assessment methods (Figure 1G). The positive effect remained

significant when comparing 2q12.3 duplication carriers to indi-

viduals without any CNVs. The reciprocal deletion in this region

showed a trend toward a negative effect on cognitive ability

(z = �0.526, SD = 0.276, p = 0.058), but we were underpowered

with only 12 carriers. Additionally, the gene-dosage model

showed a positive effect (z = 0.415, SD = 0.138, p = 2.65 3

10�3) on cognitive ability per number of copies (1, 2, or 3) at

this locus. In other words, this may represent the first locus

with a mirror impact on cognitive ability.

A large proportion of intolerant and tolerant genes
modulate cognitive ability
Evenwith the current sample size, CNVs observed in >30 individ-

uals (and included in the gene/CNV-level GWAS above) cover

only 3%–4% of coding genes. However, previous studies have

shown that a much larger proportion of the coding genome is

involved in cognitive ability.12 To test the association of all rare

CNVs with cognition, we used burden association methods.

We created 38 overlapping gene categories by sliding a window

(defined by a width of 0.15 LOEUF units) by 0.05 LOEUF units 37

times (Figure 2B; STAR Methods, statistical model 2). We added

a 39th category of known ID-associated genes (defined by

ClinGen; Table S2). We calculated 39 burden effect sizes using

linear models. To estimate the mean effect size of a gene in a

given category and prevent the inflation of effect size due to

multigenic CNVs, we adjusted for genes within CNVs that were

not included in the LOEUF category of interest (cf. STAR

Methods, statistical model 2; Figure 2A). The 39 estimates pro-

vided by the meta-analysis across the 9 sub-cohorts were not

different from those provided by aggregating these datasets

(Figure 2B; Tables S3 and S4). Therefore, all subsequent ana-

lyses were performed on the aggregated dataset. The effects

of deletions were, on average, 2.4-fold higher than duplications,

and we observed a positive correlation between the effect sizes

of deletions and duplications across LOEUF categories (Spear-

man’s r = 0.5, ppermutation = 0.02; Figure S2). Negative effects

on cognitive abilities were observed in 8 and 11 non-tolerant cat-

egories (LOEUF < 1) for deletions and duplications, respectively.

The more intolerant the LOEUF category, the more negative the

effect size, with the ID gene set having the largest effects. Of

note, 2 and 3 categories showed positive effects for deletions

and duplications, respectively. In other words, the effect sizes

of these categories were significantly higher than the average ef-

fect of gene categories used to adjust the model. Sensitivity an-

alyses showed no biases related to ancestry, large multigenic

CNVs, or low-quality control scores (Figures 2C and S3). Effect

sizes of intolerant genes were higher when removing older age

groups (R60 or R70 years old; Figure 2C). Because the most

intolerant CNVs are depleted in the general population, we
FI adjusted for sex, 1–10 principal component for ancestry, and age. In the right p

(dark pink) and non-carriers (light blue). The t tests were conducted on FI adjust

cations. For the duplication of chr2:109,510,927–110,376,563 observed in the

measures compared to both other groups (two-sided t test: t =�3.76, df = 18.01, p

1/LOEUF for deletions and duplications, a positive effect was also observed amo

4 Cell Genomics 4, 100721, December 11, 2024
included 3 ASD cohorts in a sensitivity analysis. This resulted

in larger effects and smaller p values for highly intolerant

LOEUF categories without changing the effects of other

LOEUF categories R0.35 (Figure 2C).

Negative correlation between deletion and duplication
effects on cognitive ability across brain regions
Previously published functional enrichment analyses28,29 have

focused on recurrent CNVs. We therefore developed a func-

tional-burden test to systematically investigate gene functions

that may underlie the pervasive association between CNVs

(too rare to reach individual association) and cognitive ability.

The functional burden aggregates all CNVs disrupting genes

involved in a given biological process. It provides the average

effect on the cognitive ability of genes assigned to a biological

function and is computed separately for deletions and

duplications.

We tested 215 gene sets assigned to 215 adult brain regions.

To define gene sets, we first normalized (Z scored) the expres-

sion of each gene across all 215 regions. For each tissue, the

corresponding gene set was defined based on relative over-

expression by selecting all genes with a Z scored expression

R 1 in that tissue. Among the 215 regional gene sets, 91 and

94 (mostly non-overlapping) were associated with cognitive abil-

ity when deleted or duplicated, respectively, but only 25 of these

gene sets impacted cognition when disrupted by both CNVs (cf.

STARMethods; Figure 3A). This suggests that genes assigned to

brain regions affect cognitive ability when either deleted or

duplicated.

These preferential effects were supported by the negative

correlation observed between the effect sizes of deletions and

duplications across all brain regions (Spearman’s r = �0.43,

ppermutation = 9 3 10�3; Figure 3B). Stratifying these brain gene

sets into 3 independent LOEUF categories provided the same

negative correlations (Figure 3C). Sensitivity analysis showed

that the negative correlation was not due to unbalanced power

between deletions and duplications or the relative expression

threshold used to define gene sets (Figure S4). Previous publica-

tions have reported that the effect size of gene dosage on cogni-

tive ability is U-shaped,31 with the effects of deletions being 2- to

3-fold higher than those of duplications.11,12 Studies, however,

have not been able to test whether genes show preferential ef-

fects on cognitive ability when either deleted or duplicated. We

developed the trait-associated gene dosage sensitivity score

(tagDS) to test whether the deletion/duplication effect size ratio

of a given gene set deviates from the null distribution (average ra-

tio of 2.4 in our dataset; cf. STAR Methods). This normalized

value reflects preferential sensitivity to deletions or duplications

for a specific phenotype. Positive or negative tagDS depicted ra-

tios of effect sizes between deletions and duplications biased to-

ward deletions or duplications, respectively (cf. STAR Methods;

Figure 3D). tagDS values indicated that cerebral cortex gene sets
art of the analysis (F), two groups were defined: carriers of the CNV of interest

ed for sex, ancestry, age, and the burden of 1/LOEUF for deletions and dupli-

CNV-GWAS (G), the carriers exhibited significantly higher cognitive ability

= 0.001). Furthermore, whenweweighted the cognitive ability by the burden of

ng carriers of the CNV of interest.



Table 1. Cohort descriptions

Unselected cohorts

(n = 258,292) N Ancestry EUR (others) Gender (F/M) Age mean year, (±SD) Cognitive ability assessments

CaG 2,589 2,472 (117) 1,375/1,214 53.943 (7.845) g-factor

G-Scot 13,715 13,672 (43) 8,081/5,634 46.730 (14.996) g-factor

IMAGEN 1,744 1,624 (120) 891/853 14.450 (0.366) WISC-IV

LBC1936 503 500 (3) 246/257 69.825 (0.829) Moray House Test26

SYS 1,565 1,561 (4) 824/742 28.177 (17.098) WISC-III or g-factor

UKBB 73,882 71,364 (2,518) 39,317/34,565 60.022 (8.959) g-factor27

UKBB 62,080 60,484 (1,596) 34,335/27,745 62.083 (7.663) g-factor (online)

UKBB 88,441 80,427 (8,014) 47,789/40,652 58.139 (8.304) FI

UKBB 13,773 13,458 (315) 8,2845,489 64.185 (7.685) FI (online)

Analyses were performed (after quality control [QC]) in 258,292 individuals from 6 general population cohorts. SYS, Saguenay Youth Study; CaG,

CARTaGENE; LBC1936, Lothian Birth Cohort 1936; N, number of individuals remaining for analysis after quality control. See also Figure S15 and

Tables S6 and S7.
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affected cognitive ability preferentially when duplicated, while

the opposite was observed for non-cortical (subcortical and

midbrain) gene sets and deletions (Figure 3A; Mann-Whitney

ppermutation = 1 3 10�15). The same cortical/non-cortical gene

dosage sensitivity was also observed when removing genes

with low tissue specificity (Figure S4).32

At the microstructure and cell type levels (6 cortical layers, 7

adult, and 16 fetal brain cell types, using the same method

described above based on normalized gene expression; cf.

