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Response to Reviewers: Authors: We would like to express our gratitude to the editor and the reviewers for the
valuable feedback on our manuscript titled “Mutation Impact on mRNA Versus Protein
Expression across Human Cancers” (GIGA-D-24-00168). We have carefully
considered the comments, particularly regarding the correlation between mRNA and
protein expression, and have conducted additional analyses/edits to address each of
the concerns listed by reviewers. We are pleased to submit a revised version of the
manuscript for your consideration. Below is a detailed response to all reviewers’
comments:

Reviewer #1: Despite the fact that it is already well known that proteomics is important
and provides a unique angle to studying cancer, this paper contributes to such
knowledge from an interesting angle with the use of published data.  The paper can
benefit from having further descriptions on the metrics used to measure performance,
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and should discuss more thoroughly alternative metrics and shortcomings of the
current ones. Figures should be better prepared (e.g. Figure 1 can be enlarged or table
extracted; Figure 3 Legend is truncated; )

Authors: We thank Reviewer #1 for applauding our novel approach and the feedback.
We have expanded the Methods section to provide a more comprehensive description
of the statistical metrics used,
“spsQTL identification

We combined two complementary statistical methods to identify spsQTLs. In the first
method adopted from Battle et al.4, we compared the following two nested linear
models using likelihood ratio test (LRT) with the “anova” function in R:
p = μ +〖 β〗_0 g + 〖 β〗_1 r
p = μ + 〖 β〗_2 r

where g is the genotype, r represents RNA level, and p is the protein level. By
comparing these models using LRT and filtering results with an FDR less than 0.05, we
identified candidate spsQTLs where the genotype (mutation) has a disproportionate
impact on protein abundance independent of mRNA expression.

In the second method adopted from Mirauta et al.22, we selected QTLs where the
spQTL FDR was less than 0.05 but the corresponding seQTL FDR was greater than
0.05 as candidate spsQTLs, to specifically identify mutations that affect protein levels
without influencing mRNA. We then overlapped these two lists of candidate spsQTLs
obtained from two complementary methods to identify the final list of spsQTLs for
downstream analyses.”

We also added more discussions of alternative approaches and the limitations of our
current methods in Discussion, “This study has several limitations… … Fourth, our
regression models assumes a linear relationship between mutations (one gene at a
time), confounders, and expression, which may not capture more complex, nonlinear
effects of mutations on multiple mRNA or protein expression. Future studies could
explore non-linear regression models or neural network approaches to better account
for these effects. Fifth, we employed two complementary methods to confidently
identify spsQTLs that represent true protein-specific regulatory events. However, the
reliance on FDR thresholds could still limit the detection of spsQTLs with subtle effects.
Alternative approaches, such as Bayesian models that account for prior biological
knowledge or hierarchical modeling, could be considered in future analyses to improve
the specificity of spsQTL detection. Additionally, while our method focuses on cis-
acting mutations, potential trans-acting effects could be missed, a limitation that should
be explored in larger datasets or by incorporating network-based analyses.”

We also have revised the figures as suggested. Figure 1 has been enlarged for clarity,
and the legend for Figure 3 has been corrected.

Reviewer #2: The manuscript "Mutation Impact on mRNA Versus Protein Expression
across Human Cancers" investigates how somatic mutations affect mRNA and protein
expression using data from 953 cancer cases across six types. The study identifies
that 47.2% of mutations impacting mRNA levels (seQTLs) also affect protein levels,
validating their broader impact. A novel statistical method uncovers 83 protein-specific
QTLs (spsQTLs), primarily truncating mutations, significantly affecting protein
abundance. Functional validation confirms TP53 missense mutations with high protein
levels are functional.  However, my main concern is the relationship between mRNA
expression and protein expression. The low correlation between these two levels may
undermine the analysis, suggesting different regulatory mechanisms. If low correlation
is observed, the overlap between seQTL and spQTL may lack biological significance.
Also, truncating mutations reducing protein expression seems straightforward, but this
does not fully address the complex regulation mechanisms. Therefore, I suggest that
the authors first compare the correlation between mRNA and protein expression and
select cancer types that show high correlation for subsequent analyses. This approach
would provide a more robust biological foundation for the study.

Authors: We greatly appreciate Reviewer #2’s insightful comments on the low
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correlation between mRNA and protein expression and their suggestion to focus on
cancer types with higher correlation for further analyses. We like to highlight that the
low/moderate mRNA-protein correlation is one of the main motivations for our
analyses, whereby mutations found to have mRNA effects (more known) may differ
from those showing protein expression impacts (less studied). Genomics or eQTL
studies in the field often neglect these potential discrepancies in their assumption.

The added analyses and discussion are added to the main text,
“One possible source of spsQTLs is the imperfect correlation between mRNA and
protein expression in the affected genes. Additional statistical analyses revealed that
this mRNA-protein correlations range widely across genes and cancer types (Figure
S5). While genes harboring spsQTLs have lower mRNA-protein correlations in general
than genes with concordant eQTL and pQTL, this is not the case for several discordant
genes, including MAP2K4 in BRCA and PBRM1 in CCRCC (Table S7). Based on the
number of mutations and genes identified, CRC and UCEC reached statistically
significant differences between concordant and all other expressed genes (Wilcoxon
rank-sum tests, p = 0.0056 and p = 0.022, respectively); in CRC, mRNA-protein
correlations also showed significant differences between discordant and all other
expressed genes (p = 0.013 and p = 0.29, respectively); other cancer types likely did
not reach statistical significance likely due to sufficient mutations identified. The
imperfect correspondence between gene mRNA-protein correlations and mutation
impacts further stresses the need to analyze and consider protein-specific impacts of
mutations. Table S7 provides complete mRNA-protein correlation data for all
concordant/discordant  eQTL/pQTLs in their respective cancer type for in-depth
examination.”

