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ABSTRACT 

Cancer mutations are often assumed to alter proteins, thus promoting tumorigenesis. 

However, how mutations affect protein expression has rarely been systematically 

investigated. We conduct a comprehensive analysis of mutation impacts on mRNA- and 

protein-level expressions of 953 cancer cases with paired genomics and global proteomic 

profiling across six cancer types. Protein-level impacts are validated for 47.2% of the 

somatic expression quantitative trait loci (seQTLs), including mutations from likely “long-

tail” driver genes. Devising a statistical pipeline for identifying somatic protein-specific 

QTLs (spsQTLs), we reveal several gene mutations, including NF1 and MAP2K4 

truncations and TP53 missenses showing disproportional influence on protein abundance 

not readily explained by transcriptomics. Cross-validating with data from massively 

parallel assays of variant effects (MAVE), TP53 missenses associated with high tumor 

TP53 proteins were experimentally confirmed as functional. Our study demonstrates the 

importance of considering protein-level expression to validate mutation impacts and 

identify functional genes and mutations.   

  



INTRODUCTION 
Cancer arises from the acquisition of mutations that confer selective advantages. The 

majority of these mutations are thought to affect cellular functions by regulating the 

expression of gene products. For example, truncations can result in nonsense-mediated 

decay (NMD)1,2, which protects eukaryotic cells through degrading premature termination 

codon (PTC) bearing mRNA3. Additionally, a fraction of cancer mutations may uniquely 

affect protein abundance but not mRNA expression. However, previous studies 

characterizing genomic mutations affecting mRNA vs. protein levels have focused on 

germline variants as expression quantitative trait loci (eQTL)4–6. While other cancer 

studies have characterized the effect of somatic mutations on mRNA expression levels7–

9, it remains unclear how somatic mutations may affect protein abundance. The gap of 

knowledge is critical given that mRNA and protein levels are only moderately correlated10–

13. A myriad of factors, including cell state transition, signal delay, translation on demand, 

and cellular energy constraint, can lead to discrepancies between mRNA and protein 

levels14. Understanding protein-level consequences of cancer mutations is critical in 

identifying functionally important mutations and revealing their downstream mechanisms.  

In recent years, advances in mass spectrometry (MS) technologies have generated a 

wealth of global proteomic profiles of primary tumor cohorts, many of which also have 

concurrent genomic and transcriptomic profiling15–20. These proteogenomic datasets 

present ample opportunities to validate somatic mutations that show concordant impacts 

on downstream mRNA and protein levels. On the other hand, protein abundance may 

also be uniquely influenced by the efficiency of protein translation efficiency, transport, 

and degradation. Thus, proteogenomic analyses can reveal mutations that 

disproportionally impact protein abundances that may not be found using genomic 

analyses alone.  

Herein, we conducted a systematic analysis to decode the relationship between somatic 

mutations vs. mRNA and protein levels using data from nearly a thousand cases across 

six cancer types in prospective and retrospective cohorts from the Clinical Proteomic 

Tumor Analysis Consortium (CPTAC). We identified mutations showing concordant 

effects at both mRNA and protein expression levels in cis, as well as those that showed 



protein-specific effects. We further examined how mutations associated with expression 

changes may predict in vitro and in vivo functional effects measured by a massively 

parallel assays of variant effects (MAVE) of TP5321. Our results highlight the importance 

of pairing genomic and proteomic analyses to prioritize functionally important mutations. 

RESULTS 
Mutation impacts on the mRNA and protein levels  

Following the study workflow (Figure 1A), we first sought to identify somatic mutations 

that may impact the corresponding gene’s mRNA expression (somatic eQTL, termed 

seQTL below) and protein abundance (somatic pQTL, termed spQTL below) in primary 

tumor tissue samples. We performed a multiple regression analysis adjusted for age, 

gender, ethnicity, and TMT batch using the prospective CPTAC datasets that included 

matched DNA-Seq, RNA-Seq, and mass spectrometry (MS) global proteomics data of 

primary tumor samples across six cancer types (Methods, Figure 1B), including 115 

breast cancer (BRCA)19, 95 colorectal cancer (CRC)16, 110 clear cell renal cell carcinoma 

(CCRCC)15, 109 lung adenocarcinoma (LUAD)17, 84 ovarian cancer (OV)20, and 97 

uterine corpus endometrial carcinoma (UCEC)18, as well as proteogenomic datasets for 

additional, retrospective BRCA11, CRC13, and OV12 cohorts from CPTAC for validation 

(Figure S1A).  We focused on coding mutations given the coverage of the whole-exome 

sequencing (WES) data used in CPTAC studies; the analyses were further stratified for 

truncations, missense, and synonymous mutations given their likely different mechanisms 

of action in affecting levels of the mutated gene product.  