STAR Methods), we observed the same negative correlation

(r = �0.70, ppermutation < 13 10�3; Figure S5). The largest effects

for deletions and duplications were observed in gene sets as-

signed to fetal cell types. Deletions and duplications, respec-

tively, showed preferential effects in non-neuronal (endothelial,

glia) and neuronal (excitatory) cell types (Figure 3E).

Genes preferentially expressed in non-brain tissues
also affect cognitive ability
There is a growing interest in whole-body health comorbidities

among individuals with neurodevelopmental and psychiatric

conditions, as well as CNVs affecting cognition.18,33 We there-

fore asked if CNVs affecting genes preferentially expressed in

non-brain tissues (not part of the nervous central system) were

also associated with cognitive ability.

We used 37 gene sets defined by relative expression (same

methods used for brain regions and cell types) in 37 whole-

body tissues (12 brain and 25 non-brain tissues [R1 SD]; Fig-

ure 4A). Many non-brain gene sets showed effect sizes (Fig-

ure 4B) of similar magnitude to those observed for regional brain

gene sets. This was not explained by the level of overlap be-

tween brain and non-brain gene sets (Figures 4A and 4B). We

observe the same pattern of deletion-duplication negative

correlation independently of the gene set definitions (r = �0.64,

ppermutation < 1 3 10�3; Figures 4C and S6). To understand how

gene set definitions influence these results, we first removed

8,194 genes with low-tissue specificity assigned to multiple

gene sets. The resulting effect sizes were correlated with the

initial estimates (r = 0.57; Figure S7). In fact, genes assigned to

multiple tissues show higher intolerance (LOEUF) compared to
tissue-specific genes (p = 1 3 10�11–3 3 10�161; Figure S8).

To further investigate the impact on results of gene set defini-

tions, we tested 37 previously published gene sets assigned to

37 GTEx tissues computed by the top decile expression propor-

tion (TDEP) method (proportional gene expression).34 This

method, which emphasizes specificity, excludes 5,454 genes,

of which 1,586 and 696 are, respectively, moderately intolerant

to haploinsufficiency (LOEUF = [0.35, 1[) and highly intolerant

to haploinsufficiency (LOEUF < 0.35; Figure S8). Effect sizes

were well correlated with our analysis, excluding LTS genes

(r = 0.76), but TDEP gene sets were unable to detect any effect

for deletions across all tissues (Figure S7).

The effects of deletion and duplication on cognitive
ability are negatively correlated across all levels of
biological observations
We asked if the deletion-duplication negative correlations

observed for tissue-level gene sets were also present at the mo-

lecular and cellular component levels. We first investigated 293

synaptic gene ontologies (GOs) using SynGO.35 We observed

that postsynaptic genes showed the largest negative effects

on cognitive ability when deleted, and in contrast, presynaptic

genes showed the largest negative effects when duplicated

(Figures 5A and S9). As a result, the effects of the 2 opposing

CNVs were negatively correlated across SynGO terms (r =

�0.39, ppermutation = 1 3 10�3; Figure S10).

We extended our analysis to 6,130GO terms (and correspond-

ing gene sets); 5.0% and 3.5%of theGO terms had an effect size

on cognitive ability for deletions and duplications, respectively. A

minority (0.7%) of GO terms showed significant effects for both.

We observed again a deletion-duplication negative correlation

across GO term effect sizes (r = �0.54, ppermutation < 1 3 10�3;

Figures 5B, S11, and S12), which remained significant across

three independent levels of LOEUF stratification (Figure 5C).

We asked if tagDS was similar to pHI (probability of haploinsuffi-

ciency) and pTS (probability of triplosensitivity), 2 previously

published metrics that are highly correlated with each other

(0.78) and with LOEUF (r = 0.90 and 0.77, respectively). tagDS

was unrelated to pHI and pTS scores36 across GO terms
Cell Genomics 4, 100721, December 11, 2024 5
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Figure 2. Effect sizes of autosomal coding genes on general cognitive abilities based on their LOEUF values

(A) The functional-burden test is a linear model estimating the mean effect size of all CNVs fully encompassing genes assigned to a biological function of interest.

Because many CNVs are multigenic, the model is adjusted for genes included in a CNV but not assigned to the biological function of interest.

(B) Sliding window (STAR Methods, statistical model 2) estimating the mean effect size ± standard error on cognitive ability of deletions (top) and duplications

(bottom) for 38 LOEUF categories (we slide a window of 0.15 LOEUF units in increments of 0.05 units, thereby creating 38 categories across the range of LOEUF

values) and definitive ID genes curated by ClinGen. Estimates were computed using a meta-analysis (circles) as well as a pooled dataset (squares). The red

dashed line defines intolerant genes (LOEUF < 0.35) (see also Tables S2, S3, and S4 and Figures S2 and S3).

(C) Heatmap showing the effect size (color scale) on cognitive ability of deletions and duplications across a range of sensitivity analyses removing non-Europeans,

older participants (R60 or R70 years old), large multigenic CNVs (those with a sum of 1/LOEUF >60, >40, and >20 corresponding to values of well-known

recurrent CNVs: 22q11.2, 16p11.2, and TAR, respectively), as well as adding a neurodevelopmental dataset (autism spectrum disorder). All estimates were

computed on the pooled dataset.
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(Figure S13). Finally, several GO terms, such as neuronal, synap-

tic, and cardiac functions, showed preferential effects when

deleted, while the opposite was observed for cellular response

functions, transport, metabolic processes, and signaling path-

ways. Furthermore, ‘‘positive regulation’’ GO terms were more

sensitive to deletions, while ‘‘negative regulation’’ terms showed

preferential effects when duplicated (Figures 5D and S14).

DISCUSSION

In this large-scale CNV-GWAS on cognitive ability, we identified

a duplication at 2q12.3 that is associated with higher cognitive
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ability. Although our sample size limited the discovery of new

genome-wide signals at the variant level, we developed a func-

tional-burden association test that allowed us to simultaneously

test the contribution of all ultra-rare CNVs (covering 75% of the

coding genome) and their function to cognitive ability. Constraint

(LOEUF) and functional-burden analyses revealed that a sub-

stantial portion of the coding genome was associated with

cognitive ability when deleted or duplicated. We also demon-

strated that genes involved in a broad array of biological func-

tions show preferential effects on cognitive ability when either

deleted or duplicated. The latter was quantified by negative cor-

relations between deletion and duplication effect sizes and by
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Figure 3. Effects on cognitive ability of genes assigned to brain regions and cell types

(A) Effect sizes on cognitive ability of gene sets assigned to 215 brain tissues/regions. Brain regions are color coded and clustered (first row, Ward’s method30)

based on the level of overlap (gray matrix) between their corresponding gene sets. The average LOEUF value for each gene sets is color coded in the second row.

Themean effect sizes on the cognitive ability of genes assigned to each brain region are coded for deletions (third row) and duplications (fourth row). tagDS values

are represented in the fifth row.

