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effects (MAVE), TP53 missenses associated with high tumor TP53 proteins are more
likely to be experimentally confirmed as functional.
 
Conclusion
This study reveals that somatic mutations can exhibit distinct impacts on mRNA and
protein levels, underscoring the necessity of integrating proteogenomic data to
comprehensively identify functionally significant cancer mutations. These insights
provide a framework for prioritizing mutations for further functional validation and
therapeutic targeting.
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ABSTRACT 40 

Background 41 

Cancer mutations are often assumed to alter proteins, thus promoting tumorigenesis. 42 

However, how mutations affect protein expression—in addition to gene expression—has 43 

rarely been systematically investigated. This is significant as mRNA and protein levels 44 

frequently show only moderate correlation, driven by factors such as translation efficiency 45 

and protein degradation. Proteogenomic datasets from large tumor cohorts provide an 46 

opportunity to systematically analyze the effects of somatic mutations on mRNA and 47 

protein abundance and identify mutations with distinct impacts on these molecular levels. 48 

 49 

Results 50 

We conduct a comprehensive analysis of mutation impacts on mRNA- and protein-level 51 

expressions of 953 cancer cases with paired genomics and global proteomic profiling 52 

across six cancer types. Protein-level impacts are validated for 47.2% of the somatic 53 

expression quantitative trait loci (seQTLs), including CDH1 and MSH3 truncations, as well 54 

as other mutations from likely “long-tail” driver genes. Devising a statistical pipeline for 55 

identifying somatic protein-specific QTLs (spsQTLs), we reveal several gene mutations, 56 

including NF1 and MAP2K4 truncations and TP53 missenses showing disproportional 57 

influence on protein abundance not readily explained by transcriptomics. Cross-validating 58 

with data from massively parallel assays of variant effects (MAVE), TP53 missenses 59 

associated with high tumor TP53 proteins are more likely to be experimentally confirmed 60 

as functional.  61 

 62 

Conclusion 63 

This study reveals that somatic mutations can exhibit distinct impacts on mRNA and 64 

protein levels, underscoring the necessity of integrating proteogenomic data to 65 

comprehensively identify functionally significant cancer mutations. These insights provide 66 

a framework for prioritizing mutations for further functional validation and therapeutic 67 

targeting. 68 

  69 



INTRODUCTION 70 

Cancer arises from the acquisition of mutations that confer selective advantages. The 71 

majority of these mutations are thought to affect cellular functions by regulating the 72 

expression of gene products. For example, truncations can result in nonsense-mediated 73 

decay (NMD)[1], [2], which protects eukaryotic cells through degrading premature 74 

termination codon (PTC) bearing mRNA[3]. Additionally, a fraction of cancer mutations 75 

may uniquely affect protein abundance but not mRNA expression. However, previous 76 

studies characterizing genomic mutations affecting mRNA vs. protein levels have focused 77 

on germline variants as expression quantitative trait loci (eQTL)[4], [5], [6]. While other 78 

cancer studies have characterized the effect of somatic mutations on mRNA expression 79 

levels[7], [8], [9], it remains unclear how somatic mutations may affect protein abundance. 80 

The gap of knowledge is critical given that mRNA and protein levels are only moderately 81 

correlated[10], [11], [12], [13]. A myriad of factors, including cell state transition, signal 82 

delay, translation on demand, and cellular energy constraint, can lead to discrepancies 83 

between mRNA and protein levels[14]. Understanding protein-level consequences of 84 

cancer mutations is critical in identifying functionally important mutations and revealing 85 

their downstream mechanisms.  86 

In recent years, advances in mass spectrometry (MS) technologies have generated a 87 

wealth of global proteomic profiles of primary tumor cohorts, many of which also have 88 

concurrent genomic and transcriptomic profiling[15], [16], [17], [18], [19], [20]. These 89 

proteogenomic datasets present ample opportunities to validate somatic mutations that 90 

show concordant impacts on downstream mRNA and protein levels. On the other hand, 91 

protein abundance may also be uniquely influenced by the efficiency of protein 92 

translation, transport, and degradation. Thus, proteogenomic analyses can reveal 93 

mutations that disproportionally impact protein abundances that may not be found using 94 

genomic analyses alone.  95 

Herein, we conducted a systematic analysis to decode the relationship between somatic 96 

mutations vs. mRNA and protein levels using data from nearly a thousand cases across 97 

six cancer types in prospective and retrospective cohorts from the Clinical Proteomic 98 

Tumor Analysis Consortium (CPTAC). We identified mutations showing concordant 99 



effects at both mRNA and protein expression levels in cis, as well as those that showed 100 

protein-specific effects. We further examined how mutations associated with expression 101 

changes may predict in vitro and in vivo functional effects measured by a massively 102 

parallel assays of variant effects (MAVE) of TP53[21]. Our results highlight the importance 103 

of pairing genomic and proteomic analyses to prioritize functionally important mutations. 104 

RESULTS 105 

Mutation impacts on the mRNA and protein levels  106 

Following the study workflow (Figure 1A), we first sought to identify somatic mutations 107 

that may impact the corresponding gene’s mRNA expression (somatic eQTL, termed 108 

seQTL below) and protein abundance (somatic pQTL, termed spQTL below) in primary 109 

tumor tissue samples. We performed a multiple regression analysis adjusted for age, 110 

gender, ethnicity, and TMT batch using the prospective CPTAC datasets that included 111 

matched DNA-Seq, RNA-Seq, and mass spectrometry (MS) global proteomics data of 112 

primary tumor samples across six cancer types (see Methods, Figure 1B), including 115 113 

breast cancer (BRCA)[19], 95 colorectal cancer (CRC)[16], 110 clear cell renal cell 114 

carcinoma (CCRCC)[15], 109 lung adenocarcinoma (LUAD)[17], 84 ovarian cancer 115 

(OV)[20], and 97 uterine corpus endometrial carcinoma (UCEC)[18], as well as 116 

proteogenomic datasets for additional, retrospective BRCA[11], CRC[13], and OV[12] 117 

cohorts from CPTAC for validation (Figure S1A).  We focused on coding mutations given 118 

the coverage of the whole-exome sequencing (WES) data used in CPTAC studies; the 119 

analyses were further stratified for truncations, missense, and synonymous mutations 120 

given their likely different mechanisms of action in affecting levels of the mutated gene 121 

product.  122 

 123 

Based on the statistical power achieved by these cohort sizes and to reduce false 124 

positives, we focused on genes with three or more samples affected by mutations in each 125 

functional class of missense, truncation, and synonymous within the cancer cohort, 126 

including 134, 13, and 15 genes tested in BRCA; 1360, 318, and 226 genes tested in 127 

CRC; 55, 12, and 4 genes tested in CCRCC; 94, 4, and 8 genes tested in LUAD; 134, 5, 128 

and 8 genes tested in OV; 2243, 273, and 196 genes tested in UCEC. We sought to 129 



identify their seQTLs affecting cis-expression, i.e., expression of the mutation-affected 130 

genes. Using the multiple regression model (see Methods), we identified 74 gene-cancer 131 

seQTL pairs (FDR < 0.05), including 4 in BRCA, 47 in CRC, 7 in CCRCC, 3 in LUAD, 1 132 

in OV, and 12 in UCEC (Figure 2A, Table S1). Separated by the functional classes of 133 

mutations, 22 of those seQTLs are missense mutations, 12 are synonymous, and 40 are 134 

truncating. Top seQTLs showing up-regulation of gene expression are primarily 135 

missenses, including SMARCA4 in LUAD, WNT7B in CRC, TP53 in OV, and FOXR2 in 136 

UCEC. Top candidates showing down-regulation of gene expression include TP53 and 137 