 
Figure 1. Overview of the proteogenomic cohorts and schematics. (A) Study workflow to identify 

eQTLs, pQTLs, concordant QTLs (between mRNA and protein levels), and spsQTLs showing 
disproportional effects on protein expression. (B) Summary of the prospective CPTAC proteogenomic 

cohorts used for the discovery analyses, including cancer type abbreviation, data source, sample size of 

tumor (T) and normal (N) tissues, female percentage, average onset age in years, and tumor stage 

distribution.  

 

Based on the statistical power achieved by these cohort sizes and to reduce false 

positives, we focused on genes with three or more samples affected by mutations in each 

functional class of missense, truncation, and synonymous within the cancer cohort, 

including 134, 13, and 15 genes tested in BRCA; 1360, 318, and 226 genes tested in 

CRC; 55, 12, and 4 genes tested in CCRCC; 94, 4, and 8 genes tested in LUAD; 134, 5, 

and 8 genes tested in OV; 2243, 273, and 196 genes tested in UCEC. We sought to 

identify their seQTLs affecting cis-expression, i.e., expression of the mutation-affected 

genes. Using the multiple regression model (Methods), we identified 74 gene-cancer 

seQTL pairs (FDR < 0.05), including 4 in BRCA, 47 in CRC, 7 in CCRCC, 3 in LUAD, 1 

in OV, and 12 in UCEC (Figure 2A, Table S1). Separated by the functional classes of 

mutations, 22 of those seQTLs are missense mutations, 12 are synonymous, and 40 are 



truncating. Top seQTLs showing up-regulation of gene expression are primarily 

missenses, including SMARCA4 in LUAD, WNT7B in CRC, TP53 in OV, and FOXR2 in 

UCEC. Top candidates showing down-regulation of gene expression include TP53 and 

CDH1 truncations in BRCA, as well as TP53 truncations in OV (Figure 2B). 

 

 
Figure 2. Gene mutations identified as cis seQTLs and spQTLs across six adult cancer types. (A) 
Overview of the somatic mutation QTLs identified in different cancer types and mutation types, including 

missense (green), truncating (orange), and synonymous (purple) mutations. For both eQTLs and pQTLs, 



the panel on the left shows the counts of the mutation-gene pairs included in analyses, and the figure on 

the right shows the counts of the significant eQTLs and pQTLs. (B) Volcano plots showing seQTLs 

associations in the six cancer types (left) and volcano plots showing spQTLs associations (right), where 

each dot denotes a gene-cancer pair included in the analysis. Top associated genes were further labeled. 
FC: mRNA/protein expression log fold change. FDR: false discovery rate.  

 

Using a similar multiple regression but modeling protein abundance as the dependent 

variable, we identified 103 significant gene-cancer spQTL pairs (FDR < 0.05), including 4 

in BRCA, 31 in CRC, 8 in CCRCC, 3 in LUAD, 2 in OV, and 55 in UCEC (Figure 2A, 
Table S2). Compared to the proportion of gene-mutation type evaluated in each cancer 

type, spQTLs showed significant enrichment for truncations (Fisher exact test p-value < 

0.05; Figure 2A), highlighting the persistent and more profound effect of truncations on 

protein abundance compared to mRNA levels. Among the identified spQTLs across 

cancer, 7 are missense and 96 are truncating. For example, truncating mutations of NF1 

and ARID1A in UCEC, and YLPM1 in CCRCC are each associated with reduced protein 

level of the corresponding gene (Figure 2B). Notably, TP53 missenses in OV, BRCA, 

LUAD, and UCEC are each significantly associated with increased protein expression in 

mutation carriers (Figure 2B). 

