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SUMMARY

Copy-number variants (CNVs) that increase the risk for neurodevelopmental disorders also affect cognitive
ability. However, such CNVs remain challenging to study due to their scarcity, limiting our understanding of
gene-dosage-sensitive biological processes linked to cognitive ability. We performed a genome-wide asso-
ciation study (GWAS) in 258,292 individuals, which identified—for the first time—a duplication at 2q12.3 asso-
ciated with higher cognitive performance. We developed a functional-burden analysis, which tested the as-
sociation between cognition and CNVs disrupting 6,502 gene sets biologically defined across tissues, cell
types, and ontologies. Among those, 864 gene sets were associated with cognition, and effect sizes of dele-
tion and duplication were negatively correlated. The latter suggested that functions across all biological pro-
cesses were sensitive to either deletions (e.g., subcortical regions, postsynaptic) or duplications (e.g., cere-
bral cortex, presynaptic). Associations between non-brain tissues and cognition were driven partly by
constrained genes, which may shed light on medical comorbidities in neurodevelopmental disorders.

o Cell Genomics 4, 100721, December 11, 2024 © 2024 The Authors. Published by Elsevier Inc. 1
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INTRODUCTION

Copy-number variants (CNVs) are deletions or duplications
larger than 1,000 base pairs." CNVs are major contributors to
risk for neurodevelopmental disorders (NDDs),? including intel-
lectual disability (D), autism spectrum disorder (ASD),°*
and schizophrenia.® ' CNVs that increase the risk of psychiatric
conditions also invariably affect cognitive abilities in individuals
with or without a psychiatric diagnosis and regardless of ascer-
tainment.”""® Such CNVs are often associated with multi-
morbidity in the clinic.""™'® Whole-genome CNV detection is
a first-tier diagnostic test routinely implemented in children
referred to the clinic for NDDs.'* Medical diagnostic laboratories
attempt to classify CNVs as either benign or putative pathogenic,
but beyond these categories, the effect sizes of CNVs on
cognitive ability have been used to provide more nuanced infor-
mation on the severity of a variant and to quantify the risk for
NDDs. Indeed, cognitive ability remains one of the traits most
commonly used in the pediatric clinic because it is predictive
of the outcome and adaptive skills of children with neurodeve-
lopmental symptoms.'®

Due to statistical power, most studies have repeatedly
analyzed a small set of the most frequently recurrent CNVs (pop-
ulation frequency > 1/10,000),'®"'® which collectively affect only
approximately 2% of the coding genome.'® As a result, our un-
derstanding of gene functions sensitive to gene dosage is highly
biased. However, the vast majority of CNVs affecting neurodeve-
lopmental and cognitive ability are ultra-rare (<1/10,000),"” and
associations have been established based on their size and
gene content using burden analyses.'*'%?? Such CNVs cover
a large proportion of the coding genome and remain difficult to
study individually with currently available sample sizes. Beyond
CNVs, more generally, our understanding of gene-disrupting
variants associated with cognitive ability and NDDs stems from
approximately 200 genes disrupted by de novo variants.*?*
Their functions are enriched in chromatin and transcription regu-
lation, regulation of nervous system development, central ner-
vous system neuron differentiation, and regulation of synapse
structure and activity.” It is unclear, however, if these functions
are most representative of cognitive ability or genetic constraint.
In addition, previous studies reporting on the functional enrich-
ment of ID- or NDD-associated genes have not stratified their
findings based on classes of disrupting variants. It is, therefore,
unknown whether specific biological functions and traits are
preferentially sensitive to different classes of genomic variants
(i.e., opposing gene dosage alterations such as deletions and
duplications).

Knowledge gap: overall, it has been difficult to investigate
the broad landscape of ultra-rare CNVs potentially involved in
neurodevelopmental traits, such as cognitive ability. As a result,
we have a limited understanding of the full range of gene-
dosage-sensitive biological processes linked to cognitive
ability. To circumvent the issue of power, research groups,
including ours, have implemented alternative approaches aggre-
gating rare variants disrupting genes with similar constraint
scores in order to perform “constraint burden” association
studies."'%192124 These burden analyses showed that genes
with increasing intolerance to haploinsufficiency were associ-
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ated with increasing effect sizes on cognitive ability and risk for
psychiatric illnesses, such as ASD, schizophrenia, and bipolar
disorder.'®?" Similarly, studies have developed methods to
aggregate common variants,?® demonstrating that a robust as-
sociation with a condition (e.g., ASD) can be established at the
group level when individual single-nucleotide polymorphisms
(SNPs) do not meet genome-wide criteria for association.

