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Supplemental Items  

 

Table S1. Cross validation result of LGMF-GNN on SRPBS dataset 

  ACC AUC Precision Recall F1-Score 

10-Fold 

CV 

2-Stage 78.22±2.38 78.85±5.50 79.37±9.19 74.05±8.28 75.91±4.27 

End-to-End 78.75±4.55 80.64±5.74 76.80±7.93 82.00±5.79 78.96±4.88 

LOSO 

CV 

2-Stage 71.43±5.68 71.72±5.17 72.08±8.12 73.00±5.67 72.30±5.59 

End-to-End 72.64±4.77 73.71±4.12 72.45±5.72 74.35±6.49 73.33±5.70 

 

Table S2. Cross validation result of LGMF-GNN on REST-meta-MDD dataset 

 ACC AUC Precision Recall F1-score 

10-Fold CV 71.34±1.50 73.67±2.67 72.20±4.61 73.52±6.26 72.56±2.06 

LOSO CV 74.53±9.70 73.46±10.89 74.71±9.98 77.21±11.90 75.57±9.45 

 

 

Figure S1. The flowchart of data selection on REST-meta-MDD dataset 

 



 

Figure S2. The flowchart of data selection on SRPBS dataset 

 

 

 

 

 

Figure S3. The flowchart of data selection on Anding dataset 



 

Figure S4. The flowchart of data selection on Openneuro dataset 

 

 

 

 

 

 

Figure S5. Overview of the feature extraction process using PyRadiomics. Grey matter or 

white matter volumes and segmentation masks are loaded into PyRadiomics first. Next, 

Laplacian of Gaussian filters (Sigma=2.0,3.0,4.0,5.0) and Wavelet filters were applied to the 

original image, resulting in 12 derived images. Subsequently, radiomic features were extracted 

from the 13 images, forming two 1209-dimensional feature vectors to represent the anatomical 

features in grey and white matter.  

 

 



 

Figure S6. t-SNE plots of SRPBS dataset before and after Combat harmonization 

 

Table S3. Comparison of 10-fold CV results on single-site and multi-site scenarios 

 ACC AUC Precision Recall F1-Score 

S20 (1-site) 91.92±4.67 93.41±4.56 89.32±4.56 92.47±7.84 90.62±4.54 

SRPBS (6-site) 69.02±3.57 66.33±4.76 72.88±4.55 62.93±2.84 65.94±4.53 

 

Table S4. Category distribution of the FEDN vs HC subset of REST-meta-MDD dataset by 

site 

Site FEDN HC Total 

8 28 28 56 

9 22 22 44 

14 61 32 93 

20 97 126 223 

23 11 11 22 

Total 219 219 438 

  

Table S5. Category distribution of the RECU vs HC subset of REST-meta-MDD dataset 

by site 

Site RECU HC Total 

7 11 11 22 

9 26 26 52 

11 18 17 35 

19 12 12 24 

20 46 58 104 

21 76 65 141 

Total 189 189 378 



 

Table S6. Category distribution of the FEDN vs RECU subset of REST-meta-MDD dataset 

by site 

Site FEDN RECU Total 

9 22 26 48 

20 97 46 143 

Total 119 72 191 

 

Table S7. Subtype classification on the REST-meta-MDD dataset 

 ACC AUC Precision Recall F1-Score 

FEDN vs. HC 75.13±3.16 76.73±4.57 76.65±8.80 73.12±6.50 74.31±4.08 

RECU vs. HC 74.05±4.34 72.28±7.49 73.24±8.44 71.91±6.36 71.98±3.45 

FEDN vs. RECU 76.92±8.94 68.89±15.63 78.98±14.81 85.95±11.68 81.35±10.20 

 

 

 

Table S8. Comparison with other GNN methods on the Anding dataset 

 ACC AUC Precision Recall F1-Score 

GCN 54.69 57.75 67.53 26.53 38.10 

GIN 52.54 53.65 57.60 36.74 44.86 

GAT 56.84 56.93 64.00 40.82 49.84 

BrainGNN 55.23 48.89 54.33 92.86 68.55 

EV-GCN 57.11 57.74 60.98 51.02 55.56 

LG-GNN 57.91 59.92 60.54 57.14 58.79 

ContrastPool 54.17 54.49 53.06 85.25 65.41 

pRGAT 54.42 54.14 56.25 59.69 57.92 

MAMF-GCN 56.84 54.88 59.89 54.08 56.84 

SFGL 51.21 48.34 53.27 58.16 55.61 

CI-GNN 57.50 58.84 58.79 59.69 59.24 

IBGNN 52.01 48.64 52.51 90.82 66.54 

LGMF-GNN 69.97 72.91 71.21 71.94 71.57 

 

 

 

 

 

 

 

 

 



 

Table S9. Comparison with other GNN methods on the Openneuro dataset 

 ACC AUC Precision Recall F1-Score 

GCN 59.52 55.33 59.09 61.91 60.47 

GIN 61.91 51.47 66.67 47.62 55.56 

GAT 66.67 60.32 68.42 61.91 65.00 

BrainGNN 57.14 48.75 63.64 33.33 43.75 

EV-GCN 66.67 65.08 65.22 71.43 68.18 

LG-GNN 69.05 69.84 68.18 71.43 69.77 

ContrastPool 65.00 62.66 65.22 71.43 68.18 

pRGAT 54.76 54.76 60.00 28.57 38.71 

MAMF-GCN 66.67 64.17 68.42 61.91 65.00 

SFGL 54.76 46.49 54.17 61.91 57.78 

CI-GNN 71.67 61.68 70.00 66.67 68.29 

IBGNN 57.14 55.67 55.17 76.19 64.00 

LGMF-GNN 69.05 70.30 66.67 76.19 71.11 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table S10.1. Hyperparameter setting of GCN 

Hyperparameter 

name 
Value Description 

num_layer 3 Number of GNN message passing layers 

emb_dim 64 Dimensionality of hidden units in GNNs 

lr 1e-4 Learning rate of optimizer 

batch_size 32 Input batch size for training 

drop_ratio 0.6 Dropout ratio 

stepsize 50 Scheduler step size 

gamma 0.6 Scheduler shrinking rate 

 

Table S10.2. Hyperparameter setting of GIN 

Hyperparameter 

name 
Value Description 

num_layer 3 Number of GNN message passing layers 

emb_dim 64 Dimensionality of hidden units in GNNs 

lr 1e-4 Learning rate of optimizer 

batch_size 32 Input batch size for training 

drop_ratio 0.6 Dropout ratio 

stepsize 50 Scheduler step size 

gamma 0.6 Scheduler shrinking rate 

 

Table S10.3. Hyperparameter setting of GAT 

Hyperparameter 

name 
Value Description 

num_layer 5 Number of GNN message passing layers 

emb_dim 32 Dimensionality of hidden units in GNNs 

lr 1e-3 Learning rate of optimizer 

batch_size 16 Input batch size for training 

drop_ratio 0.5 Dropout ratio 

stepsize 50 Scheduler step size 

gamma 0.6 Scheduler shrinking rate 



 

Table S10.4. Hyperparameter setting of BrainGNN 

Hyperparameter 

name 
Value Description 

num_layer 2 Number of GNN layers 

indim 200 Dimensionality of node feature 

lr 1e-2 Learning rate of optimizer 

batch_size 64 Input batch size for training 

ratio 0.5 Pooling ratio 

stepsize 20 Scheduler step size 

gamma 0.6 Scheduler shrinking rate 

lamb0 1 Classification loss weight 

lamb1 0 S1 unit regularization 

lamb2 0 S2 unit regularization 

lamb3 0.1 S1 entropy regularization 

lamb4 0.1 S2 entropy regularization 

lamb5 0.1 S1 consistence regularization 

 

 

 

 

 

 

Table S10.5. Hyperparameter setting of EV-GNN 

Hyperparameter 

name 
Value Description 

hgc 16 Hidden units of gconv layer 

lg 4 Number of gconv layers 

lr 1e-2 Learning rate of optimizer 

edropout 0.3 Edge dropout rate 

 

 

 

 

 

 



 

Table S10.6. Hyperparameter setting of LG-GNN 

Hyperparameter 

name 
Value Description 

hgc 64 Hidden units of gconv layer 

lg 4 Number of gconv layers 

lr 1e-2 Learning rate of optimizer 

edropout 0.3 Edge dropout rate 

topk_ratio 0.5 
The ratio of ROIs differ significantly from those of 

the unselected nodes to be selected 

dropout 0.6 Ratio of dropout 

 

 

 

 

 

 

 

Table S10.7. Hyperparameter setting of ContrastPool 

Hyperparameter 

name 
Value Description 

batch_size 20 Input batch size for training 

Init_lr 1e-2 The initial learning rate 

lr_reduce_factor 0.5 Scheduler shrinking rate 

lr_schedule_patience 25 Scheduler step size 

min_lr 1e-6 Minimum learning rate 

Lamda1 1 
The weight factor of the entropy loss of the 

assignment matrix 

Lamda2 1e-3 
The weight factor of the entropy loss to the 

adjacency matrix of the contrast graph 

dropout 0 The ratio of dropout 

L 2 Number of GNN layers 

pooling ratio 0.5 
The ratio of nodes in the output graph  of each 

ContrastPool layer 

 