(B) Spearman correlation (black line) between the effect sizes of deletions and duplications across all gene sets with FDR significant effects on cognitive ability for

either deletions (downward triangle), duplications (upward triangle), or both (cross). p values were obtained from permutations to account for the partial overlap

between gene sets. Gene sets are color coded based on their tagDS. The dashed line represents the average exome-wide duplication/deletion effect size ratio

(see also Figure S4).

(C) The same negative correlations between deletion and duplication were observed across 3 independent LOEUF groups: <0.35 (intolerant; red), [0.35, 1.0[

(moderately intolerant; orange), and [1.0, 2.0] (tolerant; green).

(D) Raw tagDS is the Euclidean distance to the whole-genome ratio of effect sizes. tagDS is normalized following the null distribution of random gene sets of

identical size.

(E) Effect size of deletions and duplications encompassing genes assigned to 6 cortical layers, 7 adult brain cell types, and 16 fetal brain cell types. Clustering was

calculated on the level of overlap between cell type gene sets (Ward’s method30). Purple and orange represent negative and positive effects on cognitive ability,

respectively. Black edges indicate significant effects (see also Figure S5).
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tagDS, a new normalized metric that assesses sensitivity to

either deletions or duplications. We also show that genes as-

signed to non-brain tissues affected this ‘‘brain-centric’’ trait.

We identify, to our knowledge, the first CNV associated with

higher cognitive ability. The 865 kb duplication (population fre-

quency = �1/7,200), which includes EDAR, SH3RF3, SEPT10,

and SOWAHC, had not been previously associated with any trait

or condition and showed amoderate effect size (z = 0.434, equiv-

alent to 6.5 points of intelligence quotient [IQ]) on cognitive ability

without significant heterogeneity across cohorts. Publications
have identified associations between SNPs within this locus

and 58 traits, including brainmorphology,37–39 schizophrenia,40,41

Alzheimer’s disease,42 and neuroinflammatory biomarkers43

(Table S5). An excess of SEPT10 de novo missense mutations

havebeen reported inNDDs.4Given that themedianageofourda-

taset is 60.7 years, it is possible that this duplicationmay be asso-

ciated with a neuroprotective effect. We suspect that many more

CNVs associated with higher cognitive ability will be identified in

the future as sample sizes increase. Our functional-burden

method identified gene sets with positive effects on cognitive
Cell Genomics 4, 100721, December 11, 2024 7
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Figure 4. Effects on cognitive ability of CNVs affecting genes implicated in brain and non-brain tissues

(A) We defined 37 gene sets based on Z scored expression >1 SD. Expression of each gene was normalized across 37 tissues provided by GTEx. Gene sets were

clustered (orange for brain tissues and blue for non-brain tissues) based on their overlap, which is shown in the grayscale matrix. High overlap was observed

between brain gene sets (Ward’s method30), and much lower overlap was present across non-brain tissues and between brain and non-brain tissues. The mean

LOEUF of each gene set is color coded in the second row. Effect sizes on cognitive ability and tagDS across tissues are color coded in the third row as well as in

the body map (B), adapted from GTEx. Genes with low tissue specificity were defined by the Human Protein Atlas.

(C) Spearman correlation (black line) between the effect sizes of deletions and duplications on cognitive ability. Downward and upward triangles and crosses

represent significant effects for deletions, duplications, and both respectively. Gene sets are color coded based on their tagDS.
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ability. Determining whether these gene sets truly increase cogni-

tive ability or, instead, show smaller effects than the mean effect

used to adjust for multigenic CNVs will require larger samples

with data on CNVs disrupting single genes. Overall, the results

suggest that gene dosage may be associated with a higher IQ,

but most effects are masked by the multigenic nature of CNVs.

It has been challenging to evaluate haploinsufficiency and

triplosensitivity. We show that tagDS for cognitive ability is

orthogonal to genetic constraint, as well as previously pub-

lished pHI and pTS measures. tagDS highlights sensitivity to

either deletions or duplications across gene functions from

macroscopic (cortical vs. non-cortical tissue) to microscopic
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(pre- vs. postsynaptic genes and positive vs. negative regula-

tion) levels of observation.

Genetic covariance has almost exclusively been computed

using common variants to investigate the genetic overlap be-

tween traits. While genetic covariance using rare variants is

understudied due to a lack of statistical power, a recent study44

aggregating rare variants at the gene level showed that the

genetic correlation between protein loss-of-function and

damaging missense variants associated with the same trait

was, on average, 0.64 (with some correlations <0.5), implying

that different classes of variants in the same genes may show

different phenotypic effects.



A

B C

D

Figure 5. Effects on cognitive ability of gene sets based on GOs

(A) Effect sizes of synaptic molecular functions and cellular component gene sets as defined by SynGO35 on cognitive ability (more details in Figure S9). Blue and

red represent negative and positive cognitive ability tagDS, respectively. Ontologies with black edges indicate significant effects (FDR). The results are shown

only for SynGO terms with more than 10 genes, observed at least 30 times in our dataset, and with a coverage greater than 20%. Note: (1) regulation of

modification of postsynaptic actin cytoskeleton, (2) regulation of calcium-dependent activation of synaptic vesicle fusion, (3) presynaptic modulation of chemical

synaptic transmission, (4) integral component of postsynaptic density membrane, and (5) synaptic vesicle membrane (see also Figures S9 and S10).

(B) There is a negative correlation (Spearman) between the effect sizes of deletions and duplication across 601 GO terms.

(C) The same deletion-duplication negative correlation was observed across 3 independent LOEUF groups (highly intolerant to haploinsufficiency <0.35: red,

moderately intolerant to haploinsufficiency [0.35, 1.0[: orange, tolerant to haploinsufficiency [1.0, 2.0]: green).

(D) We adapted the word cloud package, which groups GO terms based on shared terminology. y axis: sum of associations of each word with significant deleted

and duplicated GO terms. x axis: proportion of significant GO terms for a given CNV type used for the association. ‘‘Positive’’ and ‘‘negative’’ refer to ‘‘positive

regulation’’ and ‘‘negative regulation,’’ respectively (see also Figures S11, S12, and S14).
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In our study, we show that two classes of variants with

opposing molecular consequences have negatively correlated

phenotypic effects. This negative correlation was observed

regardless of whether CNVs were aggregated based on

their function in tissues, cell types, or GO terms. This suggests

that associating genes with traits or diseases is highly

dependent on the class of genetic variants. Whether this

negative correlation generalizes to other phenotypic traits is

unknown.

There has been growing interest in the relationship between

mental health and whole-body multi-morbidities. This is exem-

plified by the correlation between cognitive ability, medical con-

ditions, such as coronary artery disease,15,45 and longevity.45,46

Recent studies also showed that poor physical health was more

pronounced in neuropsychiatric illness than poor brain health.33

In the current study, genes preferentially expressed in many

non-brain organs show effects on cognition similar to those

observed for brain tissue. The latter could not be explained by

the level of overlap between brain and non-brain gene sets.

However, our results suggest a trade-off of impact on cognitive

ability between the intolerance to haploinsufficiency of genes

and their tissue specificities. In other words, genes with lower

tissue specificity and higher pleiotropy tend to have lower

LOEUF values and therefore larger effect sizes on cognitive abil-

ity. Other interpretations include (1) gene-disrupting variants

can alter non-brain organs, which in turn alter brain function

due to suboptimal support, and (2) cognition is an embodied

multi-organ trait includes both brain and non-brain organs. A

whole-body contribution exists for other cognitive-modulating

traits such as sleep (thought to be for and by the brain), which

is also regulated by peripheral tissue.47

The main limitation of this study is the use of gene sets, which

were defined either on the basis of well-established ontologies or

using a ‘‘relative method’’ based on normalized expression

values. In the latter approach, we chose thresholds that may

have influenced our results. Multiple sensitivity analyses demon-

strated that changing the threshold (and therefore the size of the

gene set) did not influence our main findings. Expression profiles

vary across space, cell types, and time for a given tissue. Our

gene sets could not explore all of these aspects. Larger studies

will be required to increase the granularity of these functional

burdens on association tests.