In this study, we aimed to investigate the full range of gene-
dosage-sensitive biological processes linked to cognitive ability.
To this end, we analyzed all CNVs >50 kb in 258,000 individuals
across 6 cohorts from the general population. The CNV-level
genome-wide association study (GWAS) identified the first
CNV associated with higher cognitive ability. To further investi-
gate CNVs too rare to be tested by the CNV-level GWAS, we per-
formed functional-burden analyses. To do so, we aggregated all
CNVs disrupting a group of genes assigned to a given biological
function. Functional-burden associations were performed be-
tween cognitive ability and 6,502 gene sets assigned to biolog-
ical functions at the tissue, cell type, and molecular levels. Func-
tional-burden tests revealed that most functional gene sets were
associated with cognitive ability when either deleted or dupli-
cated, and only a few gene sets showed significant associations
with cognition for both CNVs. As aresult, we observed a negative
correlation between the effect sizes of deletions and duplications
across all functional gene sets, and this was not influenced by
intolerance to haploinsufficiency. This suggests that the effects
of most biological functions on cognitive ability are dependent
on the type of gene dosage.

RESULTS

Gene dosage may be associated with higher cognitive
ability

Among the 258,292 individuals from general population data-
sets, 15.6% carried at least one rare (allele frequency < 1%)
autosomal CNV larger than 50 kb, fully encompassing one or
more coding genes (hg19). Among all autosomal coding genes
with loss-of-function observed/expected upper-bound fraction
(LOEUF) values (n = 18,451), 71.8% were fully encompassed in
one or more CNVs: 35% in deletions, 64.9% in duplications,
and 28.1% in both deletions and duplications (Figures 1A-1C).
Most of the genes encompassed in CNVs were contained in
ultra-rare CNVs (<1/10,000) with fewer than 30 carriers (Fig-
ure 1C). We used a linear regression model (gene-level GWAS;
cf. STAR Methods, statistical model 1) to test the association
of general cognitive ability with 241 and 596 genes covered by
at least 30 deletions or duplications, respectively (Figures 1D
and 1E). We identified 6 deletions encompassing a total of 68
genes and 7 duplications encompassing a total of 122 genes
with previously published negative effects (Table S1) that per-
sisted when we conducted a meta-analysis across 9 sub-co-
horts defined by cognitive assessments (Table 1; Figure 1E).
We identified a novel association between a duplication at
2q12.3 and positive effects (z=0.434, p = 7.58 x 10~%) on cogni-
tive ability (Figures 1F and S1). This duplication, observed in 36
individuals, included 4 non-intolerant genes with an LOEUF >
0.35 (EDAR, SH3RF3, SEPT10, SOWAHC) and was observed
at a similar frequency (1-2 in 10,000) across cohorts (Fisher’s
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Figure 1. CNV-GWAS on general cognitive abilities at the gene level

(A) Proportion of genes deleted (red) or duplicated (blue) at least once in the general population pooled dataset among all genes in the human genome (hg19).
Deleted or duplicated genes observed in less than 30 carriers (light color) and 30 or more (dark color), as well the proportion of genes not observed in any CNV
(gray).

(B) The maijority of deleted or duplicated genes were observed in more than 30 carriers.

(C) Venn diagram illustrating the overlap between gene content of ultra-rare and rare deletions and duplications, specifically the number of genes deleted and/or
duplicated at least once in these CNVs from the pooled general population datasets.

(D) The Miami plot illustrates the —log10-transformed p value of the association with cognitive ability for each gene included in deletions (red) at the top, and
duplications (blue) at the bottom, along the genome. Adjacent chromosomes are shown in alternating light and dark colors. Triangles represent significant genes
after FDR correction, while circles represent non-significant genes. The direction of the triangle indicates the effect size. The dash line represents the nominal
significant p value threshold.

(E) Data are represented as mean + standard error for cognitive ability, green diamonds indicate pooled analyses (all cohorts regrouped), and orange diamonds
represent meta-analyses (mean of effect sizes computed for each cohort separately). For meta-analyses, fixed-effect model values were chosen when the
heterogeneity test was not significant (p > 0.1), and a random-effects model was employed when heterogeneity was significant. We displayed the values for the
gene within the CNV that had the highest number of carriers (see also Table S1 and Figure S1).