As the reviewer also pointed out, truncating mutations that reduce protein expression
(likely through NMD) seem straightforward but may not fully capture complex
regulatory mechanisms. To clarify this, we had added to our discussion other potential
post-transcriptional processes, including the role of translation efficiency and context-
specific regulatory factors, that may explain the observed discordant effects between
mRNA and protein levels,
“This study has several limitations. First, our findings do not distinguish between
several potential mechanisms that could lead to discordant effects of mutations on
gene and protein expression. One possibility is that the mutation affects the efficiency
of translation, leading to changes in protein levels that are not reflected in mRNA
levels. For example, accumulating evidence in recent years suggests that NMD is
closely tied to the termination of translation23, which may explain instances where
some truncations afford much stronger associations with protein levels in our findings.
But, in many cases, the mechanisms of how mutations may affect protein abundance
may be context- and gene-specific and remain to be elucidated. For example,  certain
mutations may influence the binding of RNA binding proteins and the efficiency of
translation, whereas others may alter post-translational modifications, such as
phosphorylation or ubiquitination, which can impact protein stability or degradation
without affecting transcription or translation rates.”

Additional Information:

Question Response

Are you submitting this manuscript to a
special series or article collection?

No

Experimental design and statistics

Full details of the experimental design and
statistical methods used should be given
in the Methods section, as detailed in our
Minimum Standards Reporting Checklist.
Information essential to interpreting the
data presented should be made available
in the figure legends.

Yes
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Have you included all the information
requested in your manuscript?

Resources

A description of all resources used,
including antibodies, cell lines, animals
and software tools, with enough
information to allow them to be uniquely
identified, should be included in the
Methods section. Authors are strongly
encouraged to cite Research Resource
Identifiers (RRIDs) for antibodies, model
organisms and tools, where possible.
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Availability of data and materials
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a unique identifier in the references and in
the “Availability of Data and Materials”
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ABSTRACT 40 

Cancer mutations are often assumed to alter proteins, thus promoting tumorigenesis. 41 

However, how mutations affect protein expression has rarely been systematically 42 

investigated. We conduct a comprehensive analysis of mutation impacts on mRNA- and 43 

protein-level expressions of 953 cancer cases with paired genomics and global proteomic 44 

profiling across six cancer types. Protein-level impacts are validated for 47.2% of the 45 

somatic expression quantitative trait loci (seQTLs), including mutations from likely “long-46 

tail” driver genes. Devising a statistical pipeline for identifying somatic protein-specific 47 

QTLs (spsQTLs), we reveal several gene mutations, including NF1 and MAP2K4 48 

truncations and TP53 missenses showing disproportional influence on protein abundance 49 

not readily explained by transcriptomics. Cross-validating with data from massively 50 

parallel assays of variant effects (MAVE), TP53 missenses associated with high tumor 51 

TP53 proteins were experimentally confirmed as functional. Our study demonstrates the 52 

importance of considering protein-level expression to validate mutation impacts and 53 

identify functional genes and mutations.   54 

  55 



INTRODUCTION 56 

Cancer arises from the acquisition of mutations that confer selective advantages. The 57 

majority of these mutations are thought to affect cellular functions by regulating the 58 

expression of gene products. For example, truncations can result in nonsense-mediated 59 

decay (NMD)1,2, which protects eukaryotic cells through degrading premature termination 60 

codon (PTC) bearing mRNA3. Additionally, a fraction of cancer mutations may uniquely 61 

affect protein abundance but not mRNA expression. However, previous studies 62 

characterizing genomic mutations affecting mRNA vs. protein levels have focused on 63 

germline variants as expression quantitative trait loci (eQTL)4–6. While other cancer 64 

studies have characterized the effect of somatic mutations on mRNA expression levels7–65 

9, it remains unclear how somatic mutations may affect protein abundance. The gap of 66 

knowledge is critical given that mRNA and protein levels are only moderately correlated10–67 

13. A myriad of factors, including cell state transition, signal delay, translation on demand, 68 

and cellular energy constraint, can lead to discrepancies between mRNA and protein 69 

levels14. Understanding protein-level consequences of cancer mutations is critical in 70 

identifying functionally important mutations and revealing their downstream mechanisms.  71 

In recent years, advances in mass spectrometry (MS) technologies have generated a 72 

wealth of global proteomic profiles of primary tumor cohorts, many of which also have 73 

concurrent genomic and transcriptomic profiling15–20. These proteogenomic datasets 74 

present ample opportunities to validate somatic mutations that show concordant impacts 75 

on downstream mRNA and protein levels. On the other hand, protein abundance may 76 

also be uniquely influenced by the efficiency of protein translation, transport, and 77 

degradation. Thus, proteogenomic analyses can reveal mutations that disproportionally 78 

impact protein abundances that may not be found using genomic analyses alone.  79 

Herein, we conducted a systematic analysis to decode the relationship between somatic 80 

mutations vs. mRNA and protein levels using data from nearly a thousand cases across 81 

six cancer types in prospective and retrospective cohorts from the Clinical Proteomic 82 

Tumor Analysis Consortium (CPTAC). We identified mutations showing concordant 83 

effects at both mRNA and protein expression levels in cis, as well as those that showed 84 

protein-specific effects. We further examined how mutations associated with expression 85 



changes may predict in vitro and in vivo functional effects measured by a massively 86 

parallel assays of variant effects (MAVE) of TP5321. Our results highlight the importance 87 

of pairing genomic and proteomic analyses to prioritize functionally important mutations. 88 

RESULTS 89 

Mutation impacts on the mRNA and protein levels  90 

Following the study workflow (Figure 1A), we first sought to identify somatic mutations 91 

that may impact the corresponding gene’s mRNA expression (somatic eQTL, termed 92 

seQTL below) and protein abundance (somatic pQTL, termed spQTL below) in primary 93 

tumor tissue samples. We performed a multiple regression analysis adjusted for age, 94 

gender, ethnicity, and TMT batch using the prospective CPTAC datasets that included 95 

matched DNA-Seq, RNA-Seq, and mass spectrometry (MS) global proteomics data of 96 

primary tumor samples across six cancer types (Methods, Figure 1B), including 115 97 

breast cancer (BRCA)19, 95 colorectal cancer (CRC)16, 110 clear cell renal cell carcinoma 98 