In conclusion, our study demonstrated, for the first time, the

positive effects of a CNV on cognitive abilities. We present a

new approach to functionally aggregate rare and ultra-rare vari-

ants and uncover many gene functions that are preferentially

sensitive to either deletions or duplications. Computing tagDS

for other complex traits will help understand whether sensitivity

to gene dosage is trait dependent.

RESOURCE AVAILABILITY

Lead contact

For additional information, as well as requests regarding resources, please
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Materials availability
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Lothian Birth Cohort raw data Deary et al.49 https://lothian-birth-cohorts.ed.ac.uk

Saguenay Youth Study raw data Pausova et al.50 https://saguenay-youth-study.org/

Imagen raw data Schumann et al.51 https://imagen.squarespace.com/

CartaGene Awadalla et al.52 https://cartagene.qc.ca/

Generation Scotland raw data Smith et al.53 https://genscot.igc.ed.ac.uk/welcome

MSSNG raw data Yuen et al.54 https://research.mss.ng/

SSC raw data Fischbach et al.55 https://www.sfari.org/

SPARK raw data Feliciano et al.56 https://sparkforautism.org/

gnomAD v2 Karczewski et al.57 https://gnomad.broadinstitute.org/

Ensembl v109 Martin et al.58 https://www.ensembl.org/

Syngo Release 2021 Koopmans et al.35 https://www.syngoportal.org/

HPA v22 Sjöstedt et al.32 https://www.proteinatlas.org/

GTEx v8 Karlsson et al.59 https://gtexportal.org/home/

Brain cell types Wagstyl et al.60 https://doi.org/10.7554/eLife.86933.2

Summary statistics data This paper 10.6084/m9.figshare.27350322

Created gene-sets This paper 10.6084/m9.figshare.27360612

Software and algorithms

Pipeline for CNV quality

control and annotation

Huguet et al.12 https://martineaujeanlouis.github.io/

MIND-GENESPARALLELCNV/

Python version 3.10.2 Python Software Foundation https://www.python.org; RRID:SCR_008394

R version 4.0.1 R Software https://www.r-project.org; RRID:SCR_001905

QuantiSNP Colella et al.61 https://github.com/cwcyau/quantisnp; RRID:SCR_013091

PennCNV Wang et al.62 https://penncnv.openbioinformatics.org/en/latest/; RRID:SCR_002518

CNVision Sander et al.63 https://www.softpedia.com/get/

Science-CAD/CNVision.shtml

PLINK Purcell et al.64 https://www.cog-genomics.org/plink/; RRID:SCR_001757

GENCODE The GENCODE Project https://www.gencodegenes.org/

BedTool Quinlan et al.65 https://bedtools.readthedocs.io/en/latest/; RRID:SCR_006646

Analysis scripts This paper 10.6084/m9.figshare.27328212

DigCNV This paper 10.6084/m9.figshare.27328227
RESOURCE AVAILABILITY

We analyzed 258,292 individuals from six general population cohorts,49–53,66 which can be further divided into 9 sub-cohorts based

on cognitive assessment (Table 1). Three additional autism cohorts54–56 were only used for sensitivity analyzes (Table S6, Figure S15).

Each cohort received approval from their local institutional review boards. Parents/guardians and adult participants gave written

informed consent, and minors gave assent.

General populations
In this study, we included five cohorts from the general population previously pooled and studied in Huguet et al. 2021.12 In addition to

these cohorts previously analyzed and studied, we added 238,176 individuals from the UK Biobank (UKBB) cohort (www.ukbiobank.

ac.uk) after phenotypic and genotypic quality control. The UKBB consortium initially recruited�500 000 individuals aged 40–69 years

(54% female) between 2006 and 2010. Phenotypic and cognitive measures were tested at the UKBB assessment centers or online,

and also included demographic, socioeconomic and health data.
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Autism spectrum disorder cohorts
We also included two cohorts of children with autism spectrum disorder previously studied in Huguet et al., 2021.12 In addition, we

included 2,543 ASD probands with available IQ measures from the Simons Foundation Powering Autism Research (SPARK)

database.56

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Measures of cognitive ability
General cognitive ability was measured by either non-verbal intelligence quotient (NVIQ or Moray House Test), FI (fluid intelligence

questions), or general intelligence factor (g-factor).15 Measures of cognitive ability were z-scored within each cohort based on sex

and age (Table 1, Table S6 and S7). We used the exact same process and data as shown previously in Huguet et al., 2021.12 The

NVIQ or Moray House Test Z score has a mean of 100 and a standard deviation (SD) of 15. Since cognitive measures used in the

computation of the g-factor are not the same between cohorts, the g-factor was computed and normalized separately within

each cohort using themean and SD computed on all available individuals. This was feasible since the g-factor was computed in gen-

eral population cohorts only. Of note, FIs and g-factors were computed before excluding individuals due to array quality control, lead-

ing to means and SDs slightly different from 0 to 1 for the final subset of individuals included in our analyses. In UKBB, some indi-

viduals had multiple cognitive ability assessments. For those individuals we selected the most robust cognitive evaluations based

on the following ranking (from the most to the least robust): 1) in-person g-factor, 2) online g-factor, 3) in-person FI 4) online FI.

Intelligence quotient
In the SPARK cohorts, adapted tests have been used and ranked. We computed the average IQ interval for each rank to establish a

numerical value. To be able to compare the different cognitive measures, all IQs were z-scored based on a mean of 100 and a stan-

dard deviation (SD) of 15.

Fluid intelligence
In UKBB, the FI score was assessed both in person (N = 88,441, #20016) and online (N = 13,773, #20191). This score is derived from

13 questions, measuring the capacity to solve problems requiring logic and reasoning abilities, independent of acquired knowledge.

Participants were allotted 2 min to complete as many questions as possible from the test. The FI obtained were transformed into a

Z score using themean of 6.07 and the SD of 2.15 for the subgroup assessed in person, and using themean of 6.61 and the SD of 1.98

for the subgroup assessed online.

G-factor computation
The g-factor is an indirect measure of general intelligence, obtained by extracting the first unrotated principal component from prin-

cipal component analysis (PCA) of different standardized cognitive measures. It is a robust measure of general cognitive ability that is

not very sensitive to the exact subtests used to calculate it as long as they measure a wide range of cognitive abilities.67 Since cogni-

tive measures used in the computation of the g-factor are not the same between tests used (in person and online), the g-factor was

computed and normalized separately within each test group (in person and online) using the mean and SD computed on all available

individuals.

For SYS parents sample, we computed the g-factor based on 12 cognitive performances50 assessed using the Cambridge brain

sciences platform68: color-word remapping, spatial planning, self-ordered search, paired associates learning, digit span, spatial

span, visuospatial working memory, interlocking polygons, feature match, odd one out, grammatical reasoning and spatial rotation.

The observed variance for g-factor was 31.6%, themeang-factor =�6.223 10�12 and the SDg-factor = 1.95, both were used to compute

the Z score for this measure.