(F) A specific duplication, chr2:109,510,927-110,376,563 (including EDAR, LOEUF = 0.91; SH3RF3, LOEUF = 0.53; SEPT10, LOEUF = 1.17; and SOWAHC,
LOEUF = 0.77), exhibited a previously unobserved positive effect on cognitive ability in the CNV-GWAS. See also Figure S1.

(G) To further investigate this positive effect, we conducted a post hoc analysis using a two-sided t test (mean + standard error for cognitive ability) on a ho-
mogeneous cohort with consistent technology, ancestry, and phenotype, aiming to eliminate biases. The t test revealed a significant difference between the two
groups: (1) individual without CNV vs. individual carrying duplication 2q12.3, t = —3.08, degree of freedom (df) = 18.01, p = 0.006, (2) individual without CNV vs.
individual carrying exonic CNVs without duplication 2q12.3, t = 6.96, df = 34314, p = 3.57 x 10~ "2, and (3) individual carrying duplication 2q12.3 vs. individual
carrying exonic CNVs without duplication 29q12.3, t = 3.31, df = 18.03, p = 0.004. Our focus was specifically on individuals of White British ethnicity in the UK
Biobank (UKBB) with adjusted fluid intelligence (Fl). In the left part of the analysis (G), individuals were categorized into three groups: carriers of the CNV of interest
(green), non-carriers of this specific CNV but carrying other exonic CNVs (light orange), and non-carriers of any exonic CNV (blue). The t tests were performed on

(legend continued on next page)
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exact p value corrected for false discovery rate [pgpr] > 0.05).
Results were not related to ancestry, array platform, or cognitive
assessment methods (Figure 1G). The positive effect remained
significant when comparing 2q12.3 duplication carriers to indi-
viduals without any CNVs. The reciprocal deletion in this region
showed a trend toward a negative effect on cognitive ability
(z=—-0.526, SD = 0.276, p = 0.058), but we were underpowered
with only 12 carriers. Additionally, the gene-dosage model
showed a positive effect (z = 0.415, SD = 0.138, p = 2.65 x
10~%) on cognitive ability per number of copies (1, 2, or 3) at
this locus. In other words, this may represent the first locus
with a mirror impact on cognitive ability.

A large proportion of intolerant and tolerant genes
modulate cognitive ability

Even with the current sample size, CNVs observed in >30 individ-
uals (and included in the gene/CNV-level GWAS above) cover
only 3%-4% of coding genes. However, previous studies have
shown that a much larger proportion of the coding genome is
involved in cognitive ability.'” To test the association of all rare
CNVs with cognition, we used burden association methods.
We created 38 overlapping gene categories by sliding a window
(defined by a width of 0.15 LOEUF units) by 0.05 LOEUF units 37
times (Figure 2B; STAR Methods, statistical model 2). We added
a 39th category of known ID-associated genes (defined by
ClinGen; Table S2). We calculated 39 burden effect sizes using
linear models. To estimate the mean effect size of a gene in a
given category and prevent the inflation of effect size due to
multigenic CNVs, we adjusted for genes within CNVs that were
not included in the LOEUF category of interest (cf. STAR
Methods, statistical model 2; Figure 2A). The 39 estimates pro-
vided by the meta-analysis across the 9 sub-cohorts were not
different from those provided by aggregating these datasets
(Figure 2B; Tables S3 and S4). Therefore, all subsequent ana-
lyses were performed on the aggregated dataset. The effects
of deletions were, on average, 2.4-fold higher than duplications,
and we observed a positive correlation between the effect sizes
of deletions and duplications across LOEUF categories (Spear-
man’s r = 0.5, Ppermutation = 0.02; Figure S2). Negative effects
on cognitive abilities were observed in 8 and 11 non-tolerant cat-
egories (LOEUF < 1) for deletions and duplications, respectively.
The more intolerant the LOEUF category, the more negative the
effect size, with the ID gene set having the largest effects. Of
note, 2 and 3 categories showed positive effects for deletions
and duplications, respectively. In other words, the effect sizes
of these categories were significantly higher than the average ef-
fect of gene categories used to adjust the model. Sensitivity an-
alyses showed no biases related to ancestry, large multigenic
CNVs, or low-quality control scores (Figures 2C and S3). Effect
sizes of intolerant genes were higher when removing older age
groups (=60 or >70 years old; Figure 2C). Because the most
intolerant CNVs are depleted in the general population, we
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included 3 ASD cohorts in a sensitivity analysis. This resulted
in larger effects and smaller p values for highly intolerant
LOEUF categories without changing the effects of other
LOEUF categories >0.35 (Figure 2C).