 

 

 



 

Table S10.8. Hyperparameter setting of pRGAT 

Hyperparameter 

name 
Value Description 

num_features 2000 
Number of features to keep for the feature selection 

step 

connectivity correlation Type of connectivity used for network construction 

lr 1e-4 Learning rate of optimizer 

hid_c 12 Size of hidden layer 

 

 

 

 

 

Table S10.9. Hyperparameter setting of MAMF-GCN 

Hyperparameter name Value Description 

pheno_edge_threshold 3.1 
Graph sparsification edge threshold of the 

phenotypic grpah 

hgc 16 Hidden units of gconv layer 

lg 4 Number of gconv layers 

lr 0.01 Learning rate of optimizer 

node_feature_dim 900 Dimension of node feature 

edropout 0.2 Edge dropout rate 

dropout 0.2 Ratio of dropout 

snowball_layer_num 6 Num of snowball layer 

alpha 5e-5 Weight of modal consistency loss 

Beta 1e-6 Weight of modal disparsity loss 

K 9 
Number of the top k neighbors in the k-nearest 

graph 

Stepsize 100 Scheduler step size 

gamma 0.6 Scheduler shrinking rate  

 

 

 

 

 

 



 

Table S10.10. Hyperparameter setting of SFGL 

Hyperparameter 

name 
Value Description 

minibatch_size 32 Input batch size 

window_size 30 The length of the sliding window 

window_stride 2 The stride of the sliding window 

lr 1e-3 Learning rate of optimizer 

reg_lambda 1e-5 Value of lambda 

gamma 0.8 
Balancing coefficient of the shared branch and the 

subject-specific branch 

num_epochs 8 Local epochs of federal learning 

num_iters 20 Communication rounds of federal learning 

num_heads 4 The head number of Transformer 

num_layers 2 The number of GIN layer 

hidden_dim 64 Output dimension of Transfomer 

ph 16 Hidden dimension of personalized branch 

sparsity 30 Degree of sparsity 

dropout 0.5 Ratio of dropout 

 

 

Table S10.11. Hyperparameter setting of CI-GNN 

Hyperparameter 

name 
Value Description 

batch_size 16 Input batch size for training 

latent_dim 
[128, 128, 

128] 
Classifier hidden dims 

dropout 0.5 Ratio of final layer dropout 

lr 1e-3 Learning rate of optimizer 

mlp_hidden [128,128] Mlp hidden dims 

GVAE_hidden_dim 64 Hidden dims of graph VAE 

Nalpha 56 Dimension of causal factor alpha 

Nbeta 8 Dimension of non-causal factor beta 

 

 



 

Table S10.12. Hyperparameter setting of IBGNN 

Hyperparameter 

name 
Value Description 

Batch_size 16 Input batch size for training 

n_GNN_layers 2 Number of IBGConv layers 

n_MLP_layers 1 Number of MLP layers 

lr 1e-3 Learning rate of optimizer 

initial_epochs 100 Number of epochs for initial training 

explainer_epochs 100 Number of epochs to train the explainer 

tuning_epochs 100 Number of epochs to fine-tune the whole model  

 

 

 

 

 

 

 

Table S11. Comparison with other GNN methods on the SRPBS dataset 

 ACC AUC Precision Recall F1-Score 

GCN 70.25±4.44 67.65±7.00 72.06±5.29 66.49±14.76 68.11±8.78 

GIN 68.51±4.22 65.14±5.05 72.79±9.85 62.51±23.09 63.86±14.32 

GAT 68.52±4.83 63.90±6.82 67.72±6.29 69.19±12.52 67.94±8.03 

BrainGNN 63.88±3.55 59.49±5.48 64.87±6.81 61.59±11.36 62.37±6.89 

EV-GCN 72.87±4.11 71.58±7.46 74.49±6.84 71.62±5.88 72.61±3.29 

LG-GNN 73.29±5.08 73.04±6.28 78.03±7.65 67.69±13.30 71.32±6.73 

ContrastPool 72.25±6.17 68.30±10.39 67.71±7.42 69.90±15.93 67.76±9.30 

pRGAT 71.20±10.65 68.95±13.89 71.28±10.82 71.28±16.39 70.73±12.07 

MAMF-GCN 75.10±4.03 75.25±5.99 75.33±7.11 77.21±10.55 75.43±3.07 

SFGL 66.52±2.90 62.49±6.30 69.00±7.95 65.57±15.71 65.50±6.07 

CI-GNN 70.48±4.13 68.34±7.34 71.88±8.27 69.07±8.58 69.78±4.68 

IBGNN 65.84±5.84 62.82±6.98 69.35±10.22 63.77±18.06 63.98±9.86 

LGMF-GNN 78.75±4.55 80.64±5.74 76.80±7.93 82.00±5.79 78.96±4.88 

 

 

 

 

 

 



 

Table S12. Comparison with other GNN methods on the REST-meta-MDD dataset 

 ACC AUC Precision Recall F1-Score 

GCN 64.78±3.21 65.73±4.31 71.00±3.68 54.53±4.76 61.55±3.53 

GIN 63.31±3.15 63.45±4.63 67.14±7.66 59.64±6.07 62.67±2.99 

GAT 65.92±2.15 66.95±2.97 68.00±5.32 67.87±13.37 66.83±4.95 

BrainGNN 63.76±2.59 64.24±3.75 64.59±6.00 71.05±13.16 66.58±4.07 

EV-GCN 66.24±2.80 68.49±4.41 68.70±5.91 66.98±11.58 66.93±4.39 

LG-GNN 60.64±2.86 59.86±3.52 63.52±3.99 59.33±14.54 60.08±7.85 

ContrastPool 67.14±2.80 66.80±5.44 72.37±6.86 73.49±11.69 71.91±3.99 

pRGAT 59.43±3.88 56.36±4.94 61.03±4.81 63.57±15.14 61.08±7.78 

MAMF-GCN 66.94±3.58 66.76±3.52 71.05±3.59 61.43±12.39 65.18±7.43 

SFGL 66.95±5.40 64.09±5.98 71.30±12.70 66.90±19.29 65.91±8.14 

CI-GNN 66.05±3.14 64.91±3.52 66.39±4.28 70.77±10.41 68.00±5.30 

IBGNN 59.68±4.40 58.90±6.53 63.13±5.73 57.93±19.56 57.78±14.25 

LGMF-GNN 71.34±1.50 73.67±2.67 72.20±4.61 73.52±𝟔. 𝟐𝟔 72.56±2.06 

 

 

Table S13. Ablation study performance of local ROI-GNN module 

 ACC AUC Precision Recall F1-Score 

LGMF-GNN 78.75±4.55 80.64±5.74 76.80±7.93 82.00±5.79 78.96±4.88 

-local ROI-GNN 75.10±4.62 75.96±5.41 76.39±7.21 72.77±8.67 74.31±3.94 

 

 

 

Table S14. Ablation study performance of different data modalities 

 ACC AUC Precision Recall F1-Score 

LGMF-GNN 78.75±4.55 80.64±5.74 76.80±7.93 82.00±5.79 78.96±4.88 

-Demographic 68.66±7.74 73.81±5.74 68.42±12.41 76.20±14.95 69.89±7.91 

-Anatomical 73.72±5.05 74.11±7.14 73.83±8.57 73.64±5.89 73.31±4.79 

 

 

Table S15. Ablation study performance of loss functions 

 ACC AUC Precision Recall F1-Score 

LGMF-GNN 78.75±4.55 80.64±5.74 76.80±7.93 82.00±5.79 78.96±4.88 

-𝐿𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 76.85±4.78 70.08±6.55 76.31±5.68 76.64±5.93 76.40±5.34 

-𝐿𝑐𝑜𝑚𝑚𝑜𝑛 76.89±3.53 75.90±7.29 77.40±7.30 74.86±8.49 75.70±5.78 

 



 

Table S16. Effect of site effects suppression methods on model generalization ability 

 ACC AUC Precision Recall F1-Score 

LGMF-GNN 69.02±3.57 66.33±4.76 72.88±4.55 62.93±2.84 65.94±4.53 

+ Combat 72.67±4.51 71.91±3.32 74.23±4.01 67.84±2.46 70.58±3.74 

+ Mixup 76.22±4.53 75.76±5.21 74.03±3.87 76.92±3.05 75.04±3.24 

+ DropEdge 76.89±3.98 75.94±4.54 74.93±5.67 78.18±6.03 75.98±5.23 

+Adversarial 78.22±2.38 78.85±5.50 79.37±9.19 74.05±8.28 75.91±4.27 

+End-to-End 78.75±4.55 80.64±5.74 76.80±7.93 82.00±5.79 78.96±4.88 
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Figure S7. Eight cases corresponding to the MDD nodes with the highest degree in the 

structural subject graph. 