(CCRCC)15, 109 lung adenocarcinoma (LUAD)17, 84 ovarian cancer (OV)20, and 97 99 

uterine corpus endometrial carcinoma (UCEC)18, as well as proteogenomic datasets for 100 

additional, retrospective BRCA11, CRC13, and OV12 cohorts from CPTAC for validation 101 

(Figure S1A).  We focused on coding mutations given the coverage of the whole-exome 102 

sequencing (WES) data used in CPTAC studies; the analyses were further stratified for 103 

truncations, missense, and synonymous mutations given their likely different mechanisms 104 

of action in affecting levels of the mutated gene product.  105 



 106 

Figure 1. Overview of the study workflow and proteogenomic cohorts. (A) Study workflow to identify 107 

eQTLs, pQTLs, concordant QTLs (between mRNA and protein levels), and spsQTLs showing 108 

disproportional effects on protein expression. (B) Summary of the prospective CPTAC proteogenomic 109 

cohorts used for the discovery analyses, including cancer type abbreviation, data source, sample size of 110 

tumor (T) and normal (N) tissues, female percentage, average onset age in years, and tumor stage 111 

distribution.  112 

 113 

Based on the statistical power achieved by these cohort sizes and to reduce false 114 

positives, we focused on genes with three or more samples affected by mutations in each 115 

functional class of missense, truncation, and synonymous within the cancer cohort, 116 

including 134, 13, and 15 genes tested in BRCA; 1360, 318, and 226 genes tested in 117 

CRC; 55, 12, and 4 genes tested in CCRCC; 94, 4, and 8 genes tested in LUAD; 134, 5, 118 



and 8 genes tested in OV; 2243, 273, and 196 genes tested in UCEC. We sought to 119 

identify their seQTLs affecting cis-expression, i.e., expression of the mutation-affected 120 

genes. Using the multiple regression model (Methods), we identified 74 gene-cancer 121 

seQTL pairs (FDR < 0.05), including 4 in BRCA, 47 in CRC, 7 in CCRCC, 3 in LUAD, 1 122 

in OV, and 12 in UCEC (Figure 2A, Table S1). Separated by the functional classes of 123 

mutations, 22 of those seQTLs are missense mutations, 12 are synonymous, and 40 are 124 

truncating. Top seQTLs showing up-regulation of gene expression are primarily 125 

missenses, including SMARCA4 in LUAD, WNT7B in CRC, TP53 in OV, and FOXR2 in 126 

UCEC. Top candidates showing down-regulation of gene expression include TP53 and 127 

CDH1 truncations in BRCA, as well as TP53 truncations in OV (Figure 2B). 128 

 129 



 130 

Figure 2. Gene mutations identified as cis seQTLs and spQTLs across six adult cancer types. (A) 131 

Overview of the somatic mutation QTLs identified in different cancer types and mutation types, including 132 

missense (green), truncating (orange), and synonymous (purple) mutations. For both eQTLs and pQTLs, 133 

the panel on the left shows the counts of the mutation-gene pairs included in analyses, and the figure on 134 

the right shows the counts of the significant eQTLs and pQTLs. (B) Volcano plots showing seQTLs 135 

associations in the six cancer types (left) and volcano plots showing spQTLs associations (right), where 136 

each dot denotes a gene-cancer pair included in the analysis. Top associated genes were further labeled. 137 

FC: mRNA/protein expression log fold change. FDR: false discovery rate.  138 

 139 



Using a similar multiple regression but modeling protein abundance as the dependent 140 

variable, we identified 103 significant gene-cancer spQTL pairs (FDR < 0.05), including 4 141 

in BRCA, 31 in CRC, 8 in CCRCC, 3 in LUAD, 2 in OV, and 55 in UCEC (Figure 2A, 142 

Table S2). Compared to the proportion of gene-mutation type evaluated in each cancer 143 

type, spQTLs showed significant enrichment for truncations (Fisher exact test p-value < 144 

0.05; Figure 2A), highlighting the persistent and more profound effect of truncations on 145 

protein abundance compared to mRNA levels. Among the identified spQTLs across 146 

cancer, 7 are missense and 96 are truncating. For example, truncating mutations of NF1 147 

and ARID1A in UCEC, and YLPM1 in CCRCC are each associated with reduced protein 148 

level of the corresponding gene (Figure 2B). Notably, TP53 missenses in OV, BRCA, 149 

LUAD, and UCEC are each significantly associated with increased protein expression in 150 

mutation carriers (Figure 2B). 151 

 152 

To verify these discoveries, we applied the same seQTL and spQTL analyses using 153 

retrospective CPTAC data (Figure S1A) that included independent cohorts of BRCA11, 154 

CRC13, and OV12 primary tumors. While these cohorts afforded smaller sample sizes, 8 155 

seQTLs and 5 spQTLs were detected in both retrospective and prospective sets. The 156 

gene-cancer spQTL pairs showing strong validation in both datasets include TP53 157 

missense mutations and CDH1 truncations in BRCA, and TP53 truncations in CRC 158 

(Figure S1B).  159 

 160 

Mutations showing concordant effects at mRNA and protein levels 161 

We next examined the concordance of seQTL and spQTL associations for each gene-162 

cancer type pair. As expected, for most (88.9%) of the significant seQTLs whose genes 163 

had sufficient observations at both the mRNA and protein levels, the identified 164 

associations showed the same directionality. However, we only identified 17 seQTLs 165 

(47.2%) that are also significant spQTLs at an FDR < 0.05, which we show as concordant 166 

QTLs (Figure 3A, Table S3). The effect sizes (in log fold change) of these gene-cancer 167 

pairs showing concordant seQTLs and spQTLs showed a high correlation between 168 

mRNA and protein (Pearson r = 0.90, p-value < 7.51E-7).  169 

 170 



   171 

Figure 3. Gene mutations showing concordant impacts on gene and protein expression levels. (A) 172 