CDH1 truncations in BRCA, as well as TP53 truncations in OV (Figure 2B). 138 

 139 

Using a similar multiple regression but modeling protein abundance as the dependent 140 

variable, we identified 103 significant gene-cancer spQTL pairs (FDR < 0.05), including 4 141 

in BRCA, 31 in CRC, 8 in CCRCC, 3 in LUAD, 2 in OV, and 55 in UCEC (Figure 2A, 142 

Table S2). Compared to the proportion of gene-mutation type evaluated in each cancer 143 

type, spQTLs showed significant enrichment for truncations (Fisher exact test p-value < 144 

0.05; Figure 2A), highlighting the persistent and more profound effect of truncations on 145 

protein abundance compared to mRNA levels. Among the identified spQTLs across 146 

cancer, 7 are missense and 96 are truncating. For example, truncating mutations of NF1 147 

and ARID1A in UCEC, and YLPM1 in CCRCC are each associated with reduced protein 148 

level of the corresponding gene (Figure 2B). Notably, TP53 missenses in OV, BRCA, 149 

LUAD, and UCEC are each significantly associated with increased protein expression in 150 

mutation carriers (Figure 2B). 151 

 152 

To verify these discoveries, we applied the same seQTL and spQTL analyses using 153 

retrospective CPTAC data (Figure S1A) that included independent cohorts of BRCA[11], 154 

CRC[13], and OV[12] primary tumors. While these cohorts afforded smaller sample sizes, 155 

8 seQTLs and 5 spQTLs were detected in both retrospective and prospective sets. The 156 

gene-cancer spQTL pairs showing strong validation in both datasets include TP53 157 

missense mutations and CDH1 truncations in BRCA, and TP53 truncations in CRC 158 

(Figure S1B).  159 

 160 



Mutations showing concordant effects at mRNA and protein levels 161 

We next examined the concordance of seQTL and spQTL associations for each gene-162 

cancer type pair. As expected, for most (88.9%) of the significant seQTLs whose genes 163 

had sufficient observations at both the mRNA and protein levels, the identified 164 

associations showed the same directionality. However, we only identified 17 seQTLs 165 

(47.2%) that are also significant spQTLs at an FDR < 0.05, which we show as concordant 166 

QTLs (Figure 3A, Table S3). The effect sizes (in log fold change) of these gene-cancer 167 

pairs showing concordant seQTLs and spQTLs showed a high correlation between 168 

mRNA and protein (Pearson r = 0.90, p-value < 7.51E-7).  169 

   170 

In different cancer types, genes whose mutation impacts on gene and protein expressions 171 

are concordant include well-known drivers of the disease, including TP53 missense 172 

mutations in OV, CDH1 truncations in BRCA, and MSH3 truncations in CRC. Up-173 

regulation of mutated TP53 in OV is the only association found for genes affected by 174 

missense mutations. The 16 other concordant se/spQTLs are all truncations associated 175 

with reduced expression and highlight some “long-tail” driver genes, including PBRM1 in 176 

CCRCC, YLPM1 in CCRCC/UCEC, and ESRP1 in UCEC (Figure 3B). The concordant 177 

QTLs with truncating mutation can likely be explained by NMD, which reduces gene 178 

expression and in turn diminishes the expression of the corresponding proteins3. 179 

Compared to the substantially higher counts of seQTL associations (Figure 2A-B), these 180 

concordant se/spQTL effects validate mutation impacts on the gene product.  181 

 182 

Protein-specific mutation impacts not observed at mRNA levels 183 

While most seQTLs and spQTLs show concordance, we postulate that certain mutations 184 

may uniquely affect protein abundance but not mRNA levels, which we term somatic 185 

protein-specific QTLs (spsQTLs). To identify spsQTLs, we applied two methods to 186 

stringently retain QTLs with discordant effects at mRNA and protein levels. First, applying 187 

a likelihood ratio test (LRT) between two regression models of protein level being 188 

predicted by mRNA level with or without the mutation term (see Methods)[4], 96 189 

candidate spsQTLs (FDR < 0.05) were identified. Second, complementing this LRT test 190 



with an approach filtering for gene-cancer pair showing significant spQTL (FDR < 0.05) 191 

but not seQTLs (see Methods) [22], 86 candidate spsQTLs (FDR < 0.05) were identified.  192 

 193 

By overlapping candidate spsQTLs identified by both methods, we retained 83 spsQTLs, 194 

the majority (92.8%) of which are truncating mutations (Figure 4A, Table S4). Top 195 

spsQTLs associated with diminished protein expression include NF1 truncations in UCEC, 196 

PLEAHK5 truncations in CRC, and MAP2K4 truncations in BRCA. The only spsQTLs that 197 

increase protein expression include TP53 missense mutations in BRCA, LUAD, and 198 

UCEC. (Figure 4B). We further examined the discordance in mutation impacts on gene 199 

and protein expression levels (Figure 4C). While some of these truncations, such as NF1 200 

in UCEC and MAP2K4 in BRCA, were often accompanied by lower-than-median mRNA 201 

expression in their respective tumor cohorts, their impacts were strikingly observed at 202 

diminished protein expression levels. We highlighted in Figure S2A spsQTLs where the 203 

affected gene’s protein showed negative protein log fold-change (logFC) whereas the 204 

mRNA logFC is non-negative, including CASP8 truncations in UCEC, ARID1A truncations 205 

in CRC and UCEC, and ATM truncations in LUAD and UCED. We also identified a set of 206 

spsQTLs truncations, where the logFC associated with a reduction in proteins is 15 times 207 

greater than mRNAs logFC (Figure S2B). These results suggest that NMD associated 208 

with these gene truncations are closely tied to the terminated translation but may not 209 

affect mRNA expression to the same degree [23].  210 

 211 

To complement the cross-tumor analyses, we also utilized the CPTAC samples with 212 

paired tumor-normal tissues to conduct paired differential expression tests for both protein 213 

and mRNA expression (Figure 1A). The paired sample sizes with proteomic data include 214 

17 in BRCA, 17 in UCEC, 84 in CCRCC, 100 in LUAD, 29 in CRC, and 10 in OV (Figure 215 

1B). Covariates including age at diagnosis, ethnicity, race, and sequencing operator are 216 

adjusted in the analysis. While this analysis had varied statistical power due to different 217 

normal tissue availabilities across cancer types, it served as an independent validation of 218 

spQTLs (Table S5). This paired tumor-normal analysis validated the protein-level impacts 219 

of several discordant spsQTLs (Figure S3A) as well as some concordant se/spQTLs 220 

(Figure S3B). For example, the validated discordant spsQTLs include truncations of 221 



SMAD4 and SCRIB in CRC as well as NF1, GLYR1, and RASA1 in UCEC (Figure S3A). 222 

The validated concordant se/spQTLs include truncations of YLPM1 and PBRM1 in 223 

CCRCC, SMARCA4 and KEAP1 in LUAD, and ESRP1 as well as JAK2 in UCEC (Figure 224 

S3B).  225 

 226 

Functional evidence of TP53 missenses associated with high protein expression 227 

Notably, TP53 missenses are associated with higher protein expression in multiple cancer 228 

cohorts, in addition to the expected reduction in expression associated with truncations 229 