 

To verify these discoveries, we applied the same seQTL and spQTL analyses using 

retrospective CPTAC data (Figure S1A) that included independent cohorts of BRCA11, 

CRC13, and OV12 primary tumors. While these cohorts afforded smaller sample sizes, 8 

seQTLs and 5 spQTLs were detected in both retrospective and prospective sets. The 

gene-cancer spQTL pairs showing strong validation in both datasets include TP53 

missense mutations and CDH1 truncations in BRCA, and TP53 truncations in CRC 

(Figure S1B).  

 
Mutations showing concordant effects at mRNA and protein levels 
We next examined the concordance of seQTL and spQTL associations for each gene-

cancer type pair. As expected, for most (88.9%) of the significant seQTLs whose genes 

had sufficient observations at both the mRNA and protein levels, the identified 

associations showed the same directionality. However, we only identified 17 seQTLs 



(47.2%) that are also significant spQTLs at an FDR < 0.05, which we show as concordant 

QTLs (Figure 3A, Table S3). The effect sizes (in log fold change) of these gene-cancer 

pairs showing concordant seQTLs and spQTLs showed a high correlation between 

mRNA and protein (Pearson r = 0.90, p-value < 7.51E-7).  

 

 
Figure 3. Gene mutations showing concordant impacts on gene and protein expression levels. (A) 
Overview of concordant QTLs as shown by their effect sizes in log[Fold Change (FC)], where the gray line 

shows when the protein logFC equals RNA logFC. Some of the top concordant QTLs were further labeled 



by cancer type and gene name. (B) Examples of QTL with concordant effects at mRNA and protein 

expression levels. For each gene, the plot on the left shows the corresponding mRNA levels of mutation 

carriers vs. non-carriers in FPKM, and the plot on the right shows protein level comparison in log ratio (MS 

TMT measurements) in the respective cancer type labeled on top of each of the violin plots. The labeled 
mutations are the three mutations whose carriers show the highest absolute expression differences of the 

mutated gene product compared to the non-carriers.  

 

In different cancer types, genes whose mutation impacts on gene and protein expressions 

are concordant include well-known drivers of the disease, including TP53 missense 

mutations in OV, CDH1 truncations in BRCA, and MSH3 truncations in CRC. Up-

regulation of mutated TP53 in OV is the only association found for genes affected by 

missense mutations. The 16 other concordant se/spQTLs are all truncations associated 

with reduced expression and highlight some “long-tail” driver genes, including PBRM1 in 

CCRCC, YLPM1 in CCRCC/UCEC, and ESRP1 in UCEC (Figure 3B). The concordant 

QTLs with truncating mutation can likely be explained by NMD, which reduces gene 

expression and in turn diminishes the expression of the corresponding proteins3. 

Compared to the substantially higher counts of seQTL associations (Figure 2A-B), these 

concordant se/spQTL effects validate mutation impacts on the gene product.  

 

 

Protein-specific mutation impacts not observed at mRNA levels 
While most seQTLs and spQTLs show concordance, we postulate that certain mutations 

may uniquely affect protein abundance but not mRNA levels, which we term somatic 

protein-specific QTLs (spsQTLs). To identify spsQTLs, we applied two methods to 

stringently retain QTLs with discordant effects at mRNA and protein levels. First, applying 

a likelihood ratio test (LRT) between two regression models of protein level being 

predicted by mRNA level with or without the mutation term (Methods)4, 96 candidate 

spsQTLs (FDR < 0.05) were identified. Second, complementing this LRT test with an 

approach filtering for gene-cancer pair showing significant spQTL (FDR < 0.05) but not 

seQTLs (Methods) 22, 86 candidate spsQTLs (FDR < 0.05) were identified.  

 



By overlapping candidate spsQTLs identified by both methods, we retained 83 spsQTLs, 

the majority (92.8%) of which are truncating mutations (Figure 4A, Table S4). Top 

spsQTLs associated with diminished protein expression include NF1 truncations in UCEC, 