Negative correlation between deletion and duplication
effects on cognitive ability across brain regions
Previously published functional enrichment analyses?®?° have
focused on recurrent CNVs. We therefore developed a func-
tional-burden test to systematically investigate gene functions
that may underlie the pervasive association between CNVs
(too rare to reach individual association) and cognitive ability.
The functional burden aggregates all CNVs disrupting genes
involved in a given biological process. It provides the average
effect on the cognitive ability of genes assigned to a biological
function and is computed separately for deletions and
duplications.

We tested 215 gene sets assigned to 215 adult brain regions.
To define gene sets, we first normalized (Z scored) the expres-
sion of each gene across all 215 regions. For each tissue, the
corresponding gene set was defined based on relative over-
expression by selecting all genes with a Z scored expression
> 1 in that tissue. Among the 215 regional gene sets, 91 and
94 (mostly non-overlapping) were associated with cognitive abil-
ity when deleted or duplicated, respectively, but only 25 of these
gene sets impacted cognition when disrupted by both CNVs (cf.
STAR Methods; Figure 3A). This suggests that genes assigned to
brain regions affect cognitive ability when either deleted or
duplicated.

These preferential effects were supported by the negative
correlation observed between the effect sizes of deletions and
duplications across all brain regions (Spearman’s r = —0.43,
Ppermutation = 9 X 107%; Figure 3B). Stratifying these brain gene
sets into 3 independent LOEUF categories provided the same
negative correlations (Figure 3C). Sensitivity analysis showed
that the negative correlation was not due to unbalanced power
between deletions and duplications or the relative expression
threshold used to define gene sets (Figure S4). Previous publica-
tions have reported that the effect size of gene dosage on cogni-
tive ability is U-shaped,®' with the effects of deletions being 2- to
3-fold higher than those of duplications.’"'? Studies, however,
have not been able to test whether genes show preferential ef-
fects on cognitive ability when either deleted or duplicated. We
developed the trait-associated gene dosage sensitivity score
(tagDS) to test whether the deletion/duplication effect size ratio
of a given gene set deviates from the null distribution (average ra-
tio of 2.4 in our dataset; cf. STAR Methods). This normalized
value reflects preferential sensitivity to deletions or duplications
for a specific phenotype. Positive or negative tagDS depicted ra-
tios of effect sizes between deletions and duplications biased to-
ward deletions or duplications, respectively (cf. STAR Methods;
Figure 3D). tagDS values indicated that cerebral cortex gene sets

Fl adjusted for sex, 1-10 principal component for ancestry, and age. In the right part of the analysis (F), two groups were defined: carriers of the CNV of interest
(dark pink) and non-carriers (light blue). The t tests were conducted on Fl adjusted for sex, ancestry, age, and the burden of 1/LOEUF for deletions and dupli-
cations. For the duplication of chr2:109,510,927-110,376,563 observed in the CNV-GWAS (G), the carriers exhibited significantly higher cognitive ability
measures compared to both other groups (two-sided t test: t = —3.76, df = 18.01, p = 0.001). Furthermore, when we weighted the cognitive ability by the burden of
1/LOEUF for deletions and duplications, a positive effect was also observed among carriers of the CNV of interest.
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Table 1. Cohort descriptions

Unselected cohorts

(n =258,292) N Ancestry EUR (others) Gender (F/M) Age mean year, (+SD) Cognitive ability assessments
CaG 2,589 2,472 (117) 1,375/1,214 53.943 (7.845) g-factor

G-Scot 13,715 13,672 (43) 8,081/5,634 46.730 (14.996) g-factor

IMAGEN 1,744 1,624 (120) 891/853 14.450 (0.366) WISC-IV

LBC1936 503 500 (3) 246/257 69.825 (0.829) Moray House Test*®

SYS 1,565 1,561 (4) 824/742 28.177 (17.098) WISC-III or g-factor

UKBB 73,882 71,364 (2,518) 39,317/34,565 60.022 (8.959) g-factor®’

UKBB 62,080 60,484 (1,596) 34,335/27,745 62.083 (7.663) g-factor (online)

UKBB 88,441 80,427 (8,014) 47,789/40,652 58.139 (8.304) Fl

UKBB 13,773 13,458 (315) 8,2845,489 64.185 (7.685) Fl (online)