 



 

Table S17. Abnormal brain regions and existing research findings 

Name in AAL 

atlas 

Brain region 

name 

Existing findings related to 

functional alteration 

Existing findings related to 

structural alteration 

CRBL7b.R, 

CRBL10.L, 

CRBL10.R, 

CRBL8.R  

Right 

Cerebellum 

lobules 

VIIB； 

Left 

Cerebellum 

lobules X; 

Right 

Cerebellum 

lobules X; 

Right 

Cerebellum 

lobules VIII； 

 

connectivity analyses have 

shown reduced cerebro-

cerebellar coupling of lobules VI 

and VIIA/B with prefrontal, 

posterior parietal, and limbic 

regions in patients with MDD18 

The GM density in the right 

Cerebellum VIII was increased 

in the MDD patients (p <0.05), 

and the relative GM densities 

in the right Cerebellum VIII 

were significantly correlated 

with the BDI scores in the MDD 

patients19.  

The GM volumes in right 

Cerebellum VIII, left 

Cerebellum X and right 

Cerebellum X were 

significantly smaller in the 

patients with MDD than in the 

HC subjects (p < 0.05), and the 

GM volumes in right 

Cerebellum VIII and left 

Cerebellum X were 

significantly correlated with the 

BDI scores in the MDD 

patients (p< 0.05)19. 

HIP.R 
Right 

Hippocampus 

In comparison with HCs, 

patients with BD and MDD had 

an increased FC between the 

right anterior hippocampus and 

lingual gyrus and a decreased 

FC between the right posterior 

hippocampus and right IFG 

(p<0.00005)20； 

MDD patients demonstrated 

decreased right hippocampus–

bilateral medial superior frontal 

gyrus FC relative to HC 

(p<0.001)21； 

Compared to HC, MDD patients 

showed decreased node 

strength of the right 

MDD patients have smaller 

hippocampus volumes even in 

the earlier phase of their illness 

(p<0.01)25-27; 

The cumulative analysis 

revealed hippocampus volume 

loss in patients with first-

episode depression relative to 

controls in both the left 

(p=0.0321) and right 

(p=0.0173) hippocampus, and 

the average volume reduction 

was −4.0% in the left and 

−4.5% in the right 

hippocampus28. 



hippocampus cornu ammonis 

3/4 (p<0.001), indicating 

decreased connectivity to the 

rest of the brain22； 

The functional connectivity 

between the right anterior 

hippocampus and left 

postcentral gyrus increased with 

aging in MDD patients compared 

with HCs (p<0.05)23； 

The MDD group exhibited 

significantly weaker connectivity 

of the right hippocampal 

subregional networks with the 

temporal cortex (extending to 

the insula) and basal ganglia but 

showed increased connectivity 

of the right subiculum to the 

bilateral lingual gyrus (p<0.05)24 

Adolescents with MDD had 

reduced hippocampal volume 

compared with healthy 

adolescents (p=0.006) 29； 

Both the MDD and BD patients 

showed decreased gray matter 

volume in the right 

hippocampus compared with 

the HCs (p<0.001)30； 

Hippocampal white matter was 

significantly smaller in MDDs 

than in HCs (p=0.01)31.  

ROL.L 
Left Rolandic 

operculum 

The fronto-limbic system has 

altered in the first-episode and 

drug-naïve MDD patients， and 

increased FC of the left rolandic 

operculum was found (p<0.05)32. 

Compared with old HCs, the 

late-onset recurrent depression 

patients had higher ReHo in the 

left rolandic operculum gyrus/left 

superior temporal gyrus (p<0.05) 

33.   

- 

REC.L 
Left gyrus 

rectus 

Compared with HCs, the 

connectivity between the left 

rectus gyrus and the left orbital 

part of the superior frontal gyrus 

is enhanced in patients with 

treatment-naive depression 

(p=0.0054)34 

For structural MRI, the greatest 

difference between healthy 

individuals and those with 

depression could be observed 

in a voxel in the left gyrus 

rectus35  

PreCG.R 

Right 

Precentral 

gyrus 

Compared with HCs, MDD 

patients had a higher regional 

cerebral blood flow in the right 

Precental gyrus (PreCG) 

(p<0.001)36； 

The non-anxious depression 

patients showed decreased FC 

- 



between the right precentral 

gyrus and the right 

centromedial /laterobasal  

compared to the HC group 

(p<0.001) 37； 

There was a significant 

reduction in ReHo and ALFF in 

the bilateral precentral gyrus in 

the somatic MDD group as 

compared to the pure 

depression group (p<0.01)38; 

HCs had greater activation 

compared to MDD+PTSD 

patients in the right precentral 

gyrus (p<0.001)39. 

ROL.R 

Right 

Rolandic 

operculum 

Compared with HCs, patients 

with MDD had significantly 

higher ALFF in the left 

cerebellum and significantly 

lower ALFF in the right rolandic 

opercular cortex (p<0.001)40； 

Increased ALFF in the 

contralesional rolandic 

operculum was found in the 

slow-5 frequency band, and this 

post-stroke depression-specific 

alteration could predict 

depression severity 41. 

Lesions in the right Rolandic 

operculum are associated with 

self-rating affective and 

apathetic depressive 

symptoms for post-stroke 

patients42.  

CRBLCrus2.R 

Right 

Cerebellum 

Crus II 

Compared with HCs, patients 

with MDD showed significantly 

increased ReHo values in the 

right cerebellum Crus2 

(p<0.001). Additionally, partial 

correlation analysis showed that 

the right cerebellum crus2 and 

right angular gyrus were 

positively associated with 

working memory (r=0.277, 

p=0.038)43.  

- 

 

  



 

Table S18. Key indicators of sMRI imaging radiomics for the diagnosis of depression 

Name Description 
Implication for Depression 

Diagnosis 

GLCM_MaximumProb

ability 

The maximum probability of 

co-occurring pixels within a 

specified distance and 

angle, suggesting the 

homogeneity in the image 

texture 

Alterations in the microstructural 

organization of gray and white 

matter; Disruptions in neural 

connectivity and organization 

FirstOrder_Uniformity 

The similarity of the intensity 

distribution in a given 

region, indicating the 

uniformity of an image 

Disruptions in the typical distribution 

of grey and white matter intensities; 

Irregularities in tissue composition 

which indicate neurostructural 

changes associated with 

depression 

FirstOrder_Range 

The difference between the 

maximum and minimum 

voxel intensity values of an 

image 

Variations in tissue density; The 

magnitude and range of anatomical 

changes related to depression 

GLRLM_RunLengthNo

nUniformity 

The deviation of the run 

lengths from the average 

run length value, suggesting 

the heterogeneity in the 

texture 

Disruptions in the regularity of 

structural patterns of grey and white 

matter; Changes in tissue 

composition, connectivity, or other 

microstructural features related to 

depression 

GLSZM_GrayLevelNo

nUniformityNormalized 

The degree of variability of 

discrete voxel intensity 

values in an image, 

indicating the heterogeneity 

of voxel intensities 

Irregularities in tissue structure and 

composition of grey and white 

matter; Grey and white matter 

morphological abnormalities 

associated with depression 

 

 

 

 

 

 



Table S19. Imaging parameters used for SRPBS dataset 

rs-fMRI 

Protocol # 2 3 4 5 6 8 

Site Hiroshima 

University Hospital 

Hiroshima 

University Hospital 

Hiroshima Kajikawa 

Hospital 

Center of 

Innovation in 

Hiroshima 

University 

Kyoto university University of Tokyo 

MRI Scanner GE Signa HDxt GE Signa HDxt SIEMENS Spectra SIEMENS 

MAGNETOM 

Verio.Dot 

SIEMENS  

TimTrio 

GE Discovery 

MR750w 

Magnitic field 

strength 

3T 3T 3T 3T 3T 3T 

Number of 

channels per coil 

8HR-BRAIN 8HR-BRAIN head-12ch head-12ch 32-channel phased 

array head coil 

Head 24 

TR (s) 2 2 2.7 2.5 2,500 2.5 

TE (ms) 27 27 31 30 30 30 

Flip angel (deg) 90 90 90 80 80 80 

Phse encoding PA AP AP AP PA PA 

Matrix 64 x 64  64 x 64  64 x 64  64 x 64 64  x  64 64 x 64  

Field of view (mm) 256 256 192 212 212 x 212  212 

In-plane resolution 

(mm) 

4.0 x 4.0  4.0 x 4.0  3.0 x 3.0  3.3 x 3.3 3.3125 X 3.3125 3.3 

Slice thickness 

(mm) 

4 4 3 3.2 3.2 3.2 



Slice gap (mm) 0 0 0 0.8 0.8 0.8 

Number of slices 32 32 38 40 40 40 

Slice acquisition 

order 

Ascending 

(Interleaved ) 

Ascending 

(Interleaved ) 