PLEAHK5 truncations in CRC, and MAP2K4 truncations in BRCA. The only spsQTLs that 

increase protein expression include TP53 missense mutations in BRCA, LUAD, and 

UCEC. (Figure 4B). We further examined the discordance in mutation impacts on gene 

and protein expression levels (Figure 4C). While some of these truncations, such as NF1 

in UCEC and MAP2K4 in BRCA, were often accompanied by lower-than-median mRNA 

expression in their respective tumor cohorts, their impacts were strikingly observed at 

diminished protein expression levels. We highlighted in Figure S2A spsQTLs where the 

affected gene’s protein showed negative protein log fold-change (logFC) whereas the 

mRNA logFC is non-negative, including CASP8 truncations in UCEC, ARID1A truncations 

in CRC and UCEC, and ATM truncations in LUAD and UCED. We also identified a set of 

spsQTLs truncations, where the logFC associated with a reduction in proteins is 15 times 

greater than mRNAs logFC (Figure S2B). These results suggest that NMD associated 

with these gene truncations are closely tied to the terminated translation but may not 

affect mRNA expression to the same degree 23.  



 
Figure 4. Gene mutations showing discordant impacts on gene and protein expression levels. (A) 

Overview of discordant QTLs identified by our statistical pipeline as shown by their effect sizes in log[Fold 

Change (FC)], where the gray line shows when the protein logFC equals RNA logFC. (B) Heatmaps of 

QTLs that are significant as either seQTL or spQTL and that are shared across at least two cancer types. 



Brown box indicates significant spsQTLs, and color indicates the effect size in log[Fold Change (FC)],  

average protein expression of mutation carriers in log ratio from the MS TMT quantifications. (C) Examples 

of QTL with discordant effects at mRNA vs. protein levels. For each gene, the plot on the left shows the 

corresponding mRNA levels of mutation carriers vs. non-carriers in FPKM, and the plot on the right shows 
protein level comparison in log ratio (MS TMT measurements) in the respective cancer type labeled on top 

of each of the violin plots. The labeled mutations are the three mutations whose carriers show the highest 

absolute expression differences of the mutated gene product compared to the non-carriers. 

 

To complement the cross-tumor analyses, we also utilized the CPTAC samples with 

paired tumor-normal tissues to conduct paired differential expression tests for both protein 

and mRNA expression (Figure 1A). The paired sample sizes with proteomic data include 

17 in BRCA, 17 in UCEC, 84 in CCRCC, 100 in LUAD, 29 in CRC, and 10 in OV (Figure 
1B). Covariates including age at diagnosis, ethnicity, race, and sequencing operator are 

adjusted in the analysis. While this analysis had varied statistical power due to different 

normal tissue availabilities across cancer types, it served as an independent validation of 

spQTLs (Table S5). This paired tumor-normal analysis validated the protein-level impacts 

of several discordant spsQTLs (Figure S3A) as well as some concordant se/spQTLs 

(Figure S3B). For example, the validated discordant spsQTLs include truncations of 

SMAD4 and SCRIB in CRC as well as NF1, GLYR1, and RASA1 in UCEC (Figure S3A). 

The validated concordant se/spQTLs include truncations of YLPM1 and PBRM1 in 

CCRCC, SMARCA4 and KEAP1 in LUAD, and ESRP1 as well as JAK2 in UCEC (Figure 
S3B).  

 

Functional evidence of TP53 missenses associated with high protein expression 
Notably, TP53 missenses are associated with higher protein expression in multiple cancer 

cohorts, in addition to the expected reduction in expression associated with truncations 

(Figure 5A). Such cis-effect of functional TP53 missense mutations had previously been 

observed through immunohistochemistry (IHC24) or MS global proteomics experiments25. 

Here, we hypothesized that functional TP53 missense mutations are more likely to show 

high levels of concurrent protein-level expression in the mutated tumor sample. To test 

this hypothesis, we compared gene and protein-level TP53 expression from CPTAC with 

TP53 mutation-level functional data from the in vitro and in vivo MAVE experiment 



conducted by Kotler et al21, where they designed a p53 variants library to study the 

functional impact of those mutations.  

  
Figure 5. Functional verification of TP53 mutation associated with high mRNA or protein levels 
using in vitro and in vivo data from a MAVE experiment. (A) Percentile of averaged expression 

associated with a given TP53 mutation at the mRNA (x-axis) and protein (y-axis) levels in the respective 

cancer cohort. TP53 mutations are color coded by mutation type (left) and observed cancer type (right), 

respectively. (B) Violin plots comparing the in vitro functional score (RFS, top), in vivo enrichment score 

(middle), and IARC occurrences (bottom) for TP53 mutations in the three groups defined by (1) TP53 
mutations with top 20% mRNA (left) or protein (right) expression in the prospective CPTAC cohorts, (2) the 

other TP53 mutations observed across all CPTAC samples, and (3) the rest of the assayed TP53 mutations 

from Kotler et al21.  