For SYS children, we computed the g-factor based on 63 cognitive measures50: dot location (visual/non-verbal memory), New-

man’s card sorting task (perseveration), self-ordered pointing task (workingmemory), grooved pegboard Test (finemotor skills), Chil-

dren’s Memory Scale (CMS) stories subtasks (auditory/verbal memory), Wechsler Intelligence Scale for Children III (WISC-III),

Woodcock-Johnson III (Academic achievement), Stroop color-word test (interference), Ruff 2-&-7 selective attention test (selective

attention), Verbal fluency (cognitive flexibility) and tapping. The observed variance for g-factor was 23.6%, themeang-factor = 0.05 and

the SDg-factor = 3.80, both were used to compute the Z score for this measure.

For CaG cohort, we computed the g-factor based on three cognitive tests: verbal and numeric reasoning (fluid intelligence), paired

associates learning (episodic memory) and reaction time based on two-choice items. The observed variance for g-factor was 43.2%,

the meang-factor = �8.68 3 10�16 and the SDg-factor = 1.08, both were used to compute the Z score for this measure.

For G-Scot cohort, the g-factor was computed using four cognitive tests measuring processing speed, verbal declarative

memory, executive functions and vocabulary. The observed variance for g-factor was 42.3%, the meang-factor = �3.65 3 10�16

and the SDg-factor = 1.3, both were used to compute the Z score for this measure.

For UKBB, the g-factor was computed using four cognitive tasks assessed in person (N = 73,882) and online (N = 62,080): trail

making test parts A and B (executive function), symbol digit substitution test (processing speed), paired associate learning test

(verbal declarative memory) and picture vocabulary (crystallized ability) (Table S7). The observed variance were 31.8% and
e2 Cell Genomics 4, 100721, December 11, 2024
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43.7% for the g-factor in person and online respectively. The g-factors obtained were transformed into a Z score using the mean of

1.80e�15 and the SD of 1.26 for the subgroup assessed in person, and using the mean of �1.40e�15 and the SD of 1.48 for the

subgroup assessed online.

METHOD DETAILS

Except for UKBB and SPARK, we used the same raw data as in the previous publications, Huguet et al.11,12 The probes coordinates

were updated from hg18 to hg19 using Illumina information and the liftover tool from the genome browser. UKBB usedDNA extracted

from blood and genotyped on two Affymetrix arrays (n = 50k on UK BiLEVE and n = 450k on UK Biobank Axiom)17 with�95% probe

overlap, using�750k commonmarkers. SPARK used DNA extracted from saliva (OGD-500 kit, DNAGenotek) genotyped on Illumina

GSA-24v1-0 array (654k SNP sites).

Genetic analysis on genotyping
For data processing and quality control, we employed PLINK64 software, version 1.9. Each cohort was filtered to keep only autosomal

SNPs with minor allele frequency (MAF) > 5%, probes providing genotypes that are not violating Hardy-Weinberg equilibrium

(threshold <13 10-6) and probes with call rates >90%. Also, we used PLINK64 to check for duplicated individuals, sex, and relation-

ships for each participant with the same pipeline as previous work. We merged all genotyping data with PLINK. Finally ancestries

(principal component [PC] 1 to 10) were determined with KING69 (with 3,615 common SNPs, we used the same quality control as

in the previous step), using the standard process defined on the website (https://www.kingrelatedness.com) and the 1000 Genomes

as reference.

CNV calling
We applied the same methodology as in Huguet et al.11,12 available online (https://martineaujeanlouis.github.io/MIND-

GENESPARALLELCNV/) on the array data using PennCNV62 and QuantiSNP61 algorithms. The following parameters were used

for both algorithms: number of consecutive probes for CNV detection R3, CNV size R1Kb, likelihood scores R15. CNVs detected

by both algorithms were combined (CNVision63) to minimize the number of potential false discoveries. We defined all CNVs with less

than 2 copies as deletions and all CNVswithmore than 2 copies as duplications. After this merging step, an in-house algorithm based

on CNV was applied to concatenate adjacent CNVs of the same type into one, according to the following criteria: a) gap between

CNVs %150 kb; b) size of the CNVs R1000 bp; and c) number of probes R3.

Array filtering
After these steps, we remove from the analyses, all arrays for which a suspiciously high number of CNVs has been detected

(R50 for low resolution arrays [<1 million probes] and R200 for high resolution arrays [R1 million probes]). For all cohorts,

we used stringent quality-control criteria: call rate R95%; log R ratio-standard deviation <0.35; B allele frequency-standard de-

viation <0.08 and |waviness factor|<0.05. From a total of 488,377 people with genotypic data, 28,522 were excluded for failing

only of these filters.

All individuals with duplicated data or with discordant phenotypic and genetic information about the sex were removed (N = 212).

We did exclude CNVs R10Mb (a widely used threshold in the QC if CNVs11,12,18) because very large CNVs are rarely observed in

general population cohorts and are almost always present asmosaics and/or somatic CNVs that can’t be pooledwith germlineCNVs.

CNV filtering
After filtering the arrays according to their quality, we applied filtering for autosomal CNVs. The CNVs with the following criteria were

selected for analyses: likelihood scoreR30 (for at least one of both detection algorithms), sizeR50 kb, unambiguous type (deletions

and duplications) and overlapwith segmental duplicates, HLA regions or centromeric regions <50%. To avoid frequency biases com-

ing from the level of detection across technologies, we applied 3 criteria: 1) CNVs had to be covered by at least 10 probes across all

array technologies used in the analyses; 2) CNVs with a frequencyR1% in at least 1 cohort were removed from all cohorts; 3) CNVs

with a coefficient of variance of frequency being part of the top 1%were removed (separated distribution of coefficients used accord-

ing to how many cohorts included the CNV). For steps 2 and 3, CNVs were defined as similar if their sequences had a reciprocal

overlap R50%. Every recurrent CNV was annotated (based on previously published methods12) and manually visualized (Log R

and BAF-plots) by at least one CNV experts.

In addition, we applied an in-house algorithm based on a machine learning method to detect additional artifact CNVs (DigCNV,

https://github.com/labjacquemont/DigCNV). This algorithm was based on the consensus of three machine learning methods

(Random forest, bagging of KNN and SVM) and on 9 CNV characteristics (Array criteria: log R ratio-standard deviation, B allele fre-

quency-standard deviation, wave frequency; Localization CNV criteria: % of CNV overlap with centromeric regions and with

segmental duplications; CNV criteria: density of SNPs (numbers of SNPs/size of CNV), likelihood score/number of SNPs, % algo-

rithms overlapping, percentage of shared sequence found by the both algorithms), type of CNV). This model was trained and tested

respectively on 66% and 33% of 34,156 CNVs (31,746 true CNVs and 2,410 artifacts from 6 cohorts, excluding SPARK), This refer-

ence CNV set wasmanually inspectedwith Log R and BAF plots, by twoCNV experts. DigCNV showed an AUC= 0.95, a sensitivity of
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0.95 and a specificity of 0.85. This model was validated again on an additional naive dataset genotyped with another technology

(GSA). We used 2,454 CNVs (1,936 true CNVs and 518 artifacts from SPARK cohort) and showed an AUC = 0.92, a sensitivity of

0.58 and a specificity of 0.97.

Annotation of CNVs
We annotated the CNVs using GENCODE V19 annotation (hg19) with Ensembl gene name (https://grch37.ensembl.org/index.html).

We used bedtools suite to identify the different elements of the genes encompassed in CNVs.65 CNV annotation was therefore

defined by the sums of genes fully encompassed and being part of a biologically defined gene-set. These gene-sets were coming

from the partition of the whole genome as defined in the following paragraphs.