Ascending Ascending  Ascending  Ascending 

Number of 

volumes 

143 + 7 (dummy) 143 + 7 (dummy) 107 + 5 (dummy) 240 + 4 (dummy) 240 + 4 (dummy) 240 + 4 (dummy) 

Total scan time  4 min. 46s. + 14s 

(dummy) 

4 min. 46s. + 14s 

(dummy) 

4 min. 49s. + 14s 

(dummy) 

10 min + 10s 

(dummy) 

10 min + 10s 

(dummy) 

10 min + 10s 

(dummy) 

Eye closed/fixate Fixate Fixate Fixate Fixate Fixate Fixate 

Structural  (T1w) 

Protocol # 2 3 4 5 6 8 

Site Hiroshima 

University Hospital 

Hiroshima 

University Hospital 

Hiroshima Kajikawa 

Hospital 

Center of 

Innovation in 

Hiroshima 

University 

Kyoto university University of Tokyo 

Scanner GE Signa HDxt GE Signa HDxt SIEMENS Spectra SIEMENS 

MAGNETOM 

Verio.Dot 

SIEMENS  

TimTrio 

GE Discovery 

MR750w 

Voxel size (mm^3) 1 x 1 x 1 1 x 1 x 1 1 x 1 x 1 1 x 1 x 1 0.9375 x 0.9375 x 

1.0 

1 x 1 x 1.2 

TR (ms) 6812 6812 1900 2300 2000 7.7 

TE (ms) 1896 1896 2.38 2.98 3.4 3.1 

TI (ms) 450 450 900 900 990 400 

Flip angel (deg) 20 20 10 9 8 11 

FOV 256 256 256 256 225 x 240 240 

Matrix 256 x 256 256 x 256 256 x 256 256 x 256 240 x 256 256 x 256 



 

Table S20. Imaging parameters used for REST-meta-MDD dataset 

Cohort Site MRI 

Scanner 

Magnitic 

field 

strength 

Receive 

(coil 

channel) 

TR (s) TE 

(ms) 

Flip 

angel 

(deg) 

Field of 

view 

(mm) 

Voxel size Slice 

thickness 

(mm) 

Number 

of slices 

Number 

of 

volumes 

1 National Clinical Research 

Center for Mental 

Disorders (Peking 

University Sixth Hospital) & 

Key Laboratory of Mental 

Health, Ministry of Health 

(Peking University) 

Siemens 

Tim Trio 

3T 

3T 32 2000 30 90 210×210 3.28×3.28

×4.80 

4.0/0.8 30 210 

2 Department of Clinical 

Psychology, Suzhou 

Suzhou Psychiatric 

Hospital, The Affiliated 

Guangji Hospital of 

Soochow University 

Philips 

Achieva 

3T 

3T 8 2000 30 90 240×240 1.67×1.67

×4.00 

4.0/0 37 200 

7 Sir Run Run Shaw 

Hospital, Zhejiang 

University School of 

Medicine 

GE 

discovery 

MR750 

3T 8 2000 30 90 220×220 2.29×2.29

×3.20 

3.2/0 37 184 

8 Department of Psychiatry, 

First Affiliated Hospital, 

China Medical University 

GE Signa 

3T 

3T 8 2000 30 90 240×240 3.75×3.75

×3.00 

3.0/0 35 200 



9 The First Affiliated Hospital 

of Jinan University 

GE 

Discovery 

MR750 

3.0T 

3T 8 2000 25 90 240×240 3.75×3.75

×4.00 

3.0/1.0 35 200 

10 First Hospital of Shanxi 

Medical University 

Siemens 

Tim Trio 

3T 

3T 32 2000 30 90 240×240 3.75×3.75

×4.52 

3.0/1.52 32 212 

11 Department of Psychiatry, 

The First Affiliated Hospital 

of Chongqing Medical 

University 

GE Signa 

3T 

3T 8 2000 30 90 240×240 3.75×3.75

×5.00 

5 33 200 

13 The First Affiliated Hospital 

of Xi’an Jiaotong University, 

Xi’an Central Hospital 

GE Excite 

1.5T 

1.5T 16 2500 35 90 256×256 4.00×4.00

×4.00 

4/0 36 150 

14 The Second Xiangya 

Hospital of Central South 

University 

Siemens 

Tim Trio 

3T 

3T 32 2500 25 90 240×240 3.75×3.75

×3.50 

3.5/0 39 200 

15 Department of 

Psychosomatics and 

Psychiatry, Zhongda 

Hospital, School of 

Medicine, Southeast 

University 

Siemens 

Verio 3.0T 

MRI 

3T 12 2000 25 90 240×240 3.75×3.75

×4.00 

4/0 36 240 

17 Department of Psychiatry, 

The First Affiliated Hospital 

of Chongqing Medical 

GE Signa 

3T 

3T 8 2000 40 90 240×240 3.75×3.75

×4.00 

4.0/0 33 240 



University 

19 Anhui Medical University GE Signa 

3T 

3T 8 2000 22.5 30 220×220 3.44×3.44

×4.60 

4.0/0.6 33 240 

20 Faculty of Psychology, 

Southwest University 

Siemens 

Tim Trio 

3T 

3T 12 2000 30 90 220×220 3.44×3.44

×4.00 

3.0/1.0 32 242 

21 Beijing Anding Hospital, 

Capital Medical University 

Siemens 

Tim Trio 

3T 

3T 32 2000 30 90 200×200 3.12×3.12

×4.20 

3.5/0.7 33 240 

22 The Institute of Mental 

Health, Second Xiangya 

Hospital of Central South 

University 

Philips 

Gyroscan 

Achieva 

3.0T 

3T 32 2000 30 90 240×240 1.67×1.67

×4.00 

4.0/0 36 250 

23 Mental Health Center, West 

China Hospital, Sichuan 

University 

Philips 

Achieva 

3.0T TX 

3T 8 2000 30 90 240×240 3.75×3.75

×4.00 

4.0/0 38 240 

 



Table S21. Category distribution of the included SRPBS dataset participants by site 

Site MDD HC Total 

2 49 49 98 

3 16 14 30 

4 32 25 57 

5 65 65 130 

6 16 15 31 

8 51 60 111 

Total 229 228 457 

 

 

Table S22. Category distribution of the included REST-meta-MDD dataset participants by 
site 

Site MDD HC Total 

1 73 73 146 

2 16 14 30 

7 35 37 72 

8 39 48 87 

9 48 48 96 

10 45 26 71 

11 20 17 37 

13 20 16 36 

14 61 32 93 

15 30 37 67 

17 41 41 80 

19 18 31 49 

20 249 228 477 

21 79 65 144 

22 18 20 38 

23 22 23 45 

Total 814 756 1570 

 
 
 



 

Figure S8. Experimental results for the optimal number of nearest neighbors during KNN 
graph construction.  

 

 
Figure S9. Experimental results for the optimal number of Snowball Layer. 
 
 
 

Table S23. The impact of brain atlases on model performance. 

 ACC AUC Precision Recall F1-Score 

2atlas 74.57±4.16 74.52±5.53 75.48±9.76 72.04±3.36 73.42±5.45 

AAL 78.75±4.55 80.64±5.74 76.80±7.93 82.00±5.79 78.96±4.88 

CC200 76.63±4.97 76.72±8.18 76.44±9.67 75.46±10.77 75.49±8.36 

 
 
 
 
 
 



 

Table S24. Performance of LGMF-GNN on the unbalanced SRPBS validation dataset. 

 ACC AUC Precision Recall F1-Score 

LGMF-GNN 86.50±8.08 82.97±11.19 68.40±20.31 87.50±16.77 73.50±12.76 

 
 
  



 

Table S25. The full list of DIRECT consortium members 

Chao-Gan Yan1,2,3,4,5,6, Xiao Chen1,2,3,4, Li-Ping Cao9, Wei Chen11, Yu-Qi Cheng12, YiRu Fang13, 
Qi-Yong Gong14,15, Wen-Bin Guo16, Li Kuang17, Bao-Juan Li18, Tao Li20,21, Yan-Song Liu22, Zhe-
Ning Liu16, Jian-Ping Lu23, Qing-Hua Luo17, Hua-Qing Meng17, Dai-Hui Peng13, Jiang Qiu24, 
Yue-Di Shen25, Tian-Mei Si26, Yan-Qing Tang27, Chuan-Yue Wang28, Fei Wang27,29, Hua-Ning 
Wang18, Kai Wang30, Xiang Wang16, Ying Wang31, Xiao-Ping Wu32, Chun-Ming Xie33, Guang-
Rong Xie16, Peng Xie34,35,36, Xiu-Feng Xu12, Hong Yang37, Jian Yang35, Shu-Qiao Yao16, Yong-
Qiang Yu38, Yong-Gui Yuan39, Ke-Rang Zhang40, Wei Zhang41, Zhi-Jun Zhang33, Jun-Juan Zhu42, 
Xi-Nian Zuo43,44, Jing-Ping Zhao16, Yu-Feng Zang45,46 
 
1CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of 
Sciences, Beijing 100101, China 
2International Big-Data Center for Depression Research, Chinese Academy of Sciences, 
Beijing 100101, China 
3Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy 
of Sciences, Beijing 100101, China 
4Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, 
China 
5Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, China 
6Sino-Danish Center for Education and Research, Graduate University of Chinese Academy 
of Sciences, Beijing 101408, China 
9Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China 
11Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of 
Medicine, Hangzhou 310020, Zhejiang, China 
12Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, 
Yunnan 650032, China 
13Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 
Shanghai 200030, China 
14Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of 
Sichuan University, Chengdu, Sichuan 610044, China 
15Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 
Sichuan 610052, China 
16Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The 
Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China 
17Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, 
Chongqing 400042, China 
18Xijing Hospital of Air Force Military Medical University, Xi’an, Shaanxi 710032, China 
20Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University 
School 
of Medicine, Hangzhou, Zhejiang 310063, China 
21Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan 
University, Chengdu, Sichuan 610044, China 
22Department of Clinical Psychology, Suzhou Psychiatric Hospital, The Affiliated Guangji 
Hospital of Soochow University, Suzhou, Jiangsu 215003, China 
23Shenzhen Kangning Hospital, Shenzhen, Guangzhou 518020, China 
24Faculty of Psychology, Southwest University, Chongqing 400715, China 
25Department of Diagnostics, Affiliated Hospital, Hangzhou Normal University Medical School, 
Hangzhou, Zhejiang 311121, China 
26National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital) & 
Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing 100191, 
China 
27Department of Psychiatry, First Affiliated Hospital, China Medical University, Shenyang, 
Liaoning 110122, China 
28Beijing Anding Hospital, Capital Medical University, Beijing 100120, China 
29Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing 
Medical University, Nanjing 210024, China 
30Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, 



Anhui 230022, China 
31The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 250024, China 
32Xi’an Central Hospital, Xi’an, Shaanxi 710004, China 
33Department of Neurology, Affiliated ZhongDa Hospital of Southeast University, Nanjing, 
Jiangsu 210009, China 
34Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China 
35Chongqing Key Laboratory of Neurobiology, Chongqing 400000, China 
36Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 
Chongqing 400042, China 
37Department of Radiology, The First Affiliated Hospital, College of Medicine, Zhejiang 
University, Hangzhou, Zhejiang 310058, China 
38The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, China 
39Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, 
Southeast University, Nanjing, Jiangsu 210009, China 
40First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China 
41West China Hospital of Sichuan University, Chengdu, Sichuan 610044, China 
42Department of Psychiatry, Shanghai Jiao Tong University School of Medicine, Shanghai 
200025, China 
43Developmental Population Neuroscience Research Center, IDG/McGovern Institute for 
Brain Research, Beijing Normal University, Beijing 100091, China 
44National Basic Science Data Center, Beijing 100038, China 
45Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal 
University, Hangzhou, Zhejiang 310018, China 
46Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, 
Zhejiang 310000, China 

 
 



 

Supplemental Experimental Procedures 

 

Supplemental Experimental Procedures. Data cleaning and quality control 

REST-meta-MDD: 
As shown in Figure. S1. To control the data quality and avoid introduction of bias, subjects were 
selected from a total of 2428 subjects as follows: (1) subjects older than 65 years or younger 
than 18 years were excluded; (2) subjects with missing information on age, sex or education 
year were excluded; (3) low quality images with bad coverage (< 90% group mask), poor spatial 
normalization (visual inspection) or excessive head motion (mean framewise displacement 
(FD) > 0.2) were discarded; (4) to further exclude subjects with distortions that were not 
detected by visual inspection, we excluded subjects with spatial correlation < 0.6 (a threshold 
defined by mean - 2SD) between each subject’s regional homogeneity (ReHo) map and the 
group mean ReHo map; (5) sites with subjects fewer than 10 in either MDD or HC group was 
removed; (6) sites mainly contained patients with geriatric depression subjects were excluded; 
(7) one duplicated site (detected after consortium data sharing) was discarded; (8) images with 
zero signals detected in targeted atlas were discarded.  
 
SRPBS: 
As shown in Figure. S2. To control the data quality and avoid introduction of bias, subjects were 
selected from a total of 1410 subjects as follows: (1) subjects diagnosed with other disease 
were excluded; (2) subjects from sites that did not contain MDD patients were excluded; (3) to 
make the data more balanced, subjects with the same number of MDDs were randomly 
selected from HCs; (4) low quality images with excessive head motion (mean framewise 
displacement (FD) > 0.4) were discarded; (5) images with zero signals detected in targeted 
atlas were discarded.  
 
Anding: 
As shown in Figure. S3. To control the data quality and avoid introduction of bias, subjects were 
selected from a total of 465 subjects as follows: (1) subjects missing T1 sMRI or rs-fMRI scan 
were excluded; (2) low quality images with excessive head motion (mean framewise 
displacement (FD) > 0.2) were discarded; (3) images with zero signals detected in targeted 
atlas were discarded. 
 
Openneuro: 
As shown in Figure. S4. To control the data quality and avoid introduction of bias, subjects were 
selected from a total of 72 subjects as follows: (1) subjects diagnosed as mild depressive 
disorder (ICD-10 F32.0) or missing ICD-10 diagnosis were excluded; (2) low quality images 
with excessive head motion (mean framewise displacement (FD) > 0.2) were discarded; (3) 
images with zero signals detected in targeted atlas were discarded. 

 
  



 

Supplemental Experimental Procedures. The evaluation of site-effect 

The datasets utilized in this study exhibit high heterogeneity. Specifically, the SRPBS 
dataset was collected from six different sites with varying acquisition protocols, and the 
participants in the REST-meta-MDD dataset included in this study involves 16 cohorts from 
different hospitals. To make reasonable and adequate use of these experimental data, 
multicenter correction is a necessary and important step. Multicenter correction involves 
harmonizing fMRI-derived data from multiple acquisition sites, study cohorts or devices. The 
purpose of this correction is to eliminate site effects that arise from differences in image 
scanners, scanning parameters, and image processing flows. Strong site effects can impact 
the reliability, reproducibility, and generalization ability of the data, which, in turn, can affect the 
interpretation of the results. 

To evaluate the extent of site effects, we initially conducted experiments from two 
perspectives: 1) The data distribution, specifically the brain functional connectivity matrix 
calculated based on the BOLD signal, and 2) The interference with the model's generalization 
ability. 

1) The data distribution For the brain functional connectivity matrix calculated from fMRI, 
the upper triangle of the functional connectivity matrix based on the AAL atlas was flattened to 
a one-dimensional vector and then normalized by the Z-Score standardization method in this 
paper. To visualize the site effects present in the functional connectivity matrix data, dimensional 
reduction using t-SNE is performed, followed by creating a scatter plot to illustrate the data 
distribution. Figure S6 reveals that before correction, the data from each site has a tendency 
to aggregate and there are more outliers, indicating that the original functional connectivity data 
derived from fMRI has strong site effects. Directly inputting this data into the model would lead 
to confusion and confounding. 

2) The interference with the generalization ability To examine the impact of site effects 
on model’s performance, we conducted a pre-experiment using single-site data from site 20 of 
the REST-meta-MDD dataset and data from six sites of the SRPBS dataset. We employed the 
global Subject-GNN network for ten-fold cross-validation, and the results are shown in Table 
S3. It is evident that the model performs significantly better on the single-site dataset than on 
the multi-site dataset, with the cross-validation results for the multi-site dataset showing a 
decrease of nearly 20% in comparison to the single site. This indicates that site effects have a 
significant impact on both the training and generalization performance of the model. Therefore, 
the development of an effective multicenter correction method is essential to mitigate the 
influence of site effects. 

 
  



 

Supplemental Experimental Procedures. System performance for MDD subtype 
classification 

We conducted an experiment where we divided the MDD patients in the REST-meta-MDD 
dataset into two subsets: “first-episode drug-naïve” (FEDN) and “recurrent” (RECU).  

The subset partition according to FEDN and RECU references the previous work1 
published in PNAS by the REST-meta-MDD dataset providers, aiming to explore the model’s 
ability to distinguish different disease subtypes. The medication status was further considered 
for the first-episode group primarily because this group has detailed and reliable medication 
records in the dataset. Moreover, medication use may affect the physiological and 
psychological states of patients, thereby influencing diagnostic accuracy. Excluding the 
influence of medication for first-episode patients helps to more clearly identify the initial state 
and characteristics of depression. The medication status was not specifically considered for the 
recurrent group because these patients may have already received pharmacological treatment 
in previous episodes, and the dataset lacks detailed records of their medication use. Additionally, 
recurrence itself indicates the uniqueness and complexity of the disease. In this case, the 
research focus may shift more towards understanding the recurrence mechanisms and seeking 
more effective treatments. 