Overview of concordant QTLs as shown by their effect sizes in log[Fold Change (FC)], where the gray line 173 

shows when the protein logFC equals RNA logFC. Some of the top concordant QTLs were further labeled 174 

by cancer type and gene name. (B) Examples of QTL with concordant effects at mRNA and protein 175 

expression levels. For each gene, the plot on the left shows the corresponding mRNA levels of mutation 176 

carriers vs. non-carriers in FPKM, and the plot on the right shows protein level comparison in log ratio (MS 177 

TMT measurements) in the respective cancer type labeled on top of each of the violin plots. The labeled 178 

mutations are the three mutations whose carriers show the highest absolute expression differences of the 179 

mutated gene product compared to the non-carriers.  180 



 181 

In different cancer types, genes whose mutation impacts on gene and protein expressions 182 

are concordant include well-known drivers of the disease, including TP53 missense 183 

mutations in OV, CDH1 truncations in BRCA, and MSH3 truncations in CRC. Up-184 

regulation of mutated TP53 in OV is the only association found for genes affected by 185 

missense mutations. The 16 other concordant se/spQTLs are all truncations associated 186 

with reduced expression and highlight some “long-tail” driver genes, including PBRM1 in 187 

CCRCC, YLPM1 in CCRCC/UCEC, and ESRP1 in UCEC (Figure 3B). The concordant 188 

QTLs with truncating mutation can likely be explained by NMD, which reduces gene 189 

expression and in turn diminishes the expression of the corresponding proteins3. 190 

Compared to the substantially higher counts of seQTL associations (Figure 2A-B), these 191 

concordant se/spQTL effects validate mutation impacts on the gene product.  192 

 193 

 194 

Protein-specific mutation impacts not observed at mRNA levels 195 

While most seQTLs and spQTLs show concordance, we postulate that certain mutations 196 

may uniquely affect protein abundance but not mRNA levels, which we term somatic 197 

protein-specific QTLs (spsQTLs). To identify spsQTLs, we applied two methods to 198 

stringently retain QTLs with discordant effects at mRNA and protein levels. First, applying 199 

a likelihood ratio test (LRT) between two regression models of protein level being 200 

predicted by mRNA level with or without the mutation term (Methods)4, 96 candidate 201 

spsQTLs (FDR < 0.05) were identified. Second, complementing this LRT test with an 202 

approach filtering for gene-cancer pair showing significant spQTL (FDR < 0.05) but not 203 

seQTLs (Methods) 22, 86 candidate spsQTLs (FDR < 0.05) were identified.  204 

 205 

By overlapping candidate spsQTLs identified by both methods, we retained 83 spsQTLs, 206 

the majority (92.8%) of which are truncating mutations (Figure 4A, Table S4). Top 207 

spsQTLs associated with diminished protein expression include NF1 truncations in UCEC, 208 

PLEAHK5 truncations in CRC, and MAP2K4 truncations in BRCA. The only spsQTLs that 209 

increase protein expression include TP53 missense mutations in BRCA, LUAD, and 210 

UCEC. (Figure 4B). We further examined the discordance in mutation impacts on gene 211 



and protein expression levels (Figure 4C). While some of these truncations, such as NF1 212 

in UCEC and MAP2K4 in BRCA, were often accompanied by lower-than-median mRNA 213 

expression in their respective tumor cohorts, their impacts were strikingly observed at 214 

diminished protein expression levels. We highlighted in Figure S2A spsQTLs where the 215 

affected gene’s protein showed negative protein log fold-change (logFC) whereas the 216 

mRNA logFC is non-negative, including CASP8 truncations in UCEC, ARID1A truncations 217 

in CRC and UCEC, and ATM truncations in LUAD and UCED. We also identified a set of 218 

spsQTLs truncations, where the logFC associated with a reduction in proteins is 15 times 219 

greater than mRNAs logFC (Figure S2B). These results suggest that NMD associated 220 

with these gene truncations are closely tied to the terminated translation but may not 221 

affect mRNA expression to the same degree 23.  222 



 223 

Figure 4. Gene mutations showing discordant impacts on gene and protein expression levels. (A) 224 

Overview of discordant QTLs identified by our statistical pipeline as shown by their effect sizes in log[Fold 225 

Change (FC)], where the gray line shows when the protein logFC equals RNA logFC. (B) Heatmaps of 226 

QTLs that are significant as either seQTL or spQTL and that are shared across at least two cancer types. 227 



Brown box indicates significant spsQTLs, and color indicates the effect size in log[Fold Change (FC)],  228 

average protein expression of mutation carriers in log ratio from the MS TMT quantifications. (C) Examples 229 

of QTL with discordant effects at mRNA vs. protein levels. For each gene, the plot on the left shows the 230 

corresponding mRNA levels of mutation carriers vs. non-carriers in FPKM, and the plot on the right shows 231 

protein level comparison in log ratio (MS TMT measurements) in the respective cancer type labeled on top 232 

of each of the violin plots. The labeled mutations are the three mutations whose carriers show the highest 233 

absolute expression differences of the mutated gene product compared to the non-carriers. 234 

 235 

To complement the cross-tumor analyses, we also utilized the CPTAC samples with 236 

paired tumor-normal tissues to conduct paired differential expression tests for both protein 237 

and mRNA expression (Figure 1A). The paired sample sizes with proteomic data include 238 

17 in BRCA, 17 in UCEC, 84 in CCRCC, 100 in LUAD, 29 in CRC, and 10 in OV (Figure 239 

1B). Covariates including age at diagnosis, ethnicity, race, and sequencing operator are 240 

adjusted in the analysis. While this analysis had varied statistical power due to different 241 

normal tissue availabilities across cancer types, it served as an independent validation of 242 

spQTLs (Table S5). This paired tumor-normal analysis validated the protein-level impacts 243 

of several discordant spsQTLs (Figure S3A) as well as some concordant se/spQTLs 244 