 

We divided the TP53 missense mutations from Kotler et al. into three categories: (1) TP53 

mutations with top 20% mRNA or protein expression in the prospective CPTAC cohorts, 

(2) the other TP53 mutations observed across all CPTAC samples, and (3) the rest of the 

assayed TP53 mutations from Kotler et al. For in vitro data, the number of tested 

mutations by each category is 32, 78, and 1,033, respectively. For in vivo data, the 

number of tested mutations by each category is 19, 10, and 381, respectively. We first 

compared the relative fitness score (RFS) measured from the in vitro assays17. While 

there may be a trend, we did not observe a significant difference between all the other 

mutations versus TP53 missenses associated with either top 20% expression based on 

either mRNA (p-value = 0.090, Wilcoxon rank-sum test) or protein expression (p-value = 

0.720). 

 

We next compared the in vivo enrichment scores across the same categories, and found 

that TP53 missenses associated with top 20% protein expression showed significantly 

higher enrichment score in vivo compared to that of other TP53 missenses found in 

CPTAC (p-value = 0.016) or other experimentally-measured TP53 mutations (p-value = 

3.23E-5, Figure 5B, Table S6). In comparison, TP53 missenses associated with top 20% 

mRNA expression did not show a significant in vivo score difference to that of other TP53 

missenses found in CPTAC (p-value = 0.170). Kotler et al. observed that there was no 

significant correlation between enrichment score in vivo and RFS in vitro, which is 

consistent with our observations and may be explained by the different selective 

pressures between these settings in vivo and in vitro21. Finally, TP53 missenses 

associated with top 20% protein expression (p-value = 5.91E-7) or top 20% mRNA 

expression (p-value = 2.38E-2) showed significantly higher prevalence than other CPTAC 

mutations based on counts from the International Agency for Research on Cancer (IARC) 

database21 (Figure 5B, Table S6). Overall, these analyses suggested that protein-level 

consequences from primary tumor samples can aid the identification of functional 

mutations.   

 

 



DISCUSSION 
 

Herein, we analyzed how somatic mutations affect mRNA and protein levels using 

matched genomic, transcriptomic, and global proteomic data from 953 cases across six 

solid cancer types. We first investigated the mutation impacts at the mRNA level and 

protein level, finding that although most seQTLs have the same direction of effect as 

spQTLs, less than half of them are also significant at the protein level. We also studied 

the concordant or discordant relationship between seQTL versus spQTLs, finding several 

spsQTLs that have disproportional effects on protein. Finally, we conducted analyses to 

provide functional validation21 for our findings of TP53 missenses associated with high 

protein expression.  

 

Integrating protein-level data identified nearly 47.2% seQTLs as concordant, significant 

spQTLs. The result demonstrates the capacity of proteomic data to validate genomic 

findings and potentially filter out noises that may arise for example due to the more 

transient nature of transcription compared to translation. In addition to well-known tumor 

suppressors like TP53 and MSH3, other gene mutations with concordant effects may also 

be “long tail” driver genes that will otherwise require large cohort sample sizes to discover. 

For example, PBRM1, which we found in CCRCC, is a subunit of the PBAF chromatin 

remodeling complex thought to be a tumor suppressor gene whose mutations may confer 

synthetic lethality to DNA repair inhibitors26. ESRP1, found in UCEC, is crucial in 

regulating alternative splicing and the translation of some genes during organogenesis27. 

Other less-studied genes we identified include YLPM1 truncations associated with 

concordantly reduced YLPM1 mRNA and protein expression levels in both CCRCC and 

UCEC. Analyzing the distribution of these gene mutations on NCI’s Genome Data 

Commons, we observed many other recurrent truncations (Figure S5), suggesting these 

mutations may represent some of the “long tail” driver mutations that warrant further 

investigation28,29.  