For the FEDN vs HC subset and the RECU vs HC subset, we first filtered all FEDN and 
RECU subject samples from the REST-meta-MDD dataset. We then randomly sampled an 
equal number of HC samples from the sites where the FEDN and RECU subjects originated. 
In cases where the number of HC at a particular site was fewer than MDD, we supplemented 
HC samples from site 20, which had the largest data volume, to achieve a 1:1 ratio of HC to 
MDD in the subset. For the FEDN vs RECU subset, we only selected samples from the 
overlapping acquisition sites (i.e., site 9 and site 20) for the two subtypes. The category 
distribution across sites after filtering is shown in Table S4-S6. And the performance of the 
proposed system for MDD subtype classification is shown in Table S7. 

 
 
 
  



 

Supplemental Experimental Procedures. Comparison experiments 

To further validate the proposed system, LGMF-GNN is compared to state-of-the-art 
(SOTA) graph neural network models for brain disease diagnosis. Specifically, we assessed 
the performance of LGMF-GNN against traditional GCN2, GIN3, and GAT4 networks and popular 
brain graph neural networks, namely BrainGNN5, EV-GCN6, LG-GNN7, ContrastPool8, pRGAT9, 
MAMF-GCN10, SFGL11, CI-GNN12 and IBGNN13. Among these, BrainGNN, SFGL, CI-GNN and 
IBGNN are local-view methods based on graph-level classification of ROI graphs, EV-GNN, 
pRGAT and MAMF-GCN are global-view methods based on node-level classification on 
population graphs, and LG-GNN and ContrastPool are local-to-global methods 

Here, we briefly introduce the experimental design and the setting of hyperparameters of 
the comparison method. 

All the comparison methods outlined below utilize the same loss functions and optimizers 
as described in the original paper. For methods such as GCN, GIN, and GAT, which are not 
specifically designed for brain graphs, we have provided a detailed description of how the graph 
and node features are constructed. For methods like BrainGNN, which are tailored for brain 
graphs, we have strived to maintain consistency with the original paper in terms of network 
architecture and hyperparameter selection in our implementation. In cases where the 
hyperparameters are not applicable due to changes in atlas or usage scenarios, such as 
different disease types, we have conducted random searches within the parameter space 
defined in the original paper to determine the optimal hyperparameter settings for the 
comparative experiments. The hyperparameter settings for each method are detailed in Table 
S10. 
 
1) GCN 

GCN is one of the earliest and most influential approaches in the GNN domain. They 
extend the concept of convolution from Euclidean data to non-Euclidean graph data. The 
authors motivate the choice of the convolutional architecture via a localized first-order 
approximation of spectral graph convolutions 

In the implementation of GCN, we modeled depression diagnosis as a graph-level 
classification task, each subject was constructed as a graph, and the ROIs defined by AAL atlas 
were used as nodes. The node features were the row vectors corresponding to the functional 
connectivity matrix calculated by Fisher-Z transformation according to the Pearson correlation 
coefficient of ROI BOLD signal. The absolute value of the functional connectivity matrix was 
used as the graph adjacency matrix. 

 
2) GIN 

GIN aims to improve on the aggregation mechanism of GCNs by ensuring that the 
representation of a node is sufficiently influenced by its neighbors, even in the presence of 
isomorphic subgraphs. The key operation in GINs is a "set-aggregation" function that sums the 
features of a node and its neighbors, followed by a transformation that includes a learnable 
function of the node's own feature. This design ensures that GINs can distinguish between 
different nodes, even if they have the same number of neighbors and similar neighbor features, 
thus enhancing the expressive power of the model. 

In our implementation of GIN, the graph and node features were constructed in the same 
way as GCN. 

 
3) GAT 

GAT uses an Attention mechanism that allows different weights to be assigned to different 
nodes and relies on pairs of neighboring nodes for training, rather than on a specific network 
structure, and can be used for inductive tasks. 

In our implementation of GAT, the graph and node features were constructed in the same 
way as GCN. 

 
4) BrainGNN 

BrainGNN is a graph neural network (GNN) framework to analyze functional magnetic 
resonance images (fMRI) and discover neurological biomarkers. Considering the special 
property of brain graphs, the authors design novel ROI-aware graph convolutional (Ra-GConv) 



layers that leverage the topological and functional information of fMRI. Motivated by the need 
for transparency in medical image analysis, BrainGNN contains ROI-selection pooling layers 
(R-pool) that highlight salient ROIs (nodes in the graph), so that it can infer which ROIs are 
important for prediction. Furthermore, regularization terms including unit loss, topK pooling 
(TPK) loss and group-level consistency (GLC) loss were proposed on pooling results to 
encourage reasonable ROI-selection and provide flexibility to encourage either fully individual-
patterns or patterns that agree with group-level data. 

In our implementation, brain ROI was defined according to the AAL atlas, and the methods 
of node feature extraction and dimension reduction and graph construction were consistent with 
the original paper. 

 
5) EV-GCN 

In this paper, the authors present a generalizable framework designed to automatically 
integrate imaging data with non-imaging data in populations for uncertainty-aware disease 
prediction. The framework's centerpiece is a learnable adaptive population graph equipped with 
variational edges. The authors mathematically demonstrate that this graph can be optimized in 
conjunction with graph convolutional neural networks. To quantify the predictive uncertainty 
associated with the graph topology, they introduce the novel concept of Monte-Carlo edge 
dropout. Across four different databases, experimental results indicate that the authors' method 
can consistently and significantly enhance diagnostic accuracy for Autism spectrum disorder, 
Alzheimer’s disease, and ocular diseases.  

In our implementation, brain ROI was defined according to the AAL atlas, and demographic 
information included age, sex, and site. The methods of node feature extraction and dimension 
reduction and graph construction were consistent with the original paper. 

 
6) LG-GNN 

The LG-GNN model is a local-to-global graph neural network structured to include a local 
ROI-GNN component, which is tasked with learning feature embeddings of local brain regions 
and pinpointing biomarkers. Subsequently, a global Subject-GNN is constructed to discern the 
relationships between subjects by utilizing the embeddings produced by the local ROI-GNN in 
conjunction with non-imaging data. The local ROI-GNN is equipped with a self-attention based 
pooling module that is designed to retain the most crucial embeddings for the classification task. 
On the other hand, the global Subject-GNN incorporates an adaptive weight aggregation block 
that generates multi-scale feature embeddings specific to each subject. The LG-GNN model 
has been rigorously tested using two public datasets for the classification of ASD and AD. The 
experimental findings revealed that this approach not only achieves state-of-the-art 
performance but also excels across a range of evaluation metrics. 

In our implementation, brain ROI was defined according to the AAL atlas, and demographic 
information included age, sex, and site. The methods of node feature extraction and dimension 
reduction and graph construction were consistent with the original paper. 

 
7) ContrastPool 

In their paper, the authors propose a contrastive dual-attention block, which adaptively 
assigns a weight to each ROI of each subject, performs adaptive aggregation over subjects in 
each group, and makes contrast across different groups to obtain a contrast graph. Guided by 
the contrast graph, the authors introduce a differentiable graph pooling method called 
ContrastPool to generate brain network representations that are effective to the task of disease 
classification. They have applied their method to five resting-state fMRI brain network datasets 
across three diseases and have shown its superiority compared to state-of-the-art baselines. 
The case study conducted by the authors confirms that the patterns extracted by their method 
correspond with the domain knowledge found in neuroscience literature and reveal direct and 
intriguing insights. Their contributions highlight the potential of ContrastPool in enhancing the 
understanding of brain networks and neurodegenerative conditions. 

In our implementation, brain ROI was defined according to the AAL atlas. The methods of 
node feature extraction and dimension reduction and graph construction were consistent with 
the original paper. 

 
8) pRGAT 

In an effort to enhance the valid information in ASD prediction, this paper has investigated 
various methods to construct the population graph, including Phenotype-Edge (P-Edge), fMRI-



Edge (F-Edge), and a combination of phenotype and fMRI-Edge (PF-Edge). Additionally, they 
have introduced Graph Attention Networks (GAT) to capture the correlation between subjects 
on the graph’s node-features, which was previously overlooked by GCN-based methods. 
However, the original GAT architecture does not account for edge-features. To leverage the 
structural information encoded in edge-features, the researchers further introduced relation-
aware attention through the Relational Graph Attention Network (RGAT), which is based on 
GAT. Using the three graph structures and RGAT, they proposed three ASD prediction models: 
RGAT with P-Edge (p-RGAT), RGAT with F-Edge (f-RGAT), and RGAT with PF-Edge (pf-RGAT). 
Experiment results have shown that the integration of relation-aware attention through RGAT, 
based on GAT, has enhanced the ASD prediction model’s ability to learn more diverse 
information, thereby improving the model’s generalization ability. 

As a comparative method for the proposed model, we utilized the pf-RGAT model structure 
that exhibited the best performance in the original paper. This model integrates phenotype data 
and fMRI data to determine the edges between nodes in the population graph. Moreover, it 
employs the Relational Graph Attention Convolutional layer (RGATConv), which takes into 
account not only the correlation of node features but also the relevance of edge features, 
allowing RGAT to more comprehensively capture the complex relationships between individuals. 
In our implementation, brain ROI was defined according to the AAL atlas, and demographic 
information included age, sex, and site. The methods of node feature extraction and dimension 
reduction and graph construction were consistent with the original paper. 