(Figure S3B). For example, the validated discordant spsQTLs include truncations of 245 

SMAD4 and SCRIB in CRC as well as NF1, GLYR1, and RASA1 in UCEC (Figure S3A). 246 

The validated concordant se/spQTLs include truncations of YLPM1 and PBRM1 in 247 

CCRCC, SMARCA4 and KEAP1 in LUAD, and ESRP1 as well as JAK2 in UCEC (Figure 248 

S3B).  249 

 250 

Functional evidence of TP53 missenses associated with high protein expression 251 

Notably, TP53 missenses are associated with higher protein expression in multiple cancer 252 

cohorts, in addition to the expected reduction in expression associated with truncations 253 

(Figure 5A). Such cis-effect of functional TP53 missense mutations had previously been 254 

observed through immunohistochemistry (IHC24) or MS global proteomics experiments25. 255 

Here, we hypothesized that functional TP53 missense mutations are more likely to show 256 

high levels of concurrent protein-level expression in the mutated tumor sample. To test 257 

this hypothesis, we compared gene and protein-level TP53 expression from CPTAC with 258 

TP53 mutation-level functional data from the in vitro and in vivo MAVE experiment 259 



conducted by Kotler et al21, where they designed a p53 variants library to study the 260 

functional impact of those mutations.  261 

  262 

Figure 5. Functional verification of TP53 mutation associated with high mRNA or protein levels 263 

using in vitro and in vivo data from a MAVE experiment. (A) Percentile of averaged expression 264 

associated with a given TP53 mutation at the mRNA (x-axis) and protein (y-axis) levels in the respective 265 

cancer cohort. TP53 mutations are color coded by mutation type (left) and observed cancer type (right), 266 

respectively. (B) Violin plots comparing the in vitro functional score (RFS, top), in vivo enrichment score 267 

(middle), and IARC occurrences (bottom) for TP53 mutations in the three groups defined by (1) TP53 268 

mutations with top 20% mRNA (left) or protein (right) expression in the prospective CPTAC cohorts, (2) the 269 

other TP53 mutations observed across all CPTAC samples, and (3) the rest of the assayed TP53 mutations 270 

from Kotler et al21.  271 



 272 

We divided the TP53 missense mutations from Kotler et al. into three categories: (1) TP53 273 

mutations with top 20% mRNA or protein expression in the prospective CPTAC cohorts, 274 

(2) the other TP53 mutations observed across all CPTAC samples, and (3) the rest of the 275 

assayed TP53 mutations from Kotler et al. For in vitro data, the number of tested 276 

mutations by each category is 32, 78, and 1,033, respectively. For in vivo data, the 277 

number of tested mutations by each category is 19, 10, and 381, respectively. We first 278 

compared the relative fitness score (RFS) measured from the in vitro assays17. While 279 

there may be a trend, we did not observe a significant difference between all the other 280 

mutations versus TP53 missenses associated with either top 20% expression based on 281 

either mRNA (p-value = 0.090, Wilcoxon rank-sum test) or protein expression (p-value = 282 

0.720). 283 

 284 

We next compared the in vivo enrichment scores across the same categories, and found 285 

that TP53 missenses associated with top 20% protein expression showed significantly 286 

higher enrichment score in vivo compared to that of other TP53 missenses found in 287 

CPTAC (p-value = 0.016) or other experimentally-measured TP53 mutations (p-value = 288 

3.23E-5, Figure 5B, Table S6). In comparison, TP53 missenses associated with top 20% 289 

mRNA expression did not show a significant in vivo score difference to that of other TP53 290 

missenses found in CPTAC (p-value = 0.170). Kotler et al. observed that there was no 291 

significant correlation between enrichment score in vivo and RFS in vitro, which is 292 

consistent with our observations and may be explained by the different selective 293 

pressures between these settings in vivo and in vitro21. Finally, TP53 missenses 294 

associated with top 20% protein expression (p-value = 5.91E-7) or top 20% mRNA 295 

expression (p-value = 2.38E-2) showed significantly higher prevalence than other CPTAC 296 

mutations based on counts from the International Agency for Research on Cancer (IARC) 297 

database21 (Figure 5B, Table S6). Overall, these analyses suggested that protein-level 298 

consequences from primary tumor samples can aid the identification of functional 299 

mutations.   300 

 301 

 302 



DISCUSSION 303 

 304 

Herein, we analyzed how somatic mutations affect mRNA and protein levels using 305 

matched genomic, transcriptomic, and global proteomic data from 953 cases across six 306 

solid cancer types. We first investigated the mutation impacts at the mRNA level and 307 

protein level, finding that although most seQTLs have the same direction of effect as 308 

spQTLs, less than half of them are also significant at the protein level. We also studied 309 

the concordant or discordant relationship between seQTL versus spQTLs, finding several 310 

spsQTLs that have disproportional effects on protein. Finally, we conducted analyses to 311 

provide functional validation21 for our findings of TP53 missenses associated with high 312 

protein expression.  313 

 314 

Integrating protein-level data identified nearly 47.2% seQTLs as concordant, significant 315 

spQTLs. The result demonstrates the capacity of proteomic data to validate genomic 316 

findings and potentially filter out noises that may arise for example due to the more 317 

transient nature of transcription compared to translation. In addition to well-known tumor 318 

suppressors like TP53 and MSH3, other gene mutations with concordant effects may also 319 

be “long tail” driver genes that will otherwise require large cohort sample sizes to discover. 320 

For example, PBRM1, which we found in CCRCC, is a subunit of the PBAF chromatin 321 

remodeling complex thought to be a tumor suppressor gene whose mutations may confer 322 

synthetic lethality to DNA repair inhibitors26. ESRP1, found in UCEC, is crucial in 323 

regulating alternative splicing and the translation of some genes during organogenesis27. 324 

Other less-studied genes we identified include YLPM1 truncations associated with 325 

concordantly reduced YLPM1 mRNA and protein expression levels in both CCRCC and 326 

UCEC. Analyzing the distribution of these gene mutations on NCI’s Genome Data 327 