Analyses were performed (after quality control [QC]) in 258,292 individuals from 6 general population cohorts. SYS, Saguenay Youth Study; CaG,
CARTaGENE; LBC1936, Lothian Birth Cohort 1936; N, number of individuals remaining for analysis after quality control. See also Figure S15 and

Tables S6 and S7.

affected cognitive ability preferentially when duplicated, while
the opposite was observed for non-cortical (subcortical and
midbrain) gene sets and deletions (Figure 3A; Mann-Whitney
Ppermutation = 1 X 107'%). The same cortical/non-cortical gene
dosage sensitivity was also observed when removing genes
with low tissue specificity (Figure S4).%

At the microstructure and cell type levels (6 cortical layers, 7
adult, and 16 fetal brain cell types, using the same method
described above based on normalized gene expression; cf.
STAR Methods), we observed the same negative correlation
(r=—0.70, Ppermutation < 1 X 107%; Figure S5). The largest effects
for deletions and duplications were observed in gene sets as-
signed to fetal cell types. Deletions and duplications, respec-
tively, showed preferential effects in non-neuronal (endothelial,
glia) and neuronal (excitatory) cell types (Figure 3E).

Genes preferentially expressed in non-brain tissues

also affect cognitive ability

There is a growing interest in whole-body health comorbidities
among individuals with neurodevelopmental and psychiatric
conditions, as well as CNVs affecting cognition.'®** We there-
fore asked if CNVs affecting genes preferentially expressed in
non-brain tissues (not part of the nervous central system) were
also associated with cognitive ability.

We used 37 gene sets defined by relative expression (same
methods used for brain regions and cell types) in 37 whole-
body tissues (12 brain and 25 non-brain tissues [>1 SD]; Fig-
ure 4A). Many non-brain gene sets showed effect sizes (Fig-
ure 4B) of similar magnitude to those observed for regional brain
gene sets. This was not explained by the level of overlap be-
tween brain and non-brain gene sets (Figures 4A and 4B). We
observe the same pattern of deletion-duplication negative
correlation independently of the gene set definitions (r = —0.64,
Ppermutation < 1 X 10~3; Figures 4C and S6). To understand how
gene set definitions influence these results, we first removed
8,194 genes with low-tissue specificity assigned to multiple
gene sets. The resulting effect sizes were correlated with the
initial estimates (r = 0.57; Figure S7). In fact, genes assigned to
multiple tissues show higher intolerance (LOEUF) compared to

tissue-specific genes (p = 1 x 107"'-3 x 107""; Figure S8).
To further investigate the impact on results of gene set defini-
tions, we tested 37 previously published gene sets assigned to
37 GTEXx tissues computed by the top decile expression propor-
tion (TDEP) method (proportional gene expression).® This
method, which emphasizes specificity, excludes 5,454 genes,
of which 1,586 and 696 are, respectively, moderately intolerant
to haploinsufficiency (LOEUF = [0.35, 1]) and highly intolerant
to haploinsufficiency (LOEUF < 0.35; Figure S8). Effect sizes
were well correlated with our analysis, excluding LTS genes
(r = 0.76), but TDEP gene sets were unable to detect any effect
for deletions across all tissues (Figure S7).

The effects of deletion and duplication on cognitive
ability are negatively correlated across all levels of
biological observations

We asked if the deletion-duplication negative correlations
observed for tissue-level gene sets were also present at the mo-
lecular and cellular component levels. We first investigated 293
synaptic gene ontologies (GOs) using SynGO.** We observed
that postsynaptic genes showed the largest negative effects
on cognitive ability when deleted, and in contrast, presynaptic
genes showed the largest negative effects when duplicated
(Figures 5A and S9). As a result, the effects of the 2 opposing
CNVs were negatively correlated across SynGO terms (r =
—0.39, Ppermutation = 1 X 107%; Figure S10).

We extended our analysis to 6,130 GO terms (and correspond-
ing gene sets); 5.0% and 3.5% of the GO terms had an effect size
on cognitive ability for deletions and duplications, respectively. A
minority (0.7%) of GO terms showed significant effects for both.
We observed again a deletion-duplication negative correlation
across GO term effect sizes (r = —0.54, Ppermutation < 1 X 1073;
Figures 5B, S11, and S12), which remained significant across
three independent levels of LOEUF stratification (Figure 5C).
We asked if tagDS was similar to pHI (probability of haploinsuffi-
ciency) and pTS (probability of triplosensitivity), 2 previously
published metrics that are highly correlated with each other
(0.78) and with LOEUF (r = 0.90 and 0.77, respectively). tagDS
was unrelated to pHI and pTS scores®® across GO terms
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Figure 2. Effect sizes of autosomal coding genes on general cognitive abilities based on their LOEUF values

(A) The functional-burden test is a linear model estimating the mean effect size of all CNVs fully encompassing genes assigned to a biological function of interest.
Because many CNVs are multigenic, the model is adjusted for genes included in a CNV but not assigned to the biological function of interest.