 

By devising a specific pipeline to detect spsQTLs, our results showed that apart from 

mutations that influence protein level mediated by changes in mRNA level, many 



mutations are associated with disproportional aberrations at the protein level compared 

to mRNA changes, indicating post-transcriptional regulation. SpsQTLs were found to 

affect known driver genes such as TP53 missenses, and truncations in NF130 and 

MAP2K431. In most cases, protein molecules are more direct mediators of cellular 

functions and phenotypes than mRNAs32. Thus, the discordant effect between mRNA 

level and protein level discovered in our study highlights the importance of exploring 

disease mechanisms and developing treatments at the protein level. 

 

This study has several limitations. First, our findings do not distinguish between several 

potential mechanisms that could lead to discordant effects of mutations on gene and 

protein expression. One possibility is that the mutation affects the efficiency of translation, 

leading to changes in protein levels that are not reflected in mRNA levels. For example, 

accumulating evidence in recent years suggests that NMD is closely tied to the 

termination of translation23, which may explain instances where some truncations afford 

much stronger associations with protein levels. The mechanisms of how mutations may 

affect protein translation may be context- and gene-specific and remain to be elucidated. 

Second, the proteogenomic tumor cohorts used herein, while being some of the largest 

studies to date, still are limited in sample sizes and preclude sufficient statistical power to 

identify pQTLs at a single mutation level or reveal trans effects. Third, given the limitation 

of current omic technology and data, our findings do not resolve mutation impact on 

proteins at the temporal, spatial, or single-cell resolution, but provide candidate mutations 

to be investigated in future studies.   

 

Finally, using TP53 missense mutations as an example, we showed that protein-level 

expression can serve as an effective strategy to prioritize functional mutations. As DNA-

Seq become ever more commonplace, many rare mutations are being identified and it 

remains challenging to accurately classify their functional impacts. Our data 

demonstrated that TP53 missenses associated with high protein expression show 

significantly higher functional scores, particularly those measured in vivo. This protein-

expression-based prioritization strategy can be particularly powerful when combined with 

high-throughput functional assays like using MAVE model systems that are typically in 



vitro. Considering that both MAVE and proteogenomic datasets of tumor cohorts are both 

expanding quickly in the next few years33,34, the combined approaches can help 

effectively pinpoint functional mutations for mechanistic and clinical characterization. The 

prioritized mutations based on protein-level consequences may also guide the selection 

of targeted therapy to advance precision medicine.     

METHODS 
Proteogenomic datasets 
 
The prospective CPTAC data were downloaded and processed as described in the 

Method section of the work of Elmas et al35. The overview table in Figure 1A of the 

dataset describes, for each cancer cohort, the sample size, female patient percentage, 

average cancer onset age, and tumor stage. Samples are normalized by their median 

absolute deviations (MAD), so that the MAD of all samples in the dataset is 1. Protein 

markers with high fractions (greater than 20%) of missing values are filtered out. For the 

corresponding RNA-seq data, we used the log2 normalization on the FPKM (fragments 

per kilobase of exon per million mapped fragments)-normalized RNA-seq counts and 

genes have no expression in at least 90% of the samples were filter out. 

 

The proteomics data used for validation were downloaded from the NCI CPTAC portal. 

The dataset overview table in Figure S1A describe for each cancer cohort, the sample 

size, female patient percentage, average cancer onset age, and tumor stage. The 

validation data are processed in the same way as prospective data. The RNA-seq data 

sets of the three retrospective CPTAC cohorts were downloaded from the NCI CPTAC 

DCC portal. The RNA expression was measured in FPKM and was further normalized by 

log2(FPKM+1). 

 
pQTL and eQTL identification 
 
For each cancer cohort, we identified pQTLs and eQTLs using the multiple linear 

regression model as implemented in the “limma” R package. We also corrected 

confounding factors including age, gender, ethnicity, and TMT batch. The false discovery 

rate (FDR) was corrected from the p-values with the Benjamini-Hochberg procedure. 