(Figure 5A). Such cis-effect of functional TP53 missense mutations had previously been 230 

observed through immunohistochemistry (IHC[24]) or MS global proteomics 231 

experiments[25]. Here, we hypothesized that functional TP53 missense mutations are 232 

more likely to show high levels of concurrent protein-level expression in the mutated 233 

tumor sample. To test this hypothesis, we compared gene and protein-level TP53 234 

expression from CPTAC with TP53 mutation-level functional data from the in vitro and in 235 

vivo MAVE experiment conducted by Kotler et al[21], where they designed a p53 variants 236 

library to study the functional impact of those mutations.  237 

  238 

We divided the TP53 missense mutations from Kotler et al. into three categories: (1) TP53 239 

mutations with top 20% mRNA or protein expression in the prospective CPTAC cohorts, 240 

(2) the other TP53 mutations observed across all CPTAC samples, and (3) the rest of the 241 

assayed TP53 mutations from Kotler et al. For in vitro data, the number of tested 242 

mutations by each category is 32, 78, and 1,033, respectively. For in vivo data, the 243 

number of tested mutations by each category is 19, 10, and 381, respectively. We first 244 

compared the relative fitness score (RFS) measured from the in vitro assays17. While 245 

there may be a trend, we did not observe a significant difference between all the other 246 

mutations versus TP53 missenses associated with either top 20% expression based on 247 

either mRNA (p-value = 0.090, Wilcoxon rank-sum test) or protein expression (p-value = 248 

0.720). 249 

 250 

We next compared the in vivo enrichment scores across the same categories, and found 251 

that TP53 missenses associated with top 20% protein expression showed significantly 252 



higher enrichment score in vivo compared to that of other TP53 missenses found in 253 

CPTAC (p-value = 0.016) or other experimentally-measured TP53 mutations (p-value = 254 

3.23E-5, Figure 5B, Table S6). In comparison, TP53 missenses associated with top 20% 255 

mRNA expression did not show a significant in vivo score difference to that of other TP53 256 

missenses found in CPTAC (p-value = 0.170). Kotler et al. observed that there was no 257 

significant correlation between enrichment score in vivo and RFS in vitro, which is 258 

consistent with our observations and may be explained by the different selective 259 

pressures between these settings in vivo and in vitro[21]. Finally, TP53 missenses 260 

associated with top 20% protein expression (p-value = 5.91E-7) or top 20% mRNA 261 

expression (p-value = 2.38E-2) showed significantly higher prevalence than other CPTAC 262 

mutations based on counts from the International Agency for Research on Cancer (IARC) 263 

database[21] (Figure 5B, Table S6). Overall, these analyses suggested that protein-level 264 

consequences from primary tumor samples can aid the identification of functional 265 

mutations.   266 

 267 

 268 

DISCUSSION 269 

 270 

Herein, we analyzed how somatic mutations affect mRNA and protein levels using 271 

matched genomic, transcriptomic, and global proteomic data from 953 cases across six 272 

solid cancer types. We first investigated the mutation impacts at the mRNA level and 273 

protein level, finding that although most seQTLs have the same direction of effect as 274 

spQTLs, less than half of them are also significant at the protein level. We also studied 275 

the concordant or discordant relationship between seQTL versus spQTLs, finding several 276 

spsQTLs that have disproportional effects on protein. Finally, we conducted analyses to 277 

provide functional validation[21] for our findings of TP53 missenses associated with high 278 

protein expression.  279 

 280 

Integrating protein-level data identified nearly 47.2% seQTLs as concordant, significant 281 

spQTLs. The result demonstrates the capacity of proteomic data to validate genomic 282 

findings and potentially filter out noises that may arise for example due to the more 283 



transient nature of transcription compared to translation. In addition to well-known tumor 284 

suppressors like TP53 and MSH3, other gene mutations with concordant effects may also 285 

be “long tail” driver genes that will otherwise require large cohort sample sizes to discover. 286 

For example, PBRM1, which we found in CCRCC, is a subunit of the PBAF chromatin 287 

remodeling complex thought to be a tumor suppressor gene whose mutations may confer 288 

synthetic lethality to DNA repair inhibitors[26]. ESRP1, found in UCEC, is crucial in 289 

regulating alternative splicing and the translation of some genes during 290 

organogenesis[27]. Other less-studied genes we identified include YLPM1 truncations 291 

associated with concordantly reduced YLPM1 mRNA and protein expression levels in 292 

both CCRCC and UCEC. Analyzing the distribution of these gene mutations on NCI’s 293 

Genome Data Commons, we observed many other recurrent truncations (Figure S4), 294 

suggesting these mutations may represent some of the “long tail” driver mutations that 295 

warrant further investigation[28], [29].  296 

 297 

By devising a specific pipeline to detect spsQTLs, our results showed that apart from 298 

mutations that influence protein level mediated by changes in mRNA level, many 299 

mutations are associated with disproportional aberrations at the protein level compared 300 

to mRNA changes, indicating post-transcriptional regulation. SpsQTLs were found to 301 

affect known driver genes such as TP53 missenses, and truncations in NF1[30] and 302 

MAP2K4[31]. In most cases, protein molecules are more direct mediators of cellular 303 

functions and phenotypes than mRNAs[32]. Thus, the discordant effect between mRNA 304 

level and protein level discovered in our study highlights the importance of exploring 305 

disease mechanisms and developing treatments at the protein level. 306 

 307 

One possible source of spsQTLs is the imperfect correlation between mRNA and protein 308 

expression in the affected genes. Additional statistical analyses revealed that this mRNA-309 

protein correlations range widely across genes and cancer types (Figure S5). While 310 

genes harboring spsQTLs have lower mRNA-protein correlations in general than genes 311 

with concordant eQTL and pQTL, this is not the case for several discordant genes, 312 

including MAP2K4 in BRCA and PBRM1 in CCRCC (Table S7). Based on the number of 313 

mutations and genes identified, CRC and UCEC reached statistically significant 314 



differences between concordant and all other expressed genes (Wilcoxon rank-sum tests, 315 

p = 0.0056 and p = 0.022, respectively); in CRC, mRNA-protein correlations also showed 316 

significant differences between discordant and all other expressed genes (p = 0.013 and 317 

p = 0.29, respectively); other cancer types likely did not reach statistical significance likely 318 

due to sufficient mutations identified. The imperfect correspondence between gene 319 

mRNA-protein correlations and mutation impacts further stresses the need to analyze and 320 

consider protein-specific impacts of mutations. Table S7 provides complete mRNA-321 

protein correlation data for all concordant/discordant eQTL/pQTLs in their respective 322 

cancer type for in-depth examination.  323 

 324 

This study has several limitations. First, our findings do not distinguish between several 325 

potential mechanisms that could lead to discordant effects of mutations on gene and 326 

protein expression. One possibility is that the mutation affects the efficiency of translation, 327 

leading to changes in protein levels that are not reflected in mRNA levels. For example, 328 

accumulating evidence in recent years suggests that NMD is closely tied to the 329 

termination of translation[23], which may explain instances where some truncations afford 330 

much stronger associations with protein levels in our findings. But, in many cases, the 331 

mechanisms of how mutations may affect protein abundance may be context- and gene-332 

specific and remain to be elucidated. For example, certain mutations may influence the 333 

binding of RNA binding proteins and the efficiency of translation, whereas others may 334 

alter post-translational modifications, such as phosphorylation or ubiquitination, which 335 

can impact protein stability or degradation without affecting transcription or translation 336 

rates. Second, the proteogenomic tumor cohorts used herein, while being some of the 337 