LOEUF-based gene sets
Each coding gene was annotated using the Loss-of-function Observed/Expected Upper bound Fraction (LOEUF) score (gnomAD

version 2.1.1),57 which is available for 19,197 genes and ranges from 0.03 to 2, and values below 0.35 are suggestive of intolerance.

The smaller the value is, the more the gene is intolerant to loss-of-function variants. We defined 38 overlapping gene-sets based on

LOEUF values using a slidingwindowmethod (methodology as in Huguet et al.11,12). Eachwindowwas a 0.15 range of LOEUF values,

and the sliding was 0.05.

Function-based gene sets
We defined 269 gene-sets based on relative gene expression (Z score >1SD) in 13 adult70,71 and 16 fetal72 brain cell types,60 as well

as bulk tissue from 215 brain regions (Human Protein Atlas, HPA v.22)32 and 25 non-brain organs (GTEx v8,32,59 Table S8). The

expression values were normalized across all tissues for each gene. The same normalization was performed across cell types sepa-

rately. As a sensitivity analysis, we defined the same gene-sets based on a previously published ‘‘Top Decile Expression Proportion’’

(TDEP)34 method. The former and the latter methods favor relative and specific expression, respectively. Both methods exclude

1,370 and 5,369 genes that are not assigned to any tissue in GTEx. We also used 6,233 functional gene-sets based on 6,130

GOterms73,74 (Ensembl v.109, April 2023), and 103 Synapse ontology terms (SynGO35). We were used with propagated annotations

following Gene Ontology Consortium recommendations. Throughout this study, we only considered gene-sets meeting the following

3 criteria: i) those with more than 10 genes, ii) those disrupted by R 30 CNV carriers, and iii) those with at least 20% of their genes

affected by CNVs.

QUANTIFICATION AND STATISTICAL ANALYSIS

Analyses were performed using R version 4.0.1 (http://www.R-project.org.), with ‘‘meta’’(https://cran.r-project.org/web/packages/

meta/index.html) and ‘‘metafor’’ (https://cran.r-project.org/web/packages/metafor/index.html) packages for meta-analyses. Python

3.10.2 (https://www.python.org) with ‘‘scipy 1.11.2’’ (https://pypi.org/project/scipy/), ‘‘statsmodels 0.13.5’’ (https://www.

statsmodels.org) and ‘‘word-cloud 1.9.2’’ (https://amueller.github.io/word_cloud).

LOEUF and function-based burden associations
To estimate the effect on cognitive ability of gene-sets (and their corresponding biological functions or LOEUF categories), we adapt-

ed a previously published model.12

We performed a linear model for each of the 38 LOEUF gene categories and each of the 6,502 functional gene-sets. The outcome

was cognitive ability measured in each individual. The explanatory variable was the sum of genes fully encompassed in a CNV for a

gene-set of interest (Figure 2A). Since CNVs are multigenic, the effect size estimated for a given gene set may be inflated. Therefore,

all models were adjusted for the total number of genes within the CNV but not members of the gene set of interest. These latter genes

were categorized into three covariates: ID genes (only for Function-based gene-sets), genes with LOEUF<1, and genes with

LOEUFR1. Other covariates included ancestry (10 PCs), age, and sex. Models were computed for deletions or duplications, sepa-

rately. p-values were corrected for multiple testing (one for each biologic function) using FDR correction, separately for deletion and

duplication.

Linear regression model
In our study, we used four distinct models to assess the average main effects of genes within specific categories of interest. In Model

1, the CNV-GWAS approach, we applied a linearmodel for each gene individually. Contrarily, inModels 2, 3, and 4, we used the gene-

sets described before. These 3 models are also taking into account the genes encompassed in a CNV but not in the gene-set of in-

terest as a covariate. We used a cut-off of 30 carriers to obtain a power of 85% to be able to detect CNVs with large effect size equiv-

alent to Cohen’s d = 0.7 (alpha = 0.005).

Model 1: For each gene, we implemented an individual linear model, considering a minimum of 30 carriers. The aim was to assess

the average main effect of each gene (example for deletion).
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Model 2: Building on previously published work, we conducted 39 linear models to examine 38 overlapping LOEUF categories

(using a sliding window with a size of 0.15 LOEUF and a step of 0.05 LOEUF), as well as a category comprising an ID gene list as

defined by ClinGen (Table S2). Each model focused on the average main effect of a gene within the specified category, adjusting

for the impact of other genes in the CNV with LOEUF values falling outside the window of interest (Figure 2A). We applied the

same model for the ID gene-sets, as a replacement of the LOEUF window of interest.

Model 3: We applied a linear model for each gene-set to estimate their effect sizes. These models evaluated the average main

effects of genes within a gene-set, with adjustments for the influence of other genes in the CNV. Genes outside the gene-set, these

were further subdivided into three categories: ID-gene, LOEUF <1, and LOEUF R1.
Model 4: Employing the same approach as in Model 3, we used a single linear model but divided the gene-set into three LOEUF

categories: LOEUF <0.35, LOEUF in the range of [0.35, 1[, and LOEUF R1.
tagDS
Each gene-set is represented in two dimensions by their deletion and duplication effect sizes. The nominal tagDS is the Euclidean

distance between the gene-set coordinates and the line of equation, y = 2:4x which is the ratio effect size between duplications

(x) and deletions (y) computed for a genome-wide gene-set. Because effect-sizes depends on the gene-set sizes, we normalized

the nominal tagDS for each gene-set. Each nominal tagDS is then Z-scored based on the normal distribution of tagDS computing

for 100 random gene-sets with the same number of genes. Finally, a tagDS of 0 suggests that the deletion/duplication effect-size

ratio is equal to the expected ratio. A gene-set with a tagDS >2 indicates that its deletion/duplication effect-size ratio on cognitive

ability is beyond 2 standard deviations of the null distribution (i.e., larger effect sizes are biased toward deletions).
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Supplementary tables

Cohort Array type N= Ancestry Gender Age (year) Z-scored intelligence measure
(adj) Cognitive ability assessments

EUR Others F M Mean SD Mean SD Variables

Unselected
(n=258,292)

CaG
GSA 2074 1982 92 1094 980 54.317 7.601 0.107 0.973

Age, Age^2,
sex, PC g-factor, Reasoning, Memory, Reaction timeOmni2.5 515 490 25 281 234 52.437 8.602 -0.009 0.956

GSA + Omni2.5 2589 2472 117 1375 1214 53.943 7.845 0.084 0.970

G-Scot 610Kq 13715 13672 43 8081 5634 46.730 14.996 0.050 0.974 Age, Age^2,
sex, PC

g-factor, Logical Memory, Digit Symbol,
Verbal fluency, Mill Hill Vocabulary

Imagen 610Kq; 660Wq 1744 1624 120 891 853 14.450 0.366 0.441 0.977 PC WISC-IV
LBC1936 610Kq 503 500 3 246 257 69.825 0.829 0.047 0.946 PC Moray House Test

SYS
children

610Kq 559 557 2 298 261 15.058 1.894 0.361 0.882
PC WISC-IIIHOE-12V 408 408 0 207 201 14.906 1.760 0.212 0.848

610Kq + HOE-12V 967 965 2 505 462 14.994 1.839 0.298 0.871
SYS

parents HOE-12V 598 596 2 319 279 49.495 4.868 -0.021 0.934 Age, Age^2,
sex, PC g-factor, 12 cognitive measures‡