Commons, we observed many other recurrent truncations (Figure S4), suggesting these 328 

mutations may represent some of the “long tail” driver mutations that warrant further 329 

investigation28,29.  330 

 331 

By devising a specific pipeline to detect spsQTLs, our results showed that apart from 332 

mutations that influence protein level mediated by changes in mRNA level, many 333 



mutations are associated with disproportional aberrations at the protein level compared 334 

to mRNA changes, indicating post-transcriptional regulation. SpsQTLs were found to 335 

affect known driver genes such as TP53 missenses, and truncations in NF130 and 336 

MAP2K431. In most cases, protein molecules are more direct mediators of cellular 337 

functions and phenotypes than mRNAs32. Thus, the discordant effect between mRNA 338 

level and protein level discovered in our study highlights the importance of exploring 339 

disease mechanisms and developing treatments at the protein level. 340 

 341 

One possible source of spsQTLs is the imperfect correlation between mRNA and protein 342 

expression in the affected genes. Additional statistical analyses revealed that this mRNA-343 

protein correlations range widely across genes and cancer types (Figure S5). While 344 

genes harboring spsQTLs have lower mRNA-protein correlations in general than genes 345 

with concordant eQTL and pQTL, this is not the case for several discordant genes, 346 

including MAP2K4 in BRCA and PBRM1 in CCRCC (Table S7). Based on the number of 347 

mutations and genes identified, CRC and UCEC reached statistically significant 348 

differences between concordant and all other expressed genes (Wilcoxon rank-sum tests, 349 

p = 0.0056 and p = 0.022, respectively); in CRC, mRNA-protein correlations also showed 350 

significant differences between discordant and all other expressed genes (p = 0.013 and 351 

p = 0.29, respectively); other cancer types likely did not reach statistical significance likely 352 

due to sufficient mutations identified. The imperfect correspondence between gene 353 

mRNA-protein correlations and mutation impacts further stresses the need to analyze and 354 

consider protein-specific impacts of mutations. Table S7 provides complete mRNA-355 

protein correlation data for all concordant/discordant  eQTL/pQTLs in their respective 356 

cancer type for in-depth examination.  357 

 358 

This study has several limitations. First, our findings do not distinguish between several 359 

potential mechanisms that could lead to discordant effects of mutations on gene and 360 

protein expression. One possibility is that the mutation affects the efficiency of translation, 361 

leading to changes in protein levels that are not reflected in mRNA levels. For example, 362 

accumulating evidence in recent years suggests that NMD is closely tied to the 363 

termination of translation23, which may explain instances where some truncations afford 364 



much stronger associations with protein levels in our findings. But, in many cases, the 365 

mechanisms of how mutations may affect protein abundance may be context- and gene-366 

specific and remain to be elucidated. For example,  certain mutations may influence the 367 

binding of RNA binding proteins and the efficiency of translation, whereas others may 368 

alter post-translational modifications, such as phosphorylation or ubiquitination, which 369 

can impact protein stability or degradation without affecting transcription or translation 370 

rates. Second, the proteogenomic tumor cohorts used herein, while being some of the 371 

largest studies to date, still are limited in sample sizes and preclude sufficient statistical 372 

power to identify pQTLs at a single mutation level or reveal trans effects. Third, given the 373 

limitation of current omic technology and data, our findings do not resolve mutation impact 374 

on proteins at the temporal, spatial, or single-cell resolution, but provide candidate 375 

mutations to be investigated in future studies. Fourth, our regression models assumes a 376 

linear relationship between mutations (one gene at a time), confounders, and expression, 377 

which may not capture more complex, nonlinear effects of mutations on multiple mRNA 378 

or protein expression. Future studies could explore non-linear regression models or 379 

neural network approaches to better account for these effects. Fifth, we employed two 380 

complementary methods to confidently identify spsQTLs that represent true protein-381 

specific regulatory events. However, the reliance on FDR thresholds could still limit the 382 

detection of spsQTLs with subtle effects. Alternative approaches, such as Bayesian 383 

models that account for prior biological knowledge or hierarchical modeling, could be 384 

considered in future analyses to improve the specificity of spsQTL detection. Additionally, 385 

while our method focuses on cis-acting mutations, potential trans-acting effects could be 386 

missed, a limitation that should be explored in larger datasets or by incorporating network-387 

based analyses. 388 

 389 

Finally, using TP53 missense mutations as an example, we showed that protein-level 390 

expression can serve as an effective strategy to prioritize functional mutations. As DNA-391 

Seq become ever more commonplace, many rare mutations are being identified and it 392 

remains challenging to accurately classify their functional impacts. Our data 393 

demonstrated that TP53 missenses associated with high protein expression show 394 

significantly higher functional scores, particularly those measured in vivo. This protein-395 



expression-based prioritization strategy can be particularly powerful when combined with 396 

high-throughput functional assays like using MAVE model systems that are typically in 397 

vitro. Considering that both MAVE and proteogenomic datasets of tumor cohorts are both 398 

expanding quickly in the next few years33,34, the combined approaches can help 399 

effectively pinpoint functional mutations for mechanistic and clinical characterization. The 400 

prioritized mutations based on protein-level consequences may also guide the selection 401 

of targeted therapy to advance precision medicine.     402 

METHODS 403 

Proteogenomic datasets 404 

 405 

The prospective CPTAC data were downloaded and processed as described in the 406 

Method section of the work of Elmas et al35. The overview table in Figure 1A of the 407 

dataset describes, for each cancer cohort, the sample size, female patient percentage, 408 

average cancer onset age, and tumor stage. Samples are normalized by their median 409 

absolute deviations (MAD), so that the MAD of all samples in the dataset is 1. Protein 410 

markers with high fractions (greater than 20%) of missing values are filtered out. For the 411 

corresponding RNA-seq data, we used the log2 normalization on the FPKM (fragments 412 

per kilobase of exon per million mapped fragments)-normalized RNA-seq counts and 413 

genes have no expression in at least 90% of the samples were filter out. 414 

 415 

The proteomics data used for validation were downloaded from the NCI CPTAC portal. 416 