largest studies to date, still are limited in sample sizes and preclude sufficient statistical 338 

power to identify pQTLs at a single mutation level or reveal trans effects. Third, given the 339 

limitation of current omic technology and data, our findings do not resolve mutation impact 340 

on proteins at the temporal, spatial, or single-cell resolution, but provide candidate 341 

mutations to be investigated in future studies. Fourth, our regression models assume a 342 

linear relationship between mutations (one gene at a time), confounders, and expression, 343 

which may not capture more complex, nonlinear effects of mutations on multiple mRNA 344 

or protein expression. Future studies could explore non-linear regression models or 345 



neural network approaches to better account for these effects. Fifth, we employed two 346 

complementary methods to confidently identify spsQTLs that represent true protein-347 

specific regulatory events. However, the reliance on FDR thresholds could still limit the 348 

detection of spsQTLs with subtle effects. Alternative approaches, such as Bayesian 349 

models that account for prior biological knowledge or hierarchical modeling, could be 350 

considered in future analyses to improve the specificity of spsQTL detection. Additionally, 351 

while our method focuses on cis-acting mutations, potential trans-acting effects could be 352 

missed, a limitation that should be explored in larger datasets or by incorporating network-353 

based analyses. 354 

 355 

Finally, using TP53 missense mutations as an example, we showed that protein-level 356 

expression can serve as an effective strategy to prioritize functional mutations. As DNA-357 

Seq become ever more commonplace, many rare mutations are being identified and it 358 

remains challenging to accurately classify their functional impacts. Our data 359 

demonstrated that TP53 missenses associated with high protein expression show 360 

significantly higher functional scores, particularly those measured in vivo. This protein-361 

expression-based prioritization strategy can be particularly powerful when combined with 362 

high-throughput functional assays like using MAVE model systems that are typically in 363 

vitro. Considering that both MAVE and proteogenomic datasets of tumor cohorts are both 364 

expanding quickly in the next few years[33], [34], the combined approaches can help 365 

effectively pinpoint functional mutations for mechanistic and clinical characterization. The 366 

prioritized mutations based on protein-level consequences may also guide the selection 367 

of targeted therapy to advance precision medicine.     368 

METHODS 369 

Proteogenomic datasets 370 

 371 

The prospective CPTAC data were downloaded and processed as described in the 372 

Method section of the work of Elmas et al. [35]. The overview table in Figure 1A of the 373 

dataset describes, for each cancer cohort, the sample size, female patient percentage, 374 

average cancer onset age, and tumor stage. Samples are normalized by their median 375 

absolute deviations (MAD), so that the MAD of all samples in the dataset is 1. Protein 376 



markers with high fractions (greater than 20%) of missing values are filtered out. For the 377 

corresponding RNA-seq data, we used the log2 normalization on the FPKM (fragments 378 

per kilobase of exon per million mapped fragments)-normalized RNA-seq counts and 379 

genes that have no expression in at least 90% of the samples were filtered out. 380 

 381 

The proteomics data used for validation were downloaded from the NCI CPTAC portal 382 

[36]. The dataset overview table in Figure S1A describe for each cancer cohort the 383 

sample size, female patient percentage, average cancer onset age, and tumor stage. The 384 

validation data are processed in the same way as the prospective data. The RNA-seq 385 

data sets of the three retrospective CPTAC cohorts were downloaded from the NCI 386 

CPTAC DCC portal[36]. The RNA expression was measured in Fragments Per Kilobase 387 

of transcript per Million mapped reads (FPKM)[37][38] and was further normalized by 388 

log2(FPKM+1). 389 

 390 

pQTL and eQTL identification 391 

 392 

For each cancer cohort, we identified pQTLs and eQTLs using the multiple linear 393 

regression model as implemented in the “limma” R package (v3.42.2)[39]. We also 394 

corrected confounding factors including age, gender, ethnicity, and TMT batch. The false 395 

discovery rate (FDR) was corrected from the p-values with the Benjamini-Hochberg 396 

procedure[40], ensuring that the identified QTLs are statistically robust. Somatic 397 

mutations are grouped at a gene level in the multiple regression model, similar to that 398 

implemented by our previously developed AeQTL tool[7]. Mutations are separately 399 

analyzed by their mechanisms of action, including nonsynonymous mutations that likely 400 

do not affect expression, missense mutations, and truncating mutations—including 401 

frameshift and in-frame indels, nonsense, splice site, and translation start site mutations. 402 

To improve statistical power, we focused our analysis on genes with three or more 403 

mutations in each cancer cohort and analyzed associations of mutations affecting cis-404 

expression of the corresponding mRNA or protein products. 405 

 406 

spsQTL identification 407 

 408 



We combined two complementary statistical methods to identify spsQTLs. In the first 409 

method adopted from Battle et al.[4], we compared the following two nested linear models 410 

using likelihood ratio test (LRT) with the “anova” function in R: 411 

𝑝 =  𝑝 +  𝑝0𝑝 +   𝑝1𝑝   412 

𝑝 =  𝑝 +   𝑝2𝑝  413 

 414 

where 𝑝 is the genotype, 𝑝  represents RNA level, and p is the protein level. By 415 

comparing these models using LRT and filtering results with an FDR less than 0.05, we 416 

identified candidate spsQTLs where the genotype (mutation) has a disproportionate 417 

impact on protein abundance independent of mRNA expression.  418 

 419 

In the second method adopted from Mirauta et al.[22], we selected QTLs where the 420 

spQTL FDR was less than 0.05 but the corresponding seQTL FDR was greater than 0.05 421 

as candidate spsQTLs, to specifically identify mutations that affect protein levels without 422 

influencing mRNA. We then overlapped these two lists of candidate spsQTLs obtained 423 

from two complementary methods to identify the final list of spsQTLs for downstream 424 

analyses.   425 

 426 

mRNA-Protein correlation:  427 

To investigate the impact of mutations on mRNA and protein expression, we performed 428 

a comparative analysis across the six solid cancer types. For each cancer type, Pearson 429 

correlation coefficients were calculated for individual genes using paired mRNA and 430 

protein expression data. We analyzed three groups of genes we identified as showing 431 

variable impact on mRNA/protein level expressions: Concordant genes (with mutations 432 

showing concordant effects at both mRNA and protein levels in cis), Discordant genes 433 

(showing protein-specific effects), and Other genes (showing no concordant or protein-434 

specific impact). Our aim was to test the hypothesis whether the mRNA-protein 435 

correlations of the Concordant/Discordant groups differed from the baseline genome-436 

wide mRNA-protein correlations, indicating biological significance. To assess this, we 437 

employed two-sample Wilcoxon rank-sum test, comparing the mRNA-protein correlations 438 

for the Concordant/Discordant and Other gene groups within each cancer type. Pairwise 439 

comparisons were made between the Concordant and Other gene sets, as well as 440 



between the Discordant and Other gene sets, demonstrating that the correlation 441 

coefficients for these groups were drawn from distinct population distributions with 442 

statistical significance at a p-value threshold of 0.05. 443 

 444 

Tumor-normal differential expression analysis 445 

We conducted this analysis in the prospective CPTAC cohorts with paired tumor-adjacent 446 

tissure normal samples. For each cancer cohort, we paired the tumor and normal samples 447 

from the same patient and performed a differential protein/mRNA expression analysis to 448 

identify differentially expressed proteins with “limma” package. Demographic factors and 449 

batch effects, including age, ethnicity, race, and sequencing operator are adjusted in the 450 

multiple regression model. 451 

 452 

Figures 453 

 454 

Figure 1. Overview of the study workflow and proteogenomic cohorts. (A) Study 455 

workflow to identify eQTLs, pQTLs, concordant QTLs (between mRNA and protein levels), 456 

and spsQTLs showing disproportional effects on protein expression. (B) Summary of the 457 

prospective CPTAC proteogenomic cohorts used for the discovery analyses, including 458 

cancer type abbreviation, data source, sample size of tumor (T) and normal (N) tissues, 459 

female percentage, average onset age in years, and tumor stage distribution.  460 