UKBB Affymetrix

73882 71364 2518 39317 34565 60.022 8.959 0.131 0.964
Age, Age^2,
sex, PC

g-factor 47

62080 60484 1596 34335 27745 62.083 7.663 0.131 0.926 g-factor (online)
88441 80427 8014 47789 40652 58.139 8.304 -0.035 0.961 FI
13773 13458 315 8284 5489 64.185 7.685 -0.090 0.970 FI (online)

Autism
(n=6,111)

SPARK GSA 2543 1984 559 540 2003 12.359 6.190 -0.626 1.963 PC IQ
MSSNG WGS 1007 768 239 202 805 9.503* 4.600* -0.529 1.590 PC IQ

SSC

1Mv1 332 279 53 44 288 9.538 3.240 -0.602 1.558

PC

WISC-IV n=19; DAS-II E-Y n=96; DAS-II S-A n=179; Mullen n=12;
WASI-I n=26

1Mv3 1181 915 266 156 1025 8.769 3.523 -0.982 1.638 WISC-IV n=16; DAS-II E-Y n=530; DAS-II S-A n=539; Mullen
n=77; WASI-I n=19

Omni2.5 1048 786 262 140 908 9.160 3.712 -1.227 1.834 WISC-IV n=10; DAS-II E-Y n=403; DAS-II S-A n=494; Mullen
n=124; WASI-I n=17

1Mv1 + 1Mv3 +
Omni2.5 2561 1980 581 340 2221 9.028 3.576 -1.033 1.722 WISC-IV n=45; DAS-II E-Y n=1,029; DAS-II S-A n=1,212; Mullen

n=213; WASI-I n=62

Table S6. Cohort descriptions, Related to Table 1.
Cohorts include 264,403 individuals, including 258,292 general populations. †63 and ‡ 12 cognitive measures were respectively used to compute
the g-factor in SYS children and parents (Huguet et al 2021). SYS: Saguenay Youth Study, CaG: CARTaGEN, LBC1936: Lothian Birth Cohort
1936, SSC: Simons Simplex Collection; n=number of individuals remaining for analysis after quality control. The mean and Standard Deviation
(SD) for FI and g-factor slightly deviate from 0 and 1 in some cohorts since they were computed on all available data (before the exclusion of
some individuals for poor quality array) and summarized here only for individuals included in the analyses. * The MSSNG cohort gave
participants years but for not all, for 280 age was missing.
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Field name Clinic value Online value
code Lyall et al 201647 code Gfact 5 Online

Fluid intelligence score 20016 use 20191 use
Trail making #2 6350 - 20157 use

Symbol digit substitution 23324 - 20159 use
Pairs matching 399 use 20132 use
Numeric memory 4282 use 20240 use

Prospective memory 20018 use - -
Mean time to correctly identify

matches (Reaction time) 20023 use - -

Table S7. Descriptions of cognitive ability used in UKBB, Related to STAR Methods.

Name

HPA GTEx
Cell
types SynGO

LOEUF
catg.

GO-ter
mSD≥0.5 SD≥1 SD≥1.5 SD≥2 SD≥0.5 SD≥1 SD≥1.5 SD≥2

N lists 215 215 215 215 37 37 37 37 29 85 38 6,130

Mean list
size 3,817 1,975 1,017 571 3,056 2,015 1,173 787 890 120 1,423 89

N unique
coding
gene

12,710 12,706 12,449 12,427 12,755 12,758 12,751 12,538 8,422 921 13,288 11,460

Table S8. Descriptions of Gene-sets, Related to STAR Methods.
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Supplementary figures