(B) Sliding window (STAR Methods, statistical model 2) estimating the mean effect size + standard error on cognitive ability of deletions (top) and duplications
(bottom) for 38 LOEUF categories (we slide a window of 0.15 LOEUF units in increments of 0.05 units, thereby creating 38 categories across the range of LOEUF
values) and definitive ID genes curated by ClinGen. Estimates were computed using a meta-analysis (circles) as well as a pooled dataset (squares). The red
dashed line defines intolerant genes (LOEUF < 0.35) (see also Tables S2, S3, and S4 and Figures S2 and S3).

(C) Heatmap showing the effect size (color scale) on cognitive ability of deletions and duplications across a range of sensitivity analyses removing non-Europeans,
older participants (>60 or >70 years old), large multigenic CNVs (those with a sum of 1/LOEUF >60, >40, and >20 corresponding to values of well-known
recurrent CNVs: 22g11.2, 16p11.2, and TAR, respectively), as well as adding a neurodevelopmental dataset (autism spectrum disorder). All estimates were

computed on the pooled dataset.

(Figure S13). Finally, several GO terms, such as neuronal, synap-
tic, and cardiac functions, showed preferential effects when
deleted, while the opposite was observed for cellular response
functions, transport, metabolic processes, and signaling path-
ways. Furthermore, “positive regulation” GO terms were more
sensitive to deletions, while “negative regulation” terms showed
preferential effects when duplicated (Figures 5D and S14).

DISCUSSION

In this large-scale CNV-GWAS on cognitive ability, we identified
a duplication at 2q12.3 that is associated with higher cognitive

6 Cell Genomics 4, 100721, December 11, 2024

ability. Although our sample size limited the discovery of new
genome-wide signals at the variant level, we developed a func-
tional-burden association test that allowed us to simultaneously
test the contribution of all ultra-rare CNVs (covering 75% of the
coding genome) and their function to cognitive ability. Constraint
(LOEUF) and functional-burden analyses revealed that a sub-
stantial portion of the coding genome was associated with
cognitive ability when deleted or duplicated. We also demon-
strated that genes involved in a broad array of biological func-
tions show preferential effects on cognitive ability when either
deleted or duplicated. The latter was quantified by negative cor-
relations between deletion and duplication effect sizes and by
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Figure 3. Effects on cognitive ability of genes assigned to brain regions and cell types

(A) Effect sizes on cognitive ability of gene sets assigned to 215 brain tissues/regions. Brain regions are color coded and clustered (first row, Ward’s method*°)
based on the level of overlap (gray matrix) between their corresponding gene sets. The average LOEUF value for each gene sets is color coded in the second row.
The mean effect sizes on the cognitive ability of genes assigned to each brain region are coded for deletions (third row) and duplications (fourth row). tagDS values
are represented in the fifth row.

(B) Spearman correlation (black line) between the effect sizes of deletions and duplications across all gene sets with FDR significant effects on cognitive ability for
either deletions (downward triangle), duplications (upward triangle), or both (cross). p values were obtained from permutations to account for the partial overlap
between gene sets. Gene sets are color coded based on their tagDS. The dashed line represents the average exome-wide duplication/deletion effect size ratio
(see also Figure S4).

(C) The same negative correlations between deletion and duplication were observed across 3 independent LOEUF groups: <0.35 (intolerant; red), [0.35, 1.0[
(moderately intolerant; orange), and [1.0, 2.0] (tolerant; green).

(D) Raw tagDS is the Euclidean distance to the whole-genome ratio of effect sizes. tagDS is normalized following the null distribution of random gene sets of
identical size.