 461 

Figure 2. Gene mutations identified as cis seQTLs and spQTLs across six adult 462 

cancer types. (A) Overview of the somatic mutation QTLs identified in different cancer 463 

types and mutation types, including missense (green), truncating (orange), and 464 

synonymous (purple) mutations. For both eQTLs and pQTLs, the panel on the left shows 465 

the counts of the mutation-gene pairs included in analyses, and the figure on the right 466 

shows the counts of the significant eQTLs and pQTLs. (B) Volcano plots showing seQTLs 467 

associations in the six cancer types (left) and volcano plots showing spQTLs associations 468 

(right), where each dot denotes a gene-cancer pair included in the analysis. Top 469 

associated genes were further labeled. FC: mRNA/protein expression log fold change. 470 

FDR: false discovery rate.  471 



 472 

Figure 3. Gene mutations showing concordant impacts on gene and protein 473 

expression levels. (A) Overview of concordant QTLs as shown by their effect sizes in 474 

log[Fold Change (FC)], where the gray line shows when the protein logFC equals RNA 475 

logFC. Some of the top concordant QTLs were further labeled by cancer type and gene 476 

name. (B) Examples of QTL with concordant effects at mRNA and protein expression 477 

levels. For each gene, the plot on the left shows the corresponding mRNA levels of 478 

mutation carriers vs. non-carriers in FPKM, and the plot on the right shows protein level 479 

comparison in log ratio (MS TMT measurements) in the respective cancer type labeled 480 

on top of each of the violin plots. The labeled mutations are the three mutations whose 481 

carriers show the highest absolute expression differences of the mutated gene product 482 

compared to the non-carriers.  483 

 484 

Figure 4. Gene mutations showing discordant impacts on gene and protein 485 

expression levels. (A) Overview of discordant QTLs identified by our statistical pipeline 486 

as shown by their effect sizes in log[Fold Change (FC)], where the gray line shows when 487 

the protein logFC equals RNA logFC. (B) Heatmaps of QTLs that are significant as either 488 

seQTL or spQTL and that are shared across at least two cancer types. Brown box 489 

indicates significant spsQTLs, and color indicates the effect size in log[Fold Change (FC)],  490 

average protein expression of mutation carriers in log ratio from the MS TMT 491 

quantifications. (C) Examples of QTL with discordant effects at mRNA vs. protein levels. 492 

For each gene, the plot on the left shows the corresponding mRNA levels of mutation 493 

carriers vs. non-carriers in FPKM, and the plot on the right shows protein level comparison 494 

in log ratio (MS TMT measurements) in the respective cancer type labeled on top of each 495 

of the violin plots. The labeled mutations are the three mutations whose carriers show the 496 

highest absolute expression differences of the mutated gene product compared to the 497 

non-carriers. 498 

 499 

Figure 5. Functional verification of TP53 mutation associated with high mRNA or 500 

protein levels using in vitro and in vivo data from a MAVE experiment. (A) Percentile 501 

of averaged expression associated with a given TP53 mutation at the mRNA (x-axis) and 502 



protein (y-axis) levels in the respective cancer cohort. TP53 mutations are color coded by 503 

mutation type (left) and observed cancer type (right), respectively. (B) Violin plots 504 

comparing the in vitro functional score (RFS, top), in vivo enrichment score (middle), and 505 

IARC occurrences (bottom) for TP53 mutations in the three groups defined by (1) TP53 506 

mutations with top 20% mRNA (left) or protein (right) expression in the prospective 507 

CPTAC cohorts, (2) the other TP53 mutations observed across all CPTAC samples, and 508 

(3) the rest of the assayed TP53 mutations from Kotler et al21.  509 

 510 

Supplementary Tables 511 

 512 

Table S1. List of expression quantitative trait loci (eQTLs) identified across 6 cancer 513 

types. This table provides details on the gene mutations associated with mRNA expression 514 

levels, including statistical test results, mutation type, p-values (adjusted), and effect sizes. 515 

 516 

Table S2. List of protein quantitative trait loci (pQTLs) identified across 6 cancer types. 517 

This table provides details on the gene mutations associated with protein abundance levels, 518 

including statistical test results, mutation type, p-values (adjusted), and effect sizes. 519 

 520 

Table S3. Concordant expression and protein quantitative trait loci (eQTLs and pQTLs) 521 

identified across 6 cancer types. This table includes information on the gene mutations, 522 

identified cancer types, and their impact on both mRNA and protein expression levels, 523 

demonstrating loci with consistent effects across both molecular layers. 524 

 525 

Table S4. Significant somatic protein-specific QTLs (spsQTLs) identified by our 526 

statistical pipeline across six cancer types. This table details the loci with mutations 527 

showing significant impacts on protein abundance not explained by mRNA levels, including 528 

summary statistics for eQTL/pQTL tests and the LRT and overlap test results. 529 

 530 

Table S5. Summary statistics for differentially expressed proteins (DEPs) identified in 531 

paired tumor-normal (TN) samples across six cancer types. This table includes the test 532 

statistics of protein expression differences between tumor and normal tissues harboring the 533 

specific mutation. 534 



 535 

Table S6. Test statistics between the three groups of TP53 mutations. The tested groups 536 

were defined by (1) TP53 mutations with top 20% mRNA (left) or protein (right) expression in 537 

the prospective CPTAC cohorts, (2) the other TP53 mutations observed across all CPTAC 538 

samples, and (3) the rest of the assayed TP53 mutations from Kotler et al. using TP53 539 

functional scores form Kotler et al.  540 

 541 

Table S7. Pearson’s correlation coefficient tests between paired mRNA and protein 542 

expressions for each concordant and discordant gene, within each cancer cohort. 543 

 544 

Supplementary Figures 545 

 546 

Supplementary Figure 1. Overview of the retrospective cohorts (A) Summary of the 547 

retrospective CPTAC proteogenomic cohorts used for the discovery analyses, including 548 

cancer type abbreviation, data source, sample size of tumor (T) and normal (N) tissues, 549 

female percentage, average onset age in years, and tumor stage distribution. (B) Volcano 550 

plots showing seQTLs associations in the six cancer types (left) and volcano plots 551 

showing spQTLs associations (right), where each dot denotes a gene-cancer pair 552 

included in the analysis. Top associated genes were further labeled. FC: log fold change. 553 

FDR: false discovery rate. 554 

 555 

Supplementary Figure 2. spsQTLs with strong effects. (A) Examples of spsQTL 556 

whose effect sizes in mRNA level and protein level are in different direction. For each 557 

gene, the plot on the left shows the corresponding mRNA levels of mutation carriers vs. 558 

non-carriers in FPKM, and the plot on the right shows protein level comparison in log ratio 559 