Somatic mutations are grouped at a gene level in the multiple regression model, similar 

to that implemented by our previously developed AeQTL tool7. Mutations separated are  

analyzed by their mechanisms of action, including nonsynonymous mutations as controls 

that likely do not affect expression, missense mutations, and truncating mutations 

including frameshift and in-frame indels, nonsense, splice site, and translation start site 

mutations. We focused on genes with three or more mutations in each cancer cohort and 

analyzed associations of mutations affecting cis-expression of the corresponding mRNA 

or protein products. 

 
spsQTL identification 
 
We combined two statistical methods to identify spsQTLs. In the first method adopted 

from Battle et al.4, we compared the following two linear models using likelihood ratio test 

(LRT) with the “anova” function in R: 

𝑝	 = 	𝜇	 + 	𝛽0𝑔	 +	 	𝛽1𝑟		 
𝑝	 = 	𝜇	 +	 	𝛽!𝑟	 

 
where 𝑔	is the genotype, 𝑟 represents RNA level, and p is the protein level. We filtered 

spQTLs that have an FDR less than 0.05 in LRT as candidate spsQTLs. In the 

complementary method adopted from Mirauta et al.22, we selected QTLs with a spQTL 

FDR less than 0.05 but an seQTL FDR greater than 0.05 as candidate spsQTLs. We then 

overlapped these two lists of candidate spsQTLs to identify the final list of spsQTLs for 

downstream analyses.   

 
Tumor-normal differential expression analysis 
We conducted this analysis in the prospective CPTAC cohorts with paired tumor-adjacent 

tissure normal samples. For each cancer cohort, we paired the tumor and normal samples 

from the same patient and performed a differential protein/mRNA expression analysis to 

identify differentially expressed proteins with “limma” package. Demographic factors and 

batch effects, including age, ethnicity, race, and sequencing operator are adjusted in the 

multiple regression model. 

 

 



Supplementary Tables 
 
Table S1. List of expression quantitative trait loci (eQTLs) identified across 6 cancer 
types. This table provides details on the gene mutations associated with mRNA expression 

levels, including statistical test results, mutation type, p-values (adjusted), and effect sizes. 

 
Table S2. List of protein quantitative trait loci (pQTLs) identified across 6 cancer types. 
This table provides details on the gene mutations associated with protein abundance levels, 

including statistical test results, mutation type, p-values (adjusted), and effect sizes. 

 

Table S3. Concordant expression and protein quantitative trait loci (eQTLs and pQTLs) 
identified across 6 cancer types. This table includes information on the gene mutations, 

identified cancer types, and their impact on both mRNA and protein expression levels, 

demonstrating loci with consistent effects across both molecular layers. 

 
Table S4. Significant somatic protein-specific QTLs (spsQTLs) identified by our 
statistical pipeline across six cancer types. This table details the loci with mutations 

showing significant impacts on protein abundance not explained by mRNA levels, including 

summary statistics for eQTL/pQTL tests and the LRT and overlap test results. 
 
Table S5. Summary statistics for differentially expressed proteins (DEPs) identified in 
paired tumor-normal (TN) samples across six cancer types. This table includes the test 

statistics of protein expression differences between tumor and normal tissues harboring the 

specific mutation. 

 
Table S6. Test statistics between the three groups of TP53 mutations. The tested groups 

were defined by (1) TP53 mutations with top 20% mRNA (left) or protein (right) expression in 

the prospective CPTAC cohorts, (2) the other TP53 mutations observed across all CPTAC 

samples, and (3) the rest of the assayed TP53 mutations from Kotler et al. using TP53 

functional scores form Kotler et al.  

 
 



Supplementary Figures 
 
Supplementary Figure 1. Overview of the retrospective cohorts (A) Summary of the 

retrospective CPTAC proteogenomic cohorts used for the discovery analyses, including 

cancer type abbreviation, data source, sample size of tumor (T) and normal (N) tissues, 

female percentage, average onset age in years, and tumor stage distribution. (B) Volcano 

plots showing seQTLs associations in the six cancer types (left) and volcano plots 

showing spQTLs associations (right), where each dot denotes a gene-cancer pair 

included in the analysis. Top associated genes were further labeled. FC: log fold change. 

FDR: false discovery rate. 
 
Supplementary Figure 2. spsQTLs with strong effects. (A) Examples of spsQTL whose 

effect sizes in mRNA level and protein level are in different direction. For each gene, the 

plot on the left shows the corresponding mRNA levels of mutation carriers vs. non-carriers 

in FPKM, and the plot on the right shows protein level comparison in log ratio (MS TMT 

measurements) in the respective cancer type labeled on top of each of the violin plots. 