The dataset overview table in Figure S1A describe for each cancer cohort, the sample 417 

size, female patient percentage, average cancer onset age, and tumor stage. The 418 

validation data are processed in the same way as prospective data. The RNA-seq data 419 

sets of the three retrospective CPTAC cohorts were downloaded from the NCI CPTAC 420 

DCC portal. The RNA expression was measured in FPKM and was further normalized by 421 

log2(FPKM+1). 422 

 423 

pQTL and eQTL identification 424 

 425 

For each cancer cohort, we identified pQTLs and eQTLs using the multiple linear 426 

regression model as implemented in the “limma” R package. We also corrected 427 



confounding factors including age, gender, ethnicity, and TMT batch. The false discovery 428 

rate (FDR) was corrected from the p-values with the Benjamini-Hochberg procedure, 429 

ensuring that the identified QTLs are statistically robust. Somatic mutations are grouped 430 

at a gene level in the multiple regression model, similar to that implemented by our 431 

previously developed AeQTL tool7. Mutations separated are  analyzed by their 432 

mechanisms of action, including nonsynonymous mutations as controls that likely do not 433 

affect expression, missense mutations, and truncating mutations including frameshift and 434 

in-frame indels, nonsense, splice site, and translation start site mutations. To improve 435 

statistical power, we focused our analysis on genes with three or more mutations in each 436 

cancer cohort and analyzed associations of mutations affecting cis-expression of the 437 

corresponding mRNA or protein products. 438 

 439 

spsQTL identification 440 

 441 

We combined two complementary statistical methods to identify spsQTLs. In the first 442 

method adopted from Battle et al.4, we compared the following two nested linear models 443 

using likelihood ratio test (LRT) with the “anova” function in R: 444 

𝑝 =  𝑝 +  𝑝0𝑝 +   𝑝1𝑝   445 

𝑝 =  𝑝 +   𝑝2𝑝  446 

 447 

where 𝑝 is the genotype, 𝑝  represents RNA level, and p is the protein level. By 448 

comparing these models using LRT and filtering results with an FDR less than 0.05, we 449 

identified candidate spsQTLs where the genotype (mutation) has a disproportionate 450 

impact on protein abundance independent of mRNA expression.  451 

 452 

In the second method adopted from Mirauta et al.22, we selected QTLs where the spQTL 453 

FDR was less than 0.05 but the corresponding seQTL FDR was greater than 0.05 as 454 

candidate spsQTLs, to specifically identify mutations that affect protein levels without 455 

influencing mRNA. We then overlapped these two lists of candidate spsQTLs obtained 456 

from two complementary methods to identify the final list of spsQTLs for downstream 457 

analyses.   458 

 459 

mRNA-Protein correlation:  460 



To investigate the impact of mutations on mRNA and protein expression, we performed 461 

a comparative analysis across the six solid cancer types. For each cancer type, Pearson 462 

correlation coefficients were calculated for individual genes using paired mRNA and 463 

protein expression data. We analyzed three groups of genes we identified as showing 464 

variable impact on mRNA/protein level expressions: Concordant genes (with mutations 465 

showing concordant effects at both mRNA and protein levels in cis), Discordant genes 466 

(showing protein-specific effects), and Other genes (showing no concordant or protein-467 

specific impact). Our aim was to test the hypothesis whether the mRNA-protein 468 

correlations of the Concordant/Discordant groups differed from the baseline genome-469 

wide mRNA-protein correlations, indicating biological significance. To assess this, we 470 

employed two-sample Wilcoxon rank-sum test, comparing the mRNA-protein correlations 471 

for the Concordant/Discordant and Other gene groups within each cancer type. Pairwise 472 

comparisons were made between the Concordant and Other gene sets, as well as 473 

between the Discordant and Other gene sets, demonstrating that the correlation 474 

coefficients for these groups were drawn from distinct population distributions with 475 

statistical significance at a p-value threshold of 0.05. 476 

 477 

Tumor-normal differential expression analysis 478 

We conducted this analysis in the prospective CPTAC cohorts with paired tumor-adjacent 479 

tissure normal samples. For each cancer cohort, we paired the tumor and normal samples 480 

from the same patient and performed a differential protein/mRNA expression analysis to 481 

identify differentially expressed proteins with “limma” package. Demographic factors and 482 

batch effects, including age, ethnicity, race, and sequencing operator are adjusted in the 483 

multiple regression model. 484 

 485 

 486 

Supplementary Tables 487 

 488 

Table S1. List of expression quantitative trait loci (eQTLs) identified across 6 cancer 489 

types. This table provides details on the gene mutations associated with mRNA expression 490 

levels, including statistical test results, mutation type, p-values (adjusted), and effect sizes. 491 



 492 

Table S2. List of protein quantitative trait loci (pQTLs) identified across 6 cancer types. 493 

This table provides details on the gene mutations associated with protein abundance levels, 494 

including statistical test results, mutation type, p-values (adjusted), and effect sizes. 495 

 496 

Table S3. Concordant expression and protein quantitative trait loci (eQTLs and pQTLs) 497 

identified across 6 cancer types. This table includes information on the gene mutations, 498 

identified cancer types, and their impact on both mRNA and protein expression levels, 499 

demonstrating loci with consistent effects across both molecular layers. 500 

 501 

Table S4. Significant somatic protein-specific QTLs (spsQTLs) identified by our 502 

statistical pipeline across six cancer types. This table details the loci with mutations 503 

showing significant impacts on protein abundance not explained by mRNA levels, including 504 

summary statistics for eQTL/pQTL tests and the LRT and overlap test results. 505 

 506 

Table S5. Summary statistics for differentially expressed proteins (DEPs) identified in 507 

paired tumor-normal (TN) samples across six cancer types. This table includes the test 508 

statistics of protein expression differences between tumor and normal tissues harboring the 509 

specific mutation. 510 

 511 

Table S6. Test statistics between the three groups of TP53 mutations. The tested groups 512 

were defined by (1) TP53 mutations with top 20% mRNA (left) or protein (right) expression in 513 

the prospective CPTAC cohorts, (2) the other TP53 mutations observed across all CPTAC 514 

samples, and (3) the rest of the assayed TP53 mutations from Kotler et al. using TP53 515 

functional scores form Kotler et al.  516 

 517 

Table S7. Pearson’s correlation coefficient tests between paired mRNA and protein 518 

expressions for each concordant and discordant gene, within each cancer cohort. 519 