Figure S1: 36 duplications of the 2q12.3 observed in General Population, Related to
Figure 1F.
This figure depicted genomic duplications (blue) occurring on chromosome 2 and overlapping with at least one
of these genes: EDAR, SH3RF3, SEPT10, SOWAHC, in the general population. The x-axis repesented the
genomic coordinates (hg19), and the y-axis listed the carriers’ sample IDs. Three genomic annotations were
included: chromosome bands; genes with their associated LOEUF scores; segmental duplications. LOEUF
scores indicated the level of tolerance to loss-of-function for each gene, ranging from red (intolerant) to green
(tolerant).
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Figure S2: Correlation on cognitive ability of LOEUF categories, Related to Figure 2.
Spearman correlations (black line) between the effect sizes of deletions and duplications of gene-sets with FDR
significant effects on cognitive ability for deletions (downward triangle), duplications (upward triangle), or both
(cross). pvalue obtained from permutation test to account for the partial overlap between gene sets. Gene sets are
color coded based on their tagDS. The dash line represents the average exome-wide duplication/deletion
effect-sizes ratio
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Figure S3: Effect sizes of autosomal coding genes on general cognitive abilities based on their LOEUF values, Related to Figure 2.
Sliding window estimating the effect size on cognitive ability of deletions (left) and duplications (right) for 38 LOEUF categories and definitive ID-genes curated by ClinGen
(based on model 2). The line represents the estimated effect size of 38 categories of genes based on their LOEUF values in the model. Estimates were computed using a
pooled dataset, large circles indicated significant pvalues adjusted by FDR and small one for non-significant. We ran sensitivity analyses based on different CNV cut-offs of
quality controls with the likelihood score (Score ≥ 30, 40, 50, 75 and 100 and a fixed number of SNPs ≥10; for A and B) and numbers of SNPs inside CNV (SNPs ≥ 10, 15,
30, 50 and 100 and a fixed likelihood score ≥30; C and D).
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Figure S4: Sensitivity analysis on cognitive ability for multiple HPA gene expression
thresholds, Related to Figure 3.
(A) Number of deletion and duplication carriers of genes for the 215 gene-sets analyzed in Figure 3. The black
line represents the theoretical perfect concordance between Deletion and duplication carriers. Spearman
correlations (black lines) between the effect sizes of deletions and duplications of tissue gene-sets with a
normalized expression threshold >0.5SD (B), >1.5SD (C), and >2SD(D). FDR significant effects on cognitive
ability for deletions (downward triangle), duplications (upward triangle), or both (cross). pvalues obtained from
permutation tests to account for the partial overlap between gene sets. Gene sets are color coded based on their
tagDS. The dash line represents the average exome-wide duplication/deletion effect-sizes ratio.
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Figure S5: Correlation on cognitive ability of cell type, Related to Figure 3.
Spearman correlation (black line) between the effect sizes of deletions and duplications of gene-sets with FDR
significant effects on cognitive ability for deletions (downward triangle), duplications (upward triangle), or both
(cross). pvalues obtained from permutation tests to account for the partial overlap between gene sets. Gene sets
are color coded based on their tagDS. The dash line represents the average exome-wide duplication/deletion
effect-sizes ratio.
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Figure S6: Correlations on cognitive ability of multiple GTEx gene specificity
thresholds, Related to Figure 4.
Spearman correlations (black lines) between the effect sizes of deletions and duplications of tissue gene-sets
with a normalized relative expression threshold >0.5SD (A), >1.5SD (B), >2SD(C) and >1SD without
low-tissue-specificity genes(D). FDR significant effects on cognitive ability for deletions (downward triangle),
duplications (upward triangle), or both (cross). pvalues obtained from permutation tests to account for the partial
overlap between gene sets. Gene sets are color coded based on their tagDS. The dash line represents the average
exome-wide duplication/deletion effect-sizes ratio.
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Figure S7: Comparisons of effect sizes for different gene-set associations,
Related to Figure 4.
Clustering of gene-sets computed with z-score minus 8,194 low-tissue-specificity genes (A) and computed with
TDEP (Bryois et al) (B). Orange represents brain tissues and blue non-brain tissues. Gene-set overlap matrix
show high overlap between brain gene-sets and much lower overlap across non-brain tissues for both association
methods. 2nd columns represent the average LOEUF score of the gene-set. 3rd and 4th columns represent the
effect of gene-sets on cognitive ability when deleted and duplicated, respectively. The 5th column is the
resulting tagDS. Correlation of effect-sizes for multiple gene-set definitions, z-scored gene-sets with all coding
genes versus z-scored gene-sets without low-tissue-specificity genes (C), z-scored gene-sets with all coding
genes versus TDEP gene-sets (D) and z-scored gene-sets without low-tissue-specificity genes versus TDEP
gene-sets (E). Orange lines show the Spearman correlation between brain gene-sets (r=0.84 p=1e-6; r=0.82
p=9e-6; r=0.76 p=1e-4 for B, C and D respectively) and blue lines show correlation for non-brain gene-sets
(r=0.47 p=4e-4; r=0.16 p=3e-1; r=0.58 p=4e-5 for B, C and D respectively). The grey line represents a
theoretical perfect concordance between estimates. Pvalues are nominal pvalues without permutation tests.
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Figure S8: Ridgeplots representing the LOEUF distribution across multiple levels of
specificity, Related to Figure 4.
(A) Distribution of LOEUF values for the whole coding exome, for genes assigned to at least one GTEx
gene-set defined by z-score, for genes not assigned to any GTEx tissue (Z-score), for genes assigned to at least
one GTEx tissue defined by TDEP and for genes not assigned to any GTEx gene-set (TDEP). Distribution of
LOEUF for genes present in one or multiple gene-sets defined by Z-score (B) and TDEP (C) methods. The color
represents the FDR-adjusted pvalue of the Mann-Whitney test between the distribution of LOEUF for specific
genes (present in only one gene-set) and the distribution of interest. Black line represents the median LOEUF
score for each category.
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Figure S9: Effect sizes of Deletion and duplication on cognitive ability for SynGO
gene-sets, Related to Figure 5.
Effect sizes of synaptic molecular functions and cellular component gene-sets as defined by SynGO48 on
cognitive ability. Purple and orange represent negative and positive effect size on cognitive ability, respectively.
Ontologies with black edges indicate significant effects (FDR). The results are shown only for SynGO terms
with more than 10 genes, observed at least 30 times in our dataset, and with a coverage greater than 20%. Note:
1) Regulation of modification of postsynaptic actin cytoskeleton, 2) Regulation of calcium-dependent activation
of synaptic vesicle fusion, 3) Presynaptic modulation of chemical synaptic transmission, 4) translation at
synapse, 5) regulation of postsynapse organization, 6) synapse adhesion between pre- and post-synapse, 7)
Integral component of postsynaptic density membrane, 8) Synaptic vesicle membrane.
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Figure S10: Correlation on cognitive ability of SynGO, Related to Figure 5.
Spearman correlations between the effect sizes of deletions and duplications of gene-sets with FDR significant
effects on cognitive ability for deletions (downward triangle), duplications (upward triangle), or both (cross).
pvalues obtained from permutations to account for the partial overlap between gene sets. Gene sets are color
coded based on their tagDS.
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Figure S11: Network of GO-Terms associated with positive tagDS and negative
impact on cognitive ability, Related to Figure 5.
This figure presents a Revigo-generated49 network of GOterms based on GOterm associted with negative impact
on cognitive ability and positive tagDS. Each node symbolizes a specific GOterm or GOterm cluster (clustering
by standard Revigo criteria49). Node color denotes the tagDS value associated (red for positive tagDS). The
node size of each node correlates with its edge count, reflecting the extent of its connectivity and relevance
within the network. Larger nodes represent higher numbers of interactions with other GO-terms. Links between
nodes depict the connection between GO-Terms. The bold text represents the supra-cluster defined by
ReviGO49, represented by a grey square. Nodes had at least 15 edge counts: 1) positive regulation of excitatory
postsynaptic potential; 2) axonogenesis; 3) regulation of cellular component size; 4) regulation of synapse
organization; 5) positive regulation of vasoconstriction; 6) regulation of glomerular filtration; 7) regulation of
cell shape; 8) cell volume homeostasis; 9) negative regulation of blood pressure; 10) positive regulation of
endocytosis; 11) positive regulation of dendrite development; 12) regulation of dendrite development.
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Figure S12: Network of GO-Terms associated with negative tagDS and negative
impact on cognitive ability, Related to Figure 5.
This figure presents a Revigo-generated49 network of GOterms based on GOterm associted with negative impact
on cognitive ability and negative tagDS. Each node symbolizes a specific GOterm or GOterm cluster (clustering
by standard Revigo criteria49). Node color denotes the tagDS value associated (blue for negative tagDS). The
node size of each node correlates with its edge count, reflecting the extent of its connectivity and relevance
within the network. Larger nodes represent higher numbers of interactions with other GO-terms. Links between
nodes depict the connection between GO-Terms. The bold text represents the supra-cluster defined by
ReviGO49, represented by a grey square. Nodes had at least 15 edge counts: 1) vesicle fusion; 2)
phagolysosome assembly; 3) signal release; 4) establishment of spindle localization; 5) telomere maintenance;
6) neuron migration; 7) NAD metabolic process; 8) negative regulation of translation; 9) cardiocyte
differentiation; 10) cardiac neural crest cell development involved in heart development; 11) synapse
maturation; 12) nucleoside phosphate biosynthetic process; 13) mitotic G2/M transition checkpoint; 14) muscle
tissue development; 15) formation of primary germ layer; 16) trachea development; 17) somite development;
18) skeletal muscle organ development; 19) segmentation; 20) renal tubule development; 21) embryonic pattern
specification; 22) cerebellar cortex development; 23) ceramide biosynthetic process; 24) blastocyst formation;
25) axis specification; 26) trachea morphogenesis; 27) nuclear division; 28) negative regulation of cell
projection organization; 29) negative regulation of apoptotic signaling pathway; 30) hormone transport; 31)
anterior/posterior axis specification; 32) negative regulation of supramolecular fiber organization; 33) negative
regulation of neuron projection development; 34) negative regulation of cytoskeleton organization; 35)
lipopolysaccharide-mediated signaling pathway.
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Figure S13: Comparison between Collins et al.’s hapoinsufficiency, triplosensitive
scores and tagDS, Related to Figure 5.
Scatter (A) and hexbin (B) plots of the distribution of mean pHI and pTS of genes coming from the 645
significant GO-terms. The color-code represent the average LOEUF value of GO-terms. Hexbin plots visualize
the average between overlapping points. Scatter (C) and hexbin (D) plots representing again the distribution of
mean pHI and pTS of genes coming from the 645 significant GO-terms. The color-code represent the z-tagDS
value extract from Figure 6. (E) Comparison between gene dosage specificity for cognitive ability as describe by
z-tagDS and gene dosage specificity based on pHI, pTS difference.
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Figure S14: Word-cloud plots on effects on cognitive ability of gene clustered, based
on Gene ontology annotation, Related to Figure 5.
Word-cloud plots (A) and (B) display the 50 most frequent words within GO-term names and having a negative
effect on cognitive abilities, with negative (n GO-term = 279) and positive (nGO-term = 242) tagDS, respectively.
Red, blue, and green words represent biological processes, molecular functions and cellular components terms,
respectively. Black words are observed in multiple categories.

Figure S15: Description of cohorts in the dataset, Related to Table 1.
The figure showed the cognitive ability z-score adjusted (sex, age, PC1 to 10 and cognitive test) with age for
each participant.
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