(E) Effect size of deletions and duplications encompassing genes assigned to 6 cortical layers, 7 adult brain cell types, and 16 fetal brain cell types. Clustering was
calculated on the level of overlap between cell type gene sets (Ward’s method®®). Purple and orange represent negative and positive effects on cognitive ability,
respectively. Black edges indicate significant effects (see also Figure S5).

tagDS, a new normalized metric that assesses sensitivity to
either deletions or duplications. We also show that genes as-
signed to non-brain tissues affected this “brain-centric” trait.
We identify, to our knowledge, the first CNV associated with
higher cognitive ability. The 865 kb duplication (population fre-
quency = ~1/7,200), which includes EDAR, SH3RF3, SEPT10,
and SOWAHC, had not been previously associated with any trait
or condition and showed a moderate effect size (z = 0.434, equiv-
alent to 6.5 points of intelligence quotient [IQ]) on cognitive ability
without significant heterogeneity across cohorts. Publications

have identified associations between SNPs within this locus
and 58 traits, including brain morphology,®”° schizophrenia,*®*'
Alzheimer's disease,”* and neuroinflammatory biomarkers*®
(Table S5). An excess of SEPT10 de novo missense mutations
have been reported in NDDs.* Given that the median age of our da-
taset is 60.7 years, it is possible that this duplication may be asso-
ciated with a neuroprotective effect. We suspect that many more
CNVs associated with higher cognitive ability will be identified in
the future as sample sizes increase. Our functional-burden
method identified gene sets with positive effects on cognitive
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Figure 4. Effects on cognitive ability of CNVs affecting genes implicated in brain and non-brain tissues

(A) We defined 37 gene sets based on Z scored expression >1 SD. Expression of each gene was normalized across 37 tissues provided by GTEx. Gene sets were
clustered (orange for brain tissues and blue for non-brain tissues) based on their overlap, which is shown in the grayscale matrix. High overlap was observed
between brain gene sets (Ward’s method®’), and much lower overlap was present across non-brain tissues and between brain and non-brain tissues. The mean
LOEUF of each gene set is color coded in the second row. Effect sizes on cognitive ability and tagDS across tissues are color coded in the third row as well as in
the body map (B), adapted from GTEx. Genes with low tissue specificity were defined by the Human Protein Atlas.

(C) Spearman correlation (black line) between the effect sizes of deletions and duplications on cognitive ability. Downward and upward triangles and crosses
represent significant effects for deletions, duplications, and both respectively. Gene sets are color coded based on their tagDS.

ability. Determining whether these gene sets truly increase cogni-
tive ability or, instead, show smaller effects than the mean effect
used to adjust for multigenic CNVs will require larger samples
with data on CNVs disrupting single genes. Overall, the results
suggest that gene dosage may be associated with a higher 1Q,
but most effects are masked by the multigenic nature of CNVs.

It has been challenging to evaluate haploinsufficiency and
triplosensitivity. We show that tagDS for cognitive ability is
orthogonal to genetic constraint, as well as previously pub-
lished pHI and pTS measures. tagDS highlights sensitivity to
either deletions or duplications across gene functions from
macroscopic (cortical vs. non-cortical tissue) to microscopic

8 Cell Genomics 4, 100721, December 11, 2024

(pre- vs. postsynaptic genes and positive vs. negative regula-
tion) levels of observation.

Genetic covariance has almost exclusively been computed
using common variants to investigate the genetic overlap be-
tween traits. While genetic covariance using rare variants is
understudied due to a lack of statistical power, a recent study**
aggregating rare variants at the gene level showed that the
genetic correlation between protein loss-of-function and
damaging missense variants associated with the same trait
was, on average, 0.64 (with some correlations <0.5), implying
that different classes of variants in the same genes may show
different phenotypic effects.
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Figure 5. Effects on cognitive ability of gene sets based on GOs
(A) Effect sizes of synaptic molecular functions and cellular component gene sets as defined by SynGO®° on cognitive ability (more details in Figure S9). Blue and
red represent negative and positive cognitive ability tagDS, respectively. Ontologies with black edges indicate significant effects (FDR). The results are shown
only for SynGO terms with more than 10 genes, observed at least 30 times in our dataset, and with a coverage greater than 20%. Note: (1) regulation of
modification of postsynaptic actin cytoskeleton, (2) regulation of calcium-dependent activation of synaptic vesicle fusion, (3) presynaptic modulation of chemical
synaptic transmission, (4) integral component of postsynaptic density membrane, and (5) synaptic vesicle membrane (see also Figures S9 and S10).