 
9) MAMF-GCN 

In this paper, the researchers propose a multi-scale adaptive multi-channel fusion deep 
graph convolutional network with an attention mechanism (MAMF-GCN) to better integrate 
features of various modalities and atlases by exploiting multi-channel correlations. An encoder 
automatically merges one channel with non-imaging data to produce similarity weights between 
subjects using a similarity perception mechanism. Additional channels generate multi-scale 
imaging features of fMRI data after processing across different atlases. An adaptive convolution 
module fuses multi-modal information, applying a deep graph convolutional network (GCN) to 
extract information from more profound hidden layers. The researchers assessed the 
performance of the proposed method on the Autism Brain Imaging Data Exchange (ABIDE) 
dataset and the Major Depressive Disorder (MDD) dataset. Experimental results indicate that 
the proposed method surpasses many state-of-the-art methods in node classification 
performance. 

In the original paper, the AAL and HO (Harvard-Oxford) atlases were employed to build the 
fMRI functional k-nearest neighbor (knn) population graph. To maintain alignment with our 
research, we utilized the AAL and CC200 atlases for constructing the fMRI functional knn 
population graph in our implementation. Demographic data, including age, sex, and site, were 
incorporated to create the phenotypic graph. The techniques for node feature extraction, 
dimensionality reduction, and graph construction were adopted in line with the methods 
described in the original paper. 

 
10) SFGL 

In this paper, the research team has proposed a specificity-aware federated graph learning 
(SFGL) framework for rs-fMRI analysis and automated brain disorder identification. This 
framework consists of a server and multiple clients or sites for federated model aggregation 
and prediction. At each client, the model is divided into a shared branch and a personalized 
branch. Parameters of the shared branch are sent to the server, while those of the personalized 
branch stay local, promoting knowledge sharing among sites while maintaining site specificity. 
In the shared branch, the team employs a spatio-temporal attention graph isomorphism network 
to learn dynamic fMRI representations. In the personalized branch, they integrate vectorized 
demographic information (including age, gender, and education years) and functional 
connectivity networks to retain site-specific characteristics. The representations generated by 
both branches are then fused for classification purposes. The experimental results on two fMRI 
datasets, totaling 1218 subjects, indicate that the SFGL framework outperforms several state-
of-the-art approaches. 

In our implementation, brain ROI was defined according to the AAL atlas, and demographic 
information included age, sex, and site. The methods of dynamic graph sequence construction 
and dynamic graph representation learning are consistent with the original paper. 

 



11) CI-GNN 
This study presents the CI-GNN, a novel Granger causality-inspired model that intrinsically 

identifies influential subgraphs within brain networks that are causally tied to diagnostic 
outcomes, such as differentiating between patients with major depressive disorder and healthy 
individuals. Unlike conventional approaches, CI-GNN does not necessitate additional 
interpretive models post-training. It employs a graph variational autoencoder framework to learn 
subgraph representations that capture both causal and non-causal elements, regulated by a 
conditional mutual information (CMI) constraint to ensure the fidelity of the causal relationships. 
Theoretical validation supports the CMI constraint's effectiveness in capturing causality. 
Empirical assessments against other GNNs and explainers on synthetic and real-world brain 
disease datasets demonstrate CI-GNN's superior performance and its ability to offer clinically 
relevant, concise, and reliable explanations. 

In our implementation, brain ROI was defined according to the AAL atlas, and the methods 
of functional graph construction and two-stage training strategy were consistent with the original 
paper. 

 
12) IBGNN 

In this work, an interpretable framework has been proposed to analyze disorder-specific 
ROIs and key connections. This framework is composed of two main components: a brain-
network-oriented backbone model designed for disease prediction, and a globally shared 
explanation generator that emphasizes disorder-specific biomarkers, including salient ROIs 
and significant connections. Experiments have been conducted using three real-world datasets 
of brain disorders, and the results have demonstrated that the framework not only achieves 
exceptional performance but also successfully identifies meaningful biomarkers. 

In our implementation, brain ROI was defined according to the AAL atlas, and the methods 
of functional graph construction were consistent with the original paper. According to the training 
method of the original article, we first trained the backbone IBGNN model and then applied the 
learned explanation mask to fine-tune the whole model to obtain the IBGNN+ model. 

 
  



 

Supplemental Experimental Procedures. Ablation study 

The ablation study of local ROI-GNN module. 

In our proposed LGMF-GNN model, the local ROI-GNN module is designed to capture the 
BOLD signal time-series features of multiple brain ROI and the functional connectivity patterns 
between them at a refined scale. It aggregates these features to form graph-level embedding 
for each individual, which are subsequently utilized as feature vectors for the functional graph 
nodes in the global Subject-GNN. In the ablation experiment concerning this module, we 
removed the local ROI-GNN from the LGMF-GNN and instead used functional connectivity as 
the node features for the subject-GNN functional subject graph. Specifically, we computed the 
Pearson correlation coefficients between the ROI BOLD signals for each individual to obtain a 
functional connectivity matrix, which was then flattened into a vector using its upper triangle for 
node features. The results of this ablation are presented in Table S13. It is evident that the 
absence of the local ROI-GNN module resulted in a marked degradation in model performance 
across all metrics. This indicates that the fine-grained functional connectivity features and 
BOLD signal time-series information provided by the local ROI-GNN are instrumental in the 
diagnostic process for depression. Additionally, it is noteworthy that the local ROI-GNN plays a 
pivotal role in enhancing the interpretability of the proposed model by offering a more granular 
and flexible understanding. Analyzing the functional connectivity matrix learned by the local 
ROI-GNN allows us to identify the brain regions and changes in functional connectivity strength 
that the model focuses on for diagnosis. 

 

The ablation study of different modalities 

In our manuscript, we introduce a method that leverages three distinct data modalities: 
functional, anatomical, and demographic. We achieve multi-modal fusion within the global GNN 
by integrating three subject graphs, each representing one of the modalities. For the ablation 
experiments, we omitted the anatomical and demographic modalities by removing their 
respective subject graphs from the global subject GNN, thus focusing on the fusion of the 
remaining two modalities. The results of these ablation studies are presented in Table S14. It 
can be seen that without demographic or anatomical modality, the performance of the model 
can be significantly reduced, which proves the significance of integrating multi-modal 
information in the diagnosis of depression and the effectiveness of LGMF-GNN multi-modal 
fusion method. 

 

The ablation study of loss functions 

In order to achieve efficient multi-modal fusion, we have designed Modality Independent 
Loss and Modality Common Loss in our paper: 
⚫ Modality Independent Loss (𝐿𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 ): This loss term is designed to ensure that the model 

can extract features that are specific to each modality. By enforcing independence between 
the modality-specific embeddings and the modality-common embeddings, the model is 
encouraged to learn unique characteristics of each modality. This is crucial for scenarios 
where distinct modalities provide complementary information. 

⚫ Modality Common Loss (𝐿𝑐𝑜𝑚𝑚𝑜𝑛): This loss term is responsible for promoting the similarity 
between the modality-common embeddings across different modalities. By doing so, it 
helps the model to identify and extract features that are shared among the modalities. This 
is particularly important for tasks that require integrating information from multiple sources, 
as it allows the model to capture and leverage the commonalities that exist across different 
types of data. 
To assess the impact of these loss functions on the performance of our LGMF-GNN model, 

we conducted ablation study and the result are shown in Table S15. It can be seen that the 

performance of the model decreases after the removal of 𝐿𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 and 𝐿𝑐𝑜𝑚𝑚𝑜𝑛, which proves 

the help of the two multimodal fusion loss for model training. 