The labeled mutations are the three mutations whose carriers show the highest absolute 

expression differences of the mutated gene product compared to the non-carriers. (B) 

Examples of spsQTL with a protein logFC and mRNA logFC ratio greater than 15 

 
Supplementary Figure 3. Overlapped of significant QTLs in cross-tumor analysis and 

matched tumor-normal analysis projected onto pQTL volcano plots based on cross-
tumor analyses. The plots were made separately for (A) discordant spsQTLs, and (B) 

concordant eQTL/pQTLs.  

 

Supplementary Figure 4. Example lolliplots showing mutations for two genes that 
were identified as spsQTLs, including YLPM1 and ESRP1. The number on each disc 

denotes the number of mutations in that position and the color of the disc represents the 

mutation type. 
 

 



DATA AND SOFTWARE AVAILABILITY 
Data Availability 
Proteomic data for CPTAC-2/3 cohorts can be found on National Cancer Institute (NCI) 

Proteomic Data Commons (PDC): https://cptac-data-portal.georgetown.edu/cptacPublic/. 

The studies used in the discovery cohorts and their PDC study IDs are: BRCA 

(PDC000120), CRC (PDC000116), CCRCC (PDC000127), LUAD (PDC000153), OV 

(JHU: PDC000110; PNNL: PDC000118), UCEC (PDC000125) 

The studies used in the validation cohorts and their PDC study IDs are: BRCA 

(PDC000173), CRC (PDC000111), OV (JHU: PDC000113; PNNL: PDC000114) 

Genomic data, including DNA mutation and transcriptome profiling for all CPTAC-2/3 

cohorts used herein can be found on National Cancer Institute (NCI) Genome Data 

Commons (GDC): https://portal.gdc.cancer.gov/projects/CPTAC-2 (dbGaP Study 

Accession #: phs000892) and https://portal.gdc.cancer.gov/projects/CPTAC-3 (dbGaP 

Study Accession #: phs001287)  

Data for TP53 MAVE assays can be downloaded from the Supplementary Information 

from Kotler et al21. 

 

Code Availability 

The source code used for all analyses in this article is available at 

https://github.com/Huang-lab/pQTL under an MIT license. 
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May 17th 2024 
 
Scott Edmunds, PhD 
Editor in Chief, GigaScience 
 
 
Dear Dr. Edmunds, 
 
We are pleased to submit our manuscript entitled “Mutation Impact on mRNA Versus Protein 
Expression across Human Cancers” as a research article to GigaScience.  
 
Cancer mutations are often assumed to alter proteins, thus promoting tumorigenesis. However, 
the specific manner in which these mutations impact protein expression remain largely unexplored. 
Although previous studies have examined the effects of somatic mutations on mRNA expression, 
the correlation between mRNA and protein levels is only moderate. This suggests a critical need 
to elucidate the impacts of mutations on protein levels. This need applies broadly, as most studies 
of genetic variant consequences focus on expression quantitative trait loci (eQTL), but as the 
central dogma suggests, protein are often the direct executors of cellular functions.  
 
To address this urgent knowledge gap, we conducted a comprehensive analysis of the effects of 
cancer mutations on mRNA and protein-level expressions using paired genomics and global 
proteomic profiling data from nearly one thousand cancer cases spanning six cancer types. Three 
highlights of our findings include:  

1. Protein-level impacts are validated for 47.2% of the somatic expression quantitative 
trait loci (seQTLs), including mutations from likely “long-tail” driver genes.  

2. We developed a statistical pipeline for identifying somatic protein specific QTLs 
(spsQTLs), including NF1 and MAP2K4 truncations and TP53 missenses showing 
disproportional influence on protein abundance not readily explained by mRNA.  

3. Cross-validating with data from massively-parallel assays of variant effects (MAVE), 
TP53 missenses associated with high tumor TP53 protein levels were experimentally 
confirmed as functional, suggesting a new protein-based method to identify functional 
mutations.  
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We believe the results will appeal to your broad readership by demonstrating the importance of 
protein-level expression as a pivotal -omic layer to validate mutation impacts and identify 
functional mutations and variant effects. 
  
We look forward to hearing from you soon. 
 
Sincerely and on behalf of the team, 
 
Kuan-lin Huang, Ph.D.      
Assistant Professor of Genetics and Genomic Sciences & Artificial Intelligence and Human Health 
Icahn School of Medicine at Mount Sinai, New York, NY 10029 