(MS TMT measurements) in the respective cancer type labeled on top of each of the violin 560 

plots. The labeled mutations are the three mutations whose carriers show the highest 561 

absolute expression differences of the mutated gene product compared to the non-562 

carriers. (B) Examples of spsQTL with a protein logFC and mRNA logFC ratio greater 563 

than 15 564 

 565 



Supplementary Figure 3. Overlapped of significant QTLs in cross-tumor analysis 566 

and matched tumor-normal analysis projected onto pQTL volcano plots based on 567 

cross-tumor analyses. The plots were made separately for (A) discordant spsQTLs, and 568 

(B) concordant eQTL/pQTLs.  569 

 570 

Supplementary Figure 4. Example lolliplots showing mutations for two genes that 571 

were identified as spsQTLs, including YLPM1 and ESRP1. The number on each disc 572 

denotes the number of mutations in that position and the color of the disc represents the 573 

mutation type. 574 

 575 

Supplementary Figure 5. Correlation coefficients of Concordant vs. Discordant 576 

genes. The violin plots depict the distribution of correlation coefficients between matched 577 

mRNA and protein expressions for Concordant (blue), Discordant (red), and Other genes 578 

(gray) across the six cancer types studied. Genes with notable correlations are labeled in 579 

each plot. 580 

 581 

 582 

DATA AND SOFTWARE AVAILABILITY 583 

Data Availability 584 

Proteomic data for CPTAC-2/3 cohorts can be found on National Cancer Institute (NCI) 585 

Proteomic Data Commons (PDC) [41]. The studies used in the discovery cohorts and 586 

their PDC study IDs are: BRCA (PDC000120), CRC (PDC000116), CCRCC 587 

(PDC000127), LUAD (PDC000153), OV (JHU: PDC000110; PNNL: PDC000118), UCEC 588 

(PDC000125) 589 

The studies used in the validation cohorts and their PDC study IDs are: BRCA 590 

(PDC000173), CRC (PDC000111), OV (JHU: PDC000113; PNNL: PDC000114) 591 

Genomic data, including DNA mutation and transcriptome profiling for all CPTAC-2/3 592 

cohorts used herein can be found on National Cancer Institute (NCI) Genome Data 593 

Commons (GDC) [42] (dbGaP Study Accession #: phs000892) and (dbGaP Study 594 

Accession #: phs001287) [43].  595 



Data for TP53 MAVE assays can be downloaded from the Supplementary Information 596 

from Kotler et al. [21].  597 

Supporting data of our analysis results and an archival copy of the corresponding code 598 

are available via the GigaScience repository, GigaDB [44].  599 

 600 

Availability of supporting source code and requirements 601 

Project name: Protein expression quantitative trait loci (pQTLs): software and analytic 602 

code  603 

Project home page:  https://github.com/Huang-lab/pQTL [45] 604 

Operating system(s): Platform independent  605 

Programming language: R, Python, Jupyter Notebook 606 

License: MIT  607 

ACKNOWLEDGEMENTS 608 

The authors wish to acknowledge CPTAC and its participating patients and families that 609 

generously contributed the data. This work was supported by NIH NIGMS 610 

R35GM138113, ACS RSG-22-115-01-DMC, and Mount Sinai funds to KH. 611 

DECLARATION OF INTERESTS 612 

K.H. is a co-founder and board member of a non-for-profit 501(c)(3) organization, Open 613 

Box Science, from which he does not receive any compensation and pose no competing 614 

financial interests with this work. All authors declare no competing interests.  615 

CONTRIBUTIONS 616 

K.H. conceived the research; Y.L and K.H. designed the analyses. Y.L. and A.E.  617 

developed the software and conducted the bioinformatics analyses, A.E. curated and 618 

preprocessed the datasets. Y.L., A.E., and K.H. wrote the manuscript. K.H. supervised 619 

the study. All authors read, edited, and approved the manuscript.  620 

 621 

 622 

REFERENCES 623 



[1] T. Kurosaki, M. W. Popp, and L. E. Maquat, ‘Quality and quantity control of gene 624 

expression by nonsense-mediated mRNA decay’, 2019. doi: 10.1038/s41580-019-625 

0126-2. 626 

[2] Z. Wang et al., ‘Non-cancer-related pathogenic germline variants and expression 627 

consequences in ten-thousand cancer genomes’, Genome Med, vol. 13, no. 1, 2021, 628 

doi: 10.1186/s13073-021-00964-1. 629 

[3] R. G. H. Lindeboom, F. Supek, and B. Lehner, ‘The rules and impact of nonsense-630 

mediated mRNA decay in human cancers’, Nat Genet, vol. 48, no. 10, 2016, doi: 631 

10.1038/ng.3664. 632 

[4] A. Battle et al., ‘Impact of regulatory variation from RNA to protein’, Science 633 

(1979), vol. 347, no. 6222, 2015, doi: 10.1126/science.1260793. 634 

[5] C. Cenik et al., ‘Integrative analysis of RNA, translation, and protein levels reveals 635 

distinct regulatory variation across humans’, Genome Res, vol. 25, no. 11, 2015, doi: 636 

10.1101/gr.193342.115. 637 

[6] J. M. Chick et al., ‘Defining the consequences of genetic variation on a proteome-638 

wide scale’, Nature, vol. 534, no. 7608, 2016, doi: 10.1038/nature18270. 639 

[7] G. Dong, M. C. Wendl, B. Zhang, L. Ding, and K. L. Huang, ‘AeQTL: eQTL 640 

analysis using region-based aggregation of rare genomic variants’, Pac Symp 641 

Biocomput, vol. 26, 2021, doi: 10.1142/9789811232701_0017. 642 

[8] R. Rabadán et al., ‘Identification of relevant genetic alterations in cancer using 643 

topological data analysis’, Nat Commun, vol. 11, no. 1, 2020, doi: 10.1038/s41467-644 

020-17659-7. 645 

[9] J. Ding et al., ‘Systematic analysis of somatic mutations impacting gene expression 646 

in 12 tumour types’, Nat Commun, vol. 6, 2015, doi: 10.1038/ncomms9554. 647 

[10] G. Arad and T. Geiger, ‘Functional impact of protein-RNA variation in clinical 648 

cancer analyses’, Molecular & Cellular Proteomics, p. 100587, Jun. 2023, doi: 649 

10.1016/J.MCPRO.2023.100587. 650 

[11] P. Mertins et al., ‘Proteogenomics connects somatic mutations to signalling in breast 651 

cancer’, Nature, vol. 534, no. 7605, 2016, doi: 10.1038/nature18003. 652 

[12] H. Zhang et al., ‘Integrated Proteogenomic Characterization of Human High-Grade 653 

Serous Ovarian Cancer’, Cell, vol. 166, no. 3, 2016, doi: 10.1016/j.cell.2016.05.069. 654 

[13] B. Zhang et al., ‘Proteogenomic characterization of human colon and rectal cancer’, 655 

Nature, vol. 513, no. 7518, 2014, doi: 10.1038/nature13438. 656 

[14] Y. Liu, A. Beyer, and R. Aebersold, ‘On the Dependency of Cellular Protein Levels 657 

on mRNA Abundance’, 2016. doi: 10.1016/j.cell.2016.03.014. 658 

[15] D. J. Clark et al., ‘Integrated Proteogenomic Characterization of Clear Cell Renal 659 

Cell Carcinoma’, Cell, vol. 179, no. 4, 2019, doi: 10.1016/j.cell.2019.10.007. 660 

[16] S. Vasaikar et al., ‘Proteogenomic Analysis of Human Colon Cancer Reveals New 661 