 520 

Supplementary Figures 521 

 522 



Supplementary Figure 1. Overview of the retrospective cohorts (A) Summary of the 523 

retrospective CPTAC proteogenomic cohorts used for the discovery analyses, including 524 

cancer type abbreviation, data source, sample size of tumor (T) and normal (N) tissues, 525 

female percentage, average onset age in years, and tumor stage distribution. (B) Volcano 526 

plots showing seQTLs associations in the six cancer types (left) and volcano plots 527 

showing spQTLs associations (right), where each dot denotes a gene-cancer pair 528 

included in the analysis. Top associated genes were further labeled. FC: log fold change. 529 

FDR: false discovery rate. 530 

 531 

Supplementary Figure 2. spsQTLs with strong effects. (A) Examples of spsQTL 532 

whose effect sizes in mRNA level and protein level are in different direction. For each 533 

gene, the plot on the left shows the corresponding mRNA levels of mutation carriers vs. 534 

non-carriers in FPKM, and the plot on the right shows protein level comparison in log ratio 535 

(MS TMT measurements) in the respective cancer type labeled on top of each of the violin 536 

plots. The labeled mutations are the three mutations whose carriers show the highest 537 

absolute expression differences of the mutated gene product compared to the non-538 

carriers. (B) Examples of spsQTL with a protein logFC and mRNA logFC ratio greater 539 

than 15 540 

 541 

Supplementary Figure 3. Overlapped of significant QTLs in cross-tumor analysis 542 

and matched tumor-normal analysis projected onto pQTL volcano plots based on 543 

cross-tumor analyses. The plots were made separately for (A) discordant spsQTLs, and 544 

(B) concordant eQTL/pQTLs.  545 

 546 

Supplementary Figure 4. Example lolliplots showing mutations for two genes that 547 

were identified as spsQTLs, including YLPM1 and ESRP1. The number on each disc 548 

denotes the number of mutations in that position and the color of the disc represents the 549 

mutation type. 550 

 551 

Supplementary Figure 5. Correlation coefficients of Concordant vs. Discordant 552 

genes. The violin plots depict the distribution of correlation coefficients between matched 553 



mRNA and protein expressions for Concordant (blue), Discordant (red), and Other genes 554 

(gray) across the six cancer types studied. Genes with notable correlations are labeled in 555 

each plot. 556 

 557 

 558 

DATA AND SOFTWARE AVAILABILITY 559 

Data Availability 560 

Proteomic data for CPTAC-2/3 cohorts can be found on National Cancer Institute (NCI) 561 

Proteomic Data Commons (PDC): https://cptac-data-portal.georgetown.edu/cptacPublic/. 562 

The studies used in the discovery cohorts and their PDC study IDs are: BRCA 563 

(PDC000120), CRC (PDC000116), CCRCC (PDC000127), LUAD (PDC000153), OV 564 

(JHU: PDC000110; PNNL: PDC000118), UCEC (PDC000125) 565 

The studies used in the validation cohorts and their PDC study IDs are: BRCA 566 

(PDC000173), CRC (PDC000111), OV (JHU: PDC000113; PNNL: PDC000114) 567 

Genomic data, including DNA mutation and transcriptome profiling for all CPTAC-2/3 568 

cohorts used herein can be found on National Cancer Institute (NCI) Genome Data 569 

Commons (GDC): https://portal.gdc.cancer.gov/projects/CPTAC-2 (dbGaP Study 570 

Accession #: phs000892) and https://portal.gdc.cancer.gov/projects/CPTAC-3 (dbGaP 571 

Study Accession #: phs001287)  572 

Data for TP53 MAVE assays can be downloaded from the Supplementary Information 573 

from Kotler et al21. 574 

 575 

Code Availability 576 

The source code used for all analyses in this article is available at 577 

https://github.com/Huang-lab/pQTL under an MIT license. 578 
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Sep 13th 2024 
 
 

Hans Zauner 

Editor, GigaScience 

 
 
Dear Dr. Zauner, 
 
We would like to express our sincere gratitude to you and the reviewers for providing valuable 
feedback on our manuscript titled “Mutation Impact on mRNA Versus Protein Expression across 
Human Cancers” (GIGA-D-24-00168) along with point by point response to each of the reviewer 
comments. 
 
Following your suggestion and the reviewers comments, we have conducted a multitude of 
analyses and improvements that have significantly strengthened the manuscript. Here are the key 
improvements in this revised version: 

 

 Expanded Methods and Metrics: We have added more detailed explanations of the 
statistical metrics used in our analysis. Additionally, we have discussed alternative 
approaches and outlined the limitations of our current methods. 

 Improved Figures: In response to the request for clarity, we have enlarged Figure 1 and 
corrected the truncated legend for Figure 3, enhancing the overall presentation of the data. 

 Additional Analysis on mRNA-Protein Correlation: We have addressed concerns 
regarding the low correlation between mRNA and protein expression by including additional 
statistical analysis. These new results highlight the variation in mRNA-protein correlations 
across genes and cancer types for concordant/discordant eQTL/pQTLs (Figure S5, Table 
S7), along with an expanded discussion on how these findings stress the need to consider 
protein-specific impacts of mutations. 

 

Additionally, we have carefully edited the manuscript, where you can find a tracked changes 
version attached. We believe the revised manuscript adequately addresses all the reviewers’ 
concerns and hope you will find it to be satisfactory for publication. 
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