 



Supplemental Experimental Procedures. Methods for suppressing site effects and data 
enhancement and ablation study 

⚫ Combat harmonization 
The results above indicate that the functional connectivity matrix derived from fMRI images 

exhibits notable site effects. To mitigate the site effects during data preprocessing, we employed 
the Combat harmonization method to promote multi-site coordination. The Combat method is 
essentially a model based on multiple mixed linear regression, which was originally proposed 
to suppress the batch effect in genomic studies. Due to the effectiveness of this method in 
genomic studies, this method was later extended to the study of neuroimaging data to remove 
site-related bias from neuroimaging data acquired from multiple sites and their derived values14. 
Combat uses empirical Bayes to improve parameter estimation of biological effects and site 
images to avoid overcorrection of important biological variability during the correction process. 
In this paper, we set the site index or acquisition protocol index as the batch number, and the 
subject's sex, age, and disease status as covariates to preserve as much site-independent 
variance as possible during the correction process. To avoid information leakage, a machine 
learning form of Combat (https://github.com/sahahn/neuroCombat)14 was used for 
harmonization. The Combat model underwent a 10-fold cross-validation process to obtain the 
coordinated data. The t-SNE plot of the functional connectivity matrix after harmonization is 
shown in Figure S2b, illustrating a more uniform data distribution across all sites, successful 
elimination of outliers, and effective reduction of site effects on the data. 
⚫ Data Enhancement 

Site effects are primarily caused by the differences in data distribution among sites, which 
are due to the use of different instruments and parameters for data collection at each site. As a 
consequence, the training data fails to meet the assumption of an independent and 
homogeneous distribution necessary for network training and generalization. Furthermore, 
data-driven methods like graph neural networks necessitate a significant amount of training 
data to attain satisfactory generalization performance, thereby demanding effective data 
augmentation techniques to increase the size of the training data. In this paper, DropEdge15 
and a mixup method on graphs were used for data augmentation. DropEdge, which is 
commonly used in graph neural networks, perturbs the graph structure by randomly removing 
a portion of the edges in the adjacency matrix during the training process to achieve the effect 
of data enhancement, thereby alleviating the overfitting phenomenon and enhancing the model 
generalization performance. The mixup method proposed in this paper extends the Mixup16 
method commonly used in computer vision to graph neural networks, and perturbation of the 
graph is achieved by linear interpolation of node features and graph structure. Linear 
interpolation makes the distribution of training data more uniform, which helps suppress the site 
effects. From the perspective of graph theory, the enhanced data can be viewed as sampling 
from different graphons, thus achieving data augmentation and improved generalization ability 
of the model. 

Specifically, the Mixup method used in this paper is implemented according to the following 
equation: 

𝜆 ~ 𝐵𝑒𝑟𝑛(𝑎, 𝑏), 𝑦 ∈ {0,1} (1) 

�̃�[𝑦] = 𝜆𝑋[𝑦] + (1 − 𝜆)�̅�[𝑦] (2)  

�̃�[𝑦] = 𝜆𝑋[𝑦] + (1 − 𝜆)�̅�[𝑦] (3) 

�̃�[𝑦] =  𝜆𝑌[𝑦] + (1 − 𝜆)�̅�[𝑦] (4) 

Where 𝐵𝑒𝑟𝑛(𝑎, 𝑏)  represents the Bernoulli distribution with parameters 𝑎, 𝑏 . 𝑋, 𝐴, 𝑌,  and 

�̃�, �̃�, �̃� represents the node features, adjacent matrix and classification labels, respectively. [⋅] 
represents indexing according to the original label and ⋅ ̅ indicates random permutation by row. 
⚫ Domain adversarial training 

Based on the pre-experimental results, site effects have a substantial impact on both the 
training and generalization of the model. To reduce site-specific variation in the local 
embeddings produced by the local ROI-GNN, a domain classifier and a gradient inversion layer 
were added to the local ROI-GNN in this paper. Specifically, the domain classifier (a 2-layer 
MLP) identifies the origin site for each local whole-brain embedding. In addition, during the 
process of gradient backpropagation, a gradient inversion layer is used to reverse the gradients. 
Through the minimization of the domain classification loss, the domain classifier can be 
optimized, and the layers preceding it can be encouraged to generate embeddings that confuse 
the domain classifier. During the model training phase, the layers before the local ROI-GNN 
domain classifier and the domain classifier engage in an adversarial process and eventually 

https://github.com/sahahn/neuroCombat


mitigate the site variance of the local whole-brain embeddings generated by the model. 
⚫ Domain migration loss 

The training and generalization of the model rely on the assumption that the labeled 
training nodes are randomly sampled and that the test nodes and training nodes follow the 
independent and identical distribution (iid). This allows the patterns and information learned 
from the training set to be successfully applied to the test set. However, in a multi-site scenario, 
particularly when the training set and test set come from different sites, satisfying the 
assumption of iid becomes challenging. As a result, site effects can significantly hinder the 
model's ability to generalize. In such cases, the model is more likely to fit redundant rules from 
the training data, leading to a loss in generalization performance. Therefore, inspired by the 
work of Qi Zhu et al17, this paper used a domain migration loss to migrate GNNs from partial 
site-biased data to complete graph data containing all sites. Specifically, the distribution bias of 
GNN is defined as follows: assume that the n node embeddings are 𝐻 = {ℎ1, ℎ2, … , ℎ𝑛}, from 

which M nodes are labeled {(𝑥𝑖 , 𝑦𝑖)} and represented as 𝐻𝑡𝑟𝑎𝑖𝑛 = {ℎ1, … , ℎ𝑚}. Assuming that 
𝐻 and 𝐻𝑡𝑟𝑎𝑖𝑛 originate from two different probability distributions 𝑝, 𝑞, the distribution bias in 

GNN can be quantified by the distance metric 𝑑(𝐻, 𝐻𝑡𝑟𝑎𝑖𝑛). In the training phase, this paper 

randomly sampled the same number of embeddings from 𝐻𝑡𝑟𝑎𝑖𝑛 and 𝐻𝑡𝑒𝑠𝑡 and calculated the 
Central Moment Discrepancy (CMD) distance between them as the domain migration loss: 

𝐿𝐶𝑀𝐷(𝐻𝑡𝑟𝑎𝑖𝑛 , 𝐻𝑡𝑒𝑠𝑡) =
1

𝑏 − 𝑎
 ‖𝐸(𝐻𝑡𝑟𝑎𝑖𝑛) − 𝐸(𝐻𝑡𝑒𝑠𝑡)‖

+Σ𝑘=2
∞ 

1

|𝑏 − 𝑎|𝑘
 ‖𝑐𝑘(𝐻𝑡𝑟𝑎𝑖𝑛) − 𝑐𝑘(𝐻𝑡𝑒𝑠𝑡)‖  (5)

 

 
During the experimental phase, we systematically integrated these methods and evaluated 

their efficiency in enhancing the model’s generalization performance using 10-fold cross-
validation on the SRPBS dataset. The results are summarized in Table S16, which 
demonstrates that the Combat harmonization, Mixup data augmentation, and adversarial 
training achieved a significant improvement in model generalization ability. 

 
  



 

Supplemental Experimental Procedures. Hyperparameter Selection 

To further investigate the impact of the number of neighbors (KNN k) for each node in 
constructing the K-nearest neighbor graph and the number of network layers for Snowball GCN 
(Snowball Layer Num) on the performance of the model, we explored the changes in model 
performance under different hyperparameter and model structure settings using grid search on 
the SRPBS dataset, as shown in Figure S8 and Figure S9. It can be observed that the model's 
performance remains relatively stable with the variation of hyperparameters. The model 
achieves the best performance when the number of neighbors in the K-nearest graph is 10 and 
the number of network layers in Snowball GCN is 9. These two parameter settings can be 
considered as influencing the receptive field of LGMF-GNN. When the number of neighboring 
nodes is small or the network depth is shallow, the network aggregates and updates node 
representations without accessing enough information from neighboring nodes, leading to 
insufficient information in the node representations. In contrast, when the number of 
neighboring nodes is large or the network depth is deep, the network introduces excessive 
noise information into the node representations, resulting in a decrease in model performance. 
When the number of neighboring nodes and network layers are appropriately balanced and at 
a moderate level, the network can effectively aggregate and update information within the 
desired range, thus avoiding excessive noise and contributing to improved performance. 

 
 

Supplemental Experimental Procedures. The impact of brain atlases on model 
performance 

In this study we have tried 2 brain atlases, the AAL atlas and the CC200 atlas, to define 
the region of interest (ROI) in participants' brains. In order to investigate the impact of ROI 
partitioning on the diagnosis of depression, we examined the changes in the 10-fold cross-
validation results of the end-to-end LGMF-GNN model on the SRPBS dataset when using 
different brain atlases. The experimental results showed that the model exhibited robust 
performance across different ROI partitioning methods (Table S23). Additionally, we found that 
the model performed better when the ROI partitioning was more generalized. This may be 
because overly fine-grained ROI partitioning introduces more noise, thereby increasing the risk 
of model confusion. 

 
 

Supplemental Experimental Procedures. Model validation on unbalanced dataset 

    In practice, the incidence rate of depression in the population is roughly 1/5. To thoroughly 
investigate the model’s generalization capability on unbalanced datasets, we employed the 
Bootstrap method to sample the validation sets from the 10-fold cross-validation on the SRPBS 
dataset, creating validations set with a HC to MDD ratio of 4:1 to mimic the real-world 
distribution. For each fold, we performed 10 Bootstrap samplings, collected the model’s 
prediction results for performance metric calculation, and then averaged the Bootstrap results 
across the 10 folds. The outcomes of the Bootstrap experiments are detailed in Table S24. 
    We acknowledge that the experimental results on the imbalanced dataset do not meet the 
performance standards we had achieved on the balanced dataset. The performance metrics 
indicate that the model’s ability to accurately identify MDD cases is slightly compromised when 
the data distribution is skewed towards the HC group. Despite the performance degradation in 
scenarios with unbalanced class distribution, LGMF-GNN still achieved similar performance to 
current methods44,45. 
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