Therapeutic Opportunities’, Cell, vol. 177, no. 4, 2019, doi: 662 

10.1016/j.cell.2019.03.030. 663 

[17] M. A. Gillette et al., ‘Proteogenomic Characterization Reveals Therapeutic 664 

Vulnerabilities in Lung Adenocarcinoma’, Cell, vol. 182, no. 1, 2020, doi: 665 

10.1016/j.cell.2020.06.013. 666 

[18] Y. Dou et al., ‘Proteogenomic Characterization of Endometrial Carcinoma’, Cell, 667 

vol. 180, no. 4, 2020, doi: 10.1016/j.cell.2020.01.026. 668 



[19] K. Krug et al., ‘Proteogenomic Landscape of Breast Cancer Tumorigenesis and 669 

Targeted Therapy’, Cell, vol. 183, no. 5, 2020, doi: 10.1016/j.cell.2020.10.036. 670 

[20] J. E. McDermott et al., ‘Proteogenomic Characterization of Ovarian HGSC 671 

Implicates Mitotic Kinases, Replication Stress in Observed Chromosomal 672 

Instability’, Cell Rep Med, vol. 1, no. 1, 2020, doi: 10.1016/j.xcrm.2020.100004. 673 

[21] E. Kotler et al., ‘A Systematic p53 Mutation Library Links Differential Functional 674 

Impact to Cancer Mutation Pattern and Evolutionary Conservation’, Mol Cell, vol. 675 

71, no. 1, 2018, doi: 10.1016/j.molcel.2018.06.012. 676 

[22] B. A. Mirauta et al., ‘Population-scale proteome variation in human induced 677 

pluripotent stem cells’, Elife, vol. 9, 2020, doi: 10.7554/ELIFE.57390. 678 

[23] E. D. Karousis and O. Mühlemann, ‘Nonsense-mediated mRNA decay begins where 679 

translation ends’, Cold Spring Harb Perspect Biol, vol. 11, no. 2, 2019, doi: 680 

10.1101/cshperspect.a032862. 681 

[24] A. M. Davidoff, P. A. Humphrey, J. Dirk Iglehart, and J. R. Marks, ‘Genetic basis for 682 

p53 overexpression in human breast cancer’, Proc Natl Acad Sci U S A, vol. 88, no. 683 

11, 1991, doi: 10.1073/pnas.88.11.5006. 684 

[25] K. lin Huang et al., ‘Spatially interacting phosphorylation sites and mutations in 685 

cancer’, Nat Commun, vol. 12, no. 1, 2021, doi: 10.1038/s41467-021-22481-w. 686 

[26] R. M. Chabanon et al., ‘PBRM1 deficiency confers synthetic lethality to DNA repair 687 

inhibitors in cancer’, Cancer Res, vol. 81, no. 11, 2021, doi: 10.1158/0008-688 

5472.CAN-21-0628. 689 

[27] Y. Vadlamudi, D. K. Dey, and S. C. Kang, ‘Emerging Multi-cancer Regulatory Role 690 

of ESRP1: Orchestration of Alternative Splicing to Control EMT’, Curr Cancer 691 

Drug Targets, vol. 20, no. 9, 2020, doi: 10.2174/1568009620666200621153831. 692 

[28] J. Armenia et al., ‘The long tail of oncogenic drivers in prostate cancer’, Nat Genet, 693 

vol. 50, no. 5, 2018, doi: 10.1038/s41588-018-0078-z. 694 

[29] S. K. Loganathan et al., ‘Rare driver mutations in head and neck squamous cell 695 

carcinomas converge on NOTCH signaling’, Science, vol. 367, no. 6483, 2020, doi: 696 

10.1126/science.aax0902. 697 

[30] C. Philpott, H. Tovell, I. M. Frayling, D. N. Cooper, and M. Upadhyaya, ‘The NF1 698 

somatic mutational landscape in sporadic human cancers’, 2017. doi: 699 

10.1186/s40246-017-0109-3. 700 

[31] Z. Xue et al., ‘MAP3K1 and MAP2K4 mutations are associated with sensitivity to 701 

MEK inhibitors in multiple cancer models’, Cell Res, vol. 28, no. 7, 2018, doi: 702 

10.1038/s41422-018-0044-4. 703 

[32] C. Buccitelli and M. Selbach, ‘mRNAs, proteins and the emerging principles of gene 704 

expression control’, 2020. doi: 10.1038/s41576-020-0258-4. 705 

[33] N. J. Edwards et al., ‘The CPTAC data portal: A resource for cancer proteomics 706 

research’, J Proteome Res, vol. 14, no. 6, 2015, doi: 10.1021/pr501254j. 707 

[34] D. Kuang et al., ‘MaveRegistry: a collaboration platform for multiplexed assays of 708 

variant effect’, Bioinformatics, vol. 37, no. 19, 2021, doi: 709 

10.1093/bioinformatics/btab215. 710 

[35] A. Elmas, S. Tharakan, S. Jaladanki, M. D. Galsky, T. Liu, and K. lin Huang, ‘Pan-711 

cancer proteogenomic investigations identify post-transcriptional kinase targets’, 712 

Commun Biol, vol. 4, no. 1, 2021, doi: 10.1038/s42003-021-02636-7. 713 

[36] CPTAC Data Portal https://cptac-data-portal.georgetown.edu/cptac/ 714 



[37] National Cancer Institute  - GDC documentation: FPKM 715 

https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/Expression_mRNA_Pipel716 

ine/#fpkm 717 

[38] cpta rna expression (Ding lab) [github repository] https://github.com/ding-718 

lab/cptac_rna_expression’. 719 

[39] M. E. Ritchie et al., ‘limma powers differential expression analyses for RNA-720 

sequencing and microarray studies.’, Nucleic Acids Res, vol. 43, no. 7, p. e47, Apr. 721 

2015, doi: 10.1093/nar/gkv007. 722 

[40] Y. Benjamini and Y. Hochberg, ‘Controlling the False Discovery Rate: A Practical 723 

and Powerful Approach to Multiple Testing’, J R Stat Soc Series B Stat Methodol, 724 

vol. 57, no. 1, pp. 289–300, Jan. 1995, doi: 10.1111/j.2517-6161.1995.tb02031.x. 725 

[41] National Cancer Institute – Proteomics Data Commons https://cptac-data-726 

portal.georgetown.edu/cptacPublic/ 727 

[42] National Cancer Institute – Genomic Data Commons, CPTAC-2  728 

https://portal.gdc.cancer.gov/projects/CPTAC-2 729 

[43] National Cancer Institute – Genomic Data Commons, CPTAC-3 730 

https://portal.gdc.cancer.gov/projects/CPTAC-3’. 731 

[44] Y. Liu, A. Elmas, and K. Huang, ‘Supporting data for “Mutation Impact on mRNA 732 

Versus Protein Expression across Human Cancers”. GigaScience Database. 2024. 733 

https://doi.org/10.5524/102598 734 

[45] Protein expression quantitative trait loci (pQTLs): software and analytic code [github 735 

repository] 2024. https://github.com/Huang-lab/pQTL’. 736 

  737 

https://portal.gdc.cancer.gov/projects/CPTAC-3


Figure 1 Click here to access/download;Figure;fig1.tiff

https://www2.cloud.editorialmanager.com/giga/download.aspx?id=191858&guid=44ec9a58-1484-49ca-a0e0-32b9eb598728&scheme=1
https://www2.cloud.editorialmanager.com/giga/download.aspx?id=191858&guid=44ec9a58-1484-49ca-a0e0-32b9eb598728&scheme=1