(B) There is a negative correlation (Spearman) between the effect sizes of deletions and duplication across 601 GO terms.
(C) The same deletion-duplication negative correlation was observed across 3 independent LOEUF groups (highly intolerant to haploinsufficiency <0.35: red,
moderately intolerant to haploinsufficiency [0.35, 1.0[: orange, tolerant to haploinsufficiency [1.0, 2.0]: green).
(D) We adapted the word cloud package, which groups GO terms based on shared terminology. y axis: sum of associations of each word with significant deleted
and duplicated GO terms. x axis: proportion of significant GO terms for a given CNV type used for the association. “Positive” and “negative” refer to “positive
regulation” and “negative regulation,” respectively (see also Figures S11, S12, and S14).
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In our study, we show that two classes of variants with
opposing molecular consequences have negatively correlated
phenotypic effects. This negative correlation was observed
regardless of whether CNVs were aggregated based on
their function in tissues, cell types, or GO terms. This suggests
that associating genes with traits or diseases is highly
dependent on the class of genetic variants. Whether this
negative correlation generalizes to other phenotypic traits is
unknown.

There has been growing interest in the relationship between
mental health and whole-body multi-morbidities. This is exem-
plified by the correlation between cognitive ability, medical con-
ditions, such as coronary artery disease,'**> and longevity. ">
Recent studies also showed that poor physical health was more
pronounced in neuropsychiatric illness than poor brain health.**
In the current study, genes preferentially expressed in many
non-brain organs show effects on cognition similar to those
observed for brain tissue. The latter could not be explained by
the level of overlap between brain and non-brain gene sets.
However, our results suggest a trade-off of impact on cognitive
ability between the intolerance to haploinsufficiency of genes
and their tissue specificities. In other words, genes with lower
tissue specificity and higher pleiotropy tend to have lower
LOEUF values and therefore larger effect sizes on cognitive abil-
ity. Other interpretations include (1) gene-disrupting variants
can alter non-brain organs, which in turn alter brain function
due to suboptimal support, and (2) cognition is an embodied
multi-organ trait includes both brain and non-brain organs. A
whole-body contribution exists for other cognitive-modulating
traits such as sleep (thought to be for and by the brain), which
is also regulated by peripheral tissue.*’

The main limitation of this study is the use of gene sets, which
were defined either on the basis of well-established ontologies or
using a “relative method” based on normalized expression
values. In the latter approach, we chose thresholds that may
have influenced our results. Multiple sensitivity analyses demon-
strated that changing the threshold (and therefore the size of the
gene set) did not influence our main findings. Expression profiles
vary across space, cell types, and time for a given tissue. Our
gene sets could not explore all of these aspects. Larger studies
will be required to increase the granularity of these functional
burdens on association tests.

In conclusion, our study demonstrated, for the first time, the
positive effects of a CNV on cognitive abilities. We present a
new approach to functionally aggregate rare and ultra-rare vari-
ants and uncover many gene functions that are preferentially
sensitive to either deletions or duplications. Computing tagDS
for other complex traits will help understand whether sensitivity
to gene dosage is trait dependent.

RESOURCE AVAILABILITY

Lead contact

For additional information, as well as requests regarding resources, please
direct your inquiries to the lead contact, Sébastien Jacquemont (sebastien.
jacquemont@umontreal.ca).

Materials availability
This study did not generate new unique reagents.
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Data and code availability

All general population data are available to other investigators online: IMAGEN:
https://www.cataloguementalhealth.ac.uk, LBC: https:/lothian-birth-cohorts.
ed.ac.uk/, SYS (contact: T.P., tomas.paus@umontreal.ca), CaG: https:/
portal.canpath.ca/, Generation Scotland: https://www.ed.ac.uk/generation-
scotland, and the UK Biobank: https://www.ukbiobank.ac.uk. All ASD popula-
tion data are available to other investigators online: SSC: https://www.sfari.
org/, SPARK: https://www.sfari.org/, and MSSNG: https://research.mss.ng/.
All derived measures used in this study are available upon request (S.J.,
sebastien.jacquemont@umontreal.ca). The rest of the CNV carriers’ data cannot
be shared, as participants did not provide consent. Summary statistics and
the gene sets used to compute them have been deposited on FigShare (see
key resources table). All original scripts have been deposited and are
publicly available as of the date of publication on GitHub repositories: (1) quality
control and annotation of CNVs: https://martineaujeanlouis.github.io/MIND-
GENESPARALLELCNV/, (2) CNV validation (“DigCNV”): https://github.com/
labjacquemont/DigCNV, and (3) statistics and visualizations: https://github.
com/labjacquemont/CNV_cognitive_ability.
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