Figure 2 Click here to access/download;Figure;fig2.tiff

https://www2.cloud.editorialmanager.com/giga/download.aspx?id=191859&guid=47610aeb-2f01-43cb-9c62-e25ca5e343fe&scheme=1
https://www2.cloud.editorialmanager.com/giga/download.aspx?id=191859&guid=47610aeb-2f01-43cb-9c62-e25ca5e343fe&scheme=1


Figure 3 Click here to access/download;Figure;fig3.tiff

https://www2.cloud.editorialmanager.com/giga/download.aspx?id=191860&guid=632ee120-d68c-4a54-b4d1-dd63fb36b985&scheme=1
https://www2.cloud.editorialmanager.com/giga/download.aspx?id=191860&guid=632ee120-d68c-4a54-b4d1-dd63fb36b985&scheme=1


Figure 4 Click here to access/download;Figure;fig4.tiff

https://www2.cloud.editorialmanager.com/giga/download.aspx?id=191861&guid=5e191e92-6b52-4baa-b72a-cd89b6ba669e&scheme=1
https://www2.cloud.editorialmanager.com/giga/download.aspx?id=191861&guid=5e191e92-6b52-4baa-b72a-cd89b6ba669e&scheme=1


Figure 5 Click here to access/download;Figure;fig5.tiff

https://www2.cloud.editorialmanager.com/giga/download.aspx?id=191862&guid=e8db0ee8-ecd7-4b1f-8c4a-315532b2cf2e&scheme=1
https://www2.cloud.editorialmanager.com/giga/download.aspx?id=191862&guid=e8db0ee8-ecd7-4b1f-8c4a-315532b2cf2e&scheme=1


  

Supplementary Figures

Click here to access/download
Supplementary Material

SuppFigures.pdf

https://www2.cloud.editorialmanager.com/giga/download.aspx?id=191874&guid=84012301-411c-489b-9220-04723a6076f4&scheme=1


  

Supplementary Table 1

Click here to access/download
Supplementary Material

TableS1.eQTLs.xlsx

https://www2.cloud.editorialmanager.com/giga/download.aspx?id=191875&guid=14064a6d-a1fd-4c9e-8f16-2a688322d79c&scheme=1


  

Supplementary Table 2

Click here to access/download
Supplementary Material

TableS2.pQTLs.xlsx

https://www2.cloud.editorialmanager.com/giga/download.aspx?id=191876&guid=9fc6fa74-51d4-4e37-8aa8-713a2c23869a&scheme=1


  

Supplementary Table 3

Click here to access/download
Supplementary Material

TableS3.concordant_e.pQTLs.xlsx

https://www2.cloud.editorialmanager.com/giga/download.aspx?id=191877&guid=2e8ab5fe-5c49-4354-b072-43f868f92e06&scheme=1


  

Supplementary Table 4

Click here to access/download
Supplementary Material

TableS4.significant_spsQTLs.xlsx

https://www2.cloud.editorialmanager.com/giga/download.aspx?id=191878&guid=fdceef3d-69d3-4a0d-bb18-e8cf6a8ef4fe&scheme=1


  

Supplementary Table 5

Click here to access/download
Supplementary Material

TableS5.DEP_pairedTN_stats.xlsx

https://www2.cloud.editorialmanager.com/giga/download.aspx?id=191879&guid=f068d809-3b9e-4c4e-af9f-f32aac38c289&scheme=1


  

Supplementary Table 6

Click here to access/download
Supplementary Material

TableS6.TP53_mutation_test_statistics.xlsx

https://www2.cloud.editorialmanager.com/giga/download.aspx?id=191880&guid=949b3ee0-d057-41c4-b4c4-5a630ed9ece6&scheme=1


  

Supplementary Table 7

Click here to access/download
Supplementary Material

TableS7.CorCoefs.ConcordantAndDiscordant.xlsx

https://www2.cloud.editorialmanager.com/giga/download.aspx?id=191881&guid=6460c388-7de4-4dbe-8c48-ecc08fa99a53&scheme=1


 

 Kuan-lin Huang, PhD 

Assistant Professor, Department of Genetics and Genomic Sciences 

Institute of Genomics and Multiscale Biology 

Icahn School of Medicine at Mount Sinai 
 

1399 Park Avenue (Room 4-420C) 

Box 1498 

New York, NY 10029 

Phone: (212) 824-6134 
Email:   kuan-lin.huang@mssm.edu 

Web: ComputationalOmicsLab.org 
 

Icahn School of Medicine at Mount Sinai | 1470 Madison Avenue | New York, NY 10029 
                         T: (212) 824-8947 | F: (646) 537-8660 | www.mssm.edu 
 

 
Nov 21th 2024 
 
 

Hans Zauner 

Editor, GigaScience 

 
 
Dear Dr. Zauner, 
 
We would like to re-submit our manuscript titled “Mutation Impact on mRNA Versus Protein 
Expression across Human Cancers” (GIGA-D-24-00168), addressing all the editorial comments: 

 

1) Please include a citation to your new GigaDB dataset (including the DOI link) to your 

reference list, and cite this in the data availability section. Completed. 

 

2) Please structure your abstract ("Background - Results - Conclusions") Completed. 

 

3) Please submit the manuscript text without embedded figures. Please upload the figures 

separately in Editorial Manager (one file per figure in good resolution - please refer to the 

formatting instructions on our homepage). Completed. 

 

4) Please move URLs to the bibliography and cite them by reference number, rather than 

including them in the text directly  (e.g. line 562,  570, 571). (We treat internet sources as citable 

objects). Completed. 

 

5) Please rename the "code availability" section as "Availability of supporting source code and 

requirements" and use this tabular format: Completed. 

 

6) For reference numbers in the text, please use square brackets ( e.g. [1]) instead of superscript 

numbers. Completed. 

 

7) Please also note the reviewer's comment below regarding the equation - although it looks 

fine in the Word document I'm looking at now, I believe this was just a conversion problem in 

Personal Cover Click here to access/download;Personal
Cover;pQTL_CoverLetter_R2.docx

https://www2.cloud.editorialmanager.com/giga/download.aspx?id=191872&guid=489cc969-9342-4cb5-9c56-b2e60f4ba19b&scheme=1
https://www2.cloud.editorialmanager.com/giga/download.aspx?id=191872&guid=489cc969-9342-4cb5-9c56-b2e60f4ba19b&scheme=1


 

 Kuan-lin Huang, PhD 

Assistant Professor, Department of Genetics and Genomic Sciences 

Institute of Genomics and Multiscale Biology 

Icahn School of Medicine at Mount Sinai 
 

1399 Park Avenue (Room 4-420C) 

Box 1498 

New York, NY 10029 

Phone: (212) 824-6134 
Email:   kuan-lin.huang@mssm.edu 

Web: ComputationalOmicsLab.org 
 

Icahn School of Medicine at Mount Sinai | 1470 Madison Avenue | New York, NY 10029 
                         T: (212) 824-8947 | F: (646) 537-8660 | www.mssm.edu 
 

the PDF. Yes it looked fine on our end, attached also the PDF we converted ourselves which 

looked fine.  

 

 8) Please also ensure that your revised manuscript conforms to the journal style, which can be 

found in the Instructions for Authors on the journal homepage Completed. 

 

Sincerely and on behalf of the team, 
 
Kuan-lin Huang, Ph.D.      
Associate Professor of Genetics and Genomic Sciences & Artificial Intelligence and Human 
Health 
Icahn School of Medicine at Mount Sinai 
New York, NY 10029 
 


