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Figure S1 | (Figure on next page.) Further evidence of DNA damage from L1 expression.

A. Left: Immunoblot of ORF1p and ORF2p expression in p53-null RPE-1 cells with Tet-On L1 after treatment with Doxycline
at different concentrations. Middle: Reduced colony formation in cells with induced L1 expression. Right: Quantification of the
survival fraction of cells under L1 expression in comparison to the control (luciferase).
B. Immunoblots of pRPA (S4/S8) and pRPA (S33) from whole cell lysates after L1 induction. Similar to Figure 1B.
C. Upregulated genes in the DNA damage response and DNA repair pathways (based on Gene-Ontology). Related to Figure 1C.
D. Quantification of 53BP1 foci per cell in p53-null RPE-1 cells with induced L1 expression (Dox, 612 cells) and control cells
(DMSO, 538 cells) from two independent experiments. P < 0.0001; two-tailed Mann-Whitney U-test.
E. Representative immunofluorescence images of 53BP1, ORF1p, and Hoechst 33342 in p53-null RPE-1 with (Dox) or without
(DMSO) L1 induction. Bar size: 10µm.
F. Validation of L1 induction in U2OS cells with either wild-type or mutant L1 with a Tet-On promoter integrated at an FRT locus.
Left: Immunoblots similar to A. Right: Reduced cell survival under the induction of wildtype or EN-proficient L1 in comparison
to the induction of L1 with inactivated EN. N = 6 replicates except for ENmut (D205G:H230A).
G. Quantification of γH2AX foci (top) and micronucleation (bottom) in U2OS FRT cells with Dox-induced expression of wildtype
and mutant L1. Two independent experiments for each condition. Induction of wildtype L1 (first group) produces the most
significant increase in γH2AX foci and micronucleation. Induction of L1 with proficient EN but inactive RT (second group)
produces reduced but significant increase in γH2AX foci and a similar increase in micronucleation as wildtype L1. By contrast,
induction of L1 with proficient RT but inactive EN produces no noticeable change in either γH2AX or micronucleation relative to
control. P-values are calculated using one-way ANOVA with Tukey test.
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Figure S2 | Large copy-number alterations (CNAs) after L1 induction assessed from 0.1× whole-genome sequencing data.

A. Quantification of large CNAs in single cells (left) and single-cell derived clones (right) after L1 induction using the Tet-On
system. Only alterations of segments ≥5Mb are counted; CNAs on different parental chromosomes are evaluated separately.
B. Heatmap of large CNAs (grouped by chromosome arms) in single-cell derived clones. Only clones with detectable large CNAs
are shown.
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Figure S3 | Large de novo CNAs in cells with L1 retrotransposition identified using the L1 GFP reporter.
A. Schematic diagram of the L1 GFP reporter consisting of a codon-optimized human L1 and an anti-sense split GFP gene in the
3’-UTR. Expression of GFP only occurs with the integration of the split GFP gene by retrotransposition. Therefore, GFP+ cells
must have had one or multiple retrotranspositions. However, GFP- cells may also contain one or multiple truncated copies of the
L1 GFP reporter. Therefore, GFP- cells may also have undergone retrotransposition. See Figure S5B.
B.Schematic diagram of the experimental workflow.
C. Frequency of L1 retrotransposition in p53-null RPE-1 cells assessed using the L1 GFP reporter. Inactivation of reverse tran-
scriptase activity completely abolishes retrotransposition, whereas inactivation of endonuclease activity suppresses but does not
eliminate retrotransposition. Three replicates in each condition. P-values are calculated using one-way ANOVA with Tukey test.
D. and E. Quantification of large CNAs in clones derived from GFP+ cells similar to Figure S2.
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Figure S4 | Chromosomal locations and GRCh38 coordinates of 11 integrated Tet-On L1 transgene (red arrows) determined from
breakpoints in reads (both short and long) and de novo assembled contigs (from PacBio long reads) with split alignments to both
the transgene sequence and the human genome.
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Figure S5 | Additional data on insertions from retrotransposition.

A. Consistency between insertions detected from short reads without manual curation and from long reads plus manual review.
The comparison is done for clones with Dox-induced L1 expression (Dox clones) for which both short- and long-read data are
available. The manually curated results are used for the final analysis .
B. Number of L1 and pseudogene insertions in clones expanded from GFP+ cells with the L1-GFP reporter (GFP+ clones). We
identified seven truncated insertions in 1/5 GFP- clone. The predominance of L1 insertions over pseudogene insertions in GFP+
clones is likely due to selection for retrotransposition of the L1-GFP reporter.
C. L1 and pseudogene insertions in single cells after Dox-induced L1 expression. The panels are arranged similarly as in Fig-
ure 2A,B,G except that pseudogene insertions are excluded from the assessment of insertion length and target site sequence
changes.
Note: As only a few GFP+ clones and none of the single cells have long-read data, we derive the main findings largely from the
Dox clones for which the complete insertion/rearrangement junctions can be determined. We present examples from the single
cells and from the GFP+ clones as complementary evidence for these findings.
D. Sequence logo plots of the genomic DNA sequence at the 5’-end of insertions of L1 (upper) and pseudogenes (lower), similar
to Figure 2D.
E. Positive correlation between the number of pseudogene insertions and L1 insertions.
F. Positive correlation between the number of insertions (L1 and pseudogene) and large segmental copy-number alterations.
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Figure S6 | L1-mediated insertions of non-canonical transcripts. All the insertions are identified in Dox clones and are validated
by long reads. The RNA-Seq data are from parental RPE-1 cells without L1 induction.

In the first example (A6), the inserted sequence is from the 3’-UTR region of a rare transcript that spans a truncated endogenous
L1. In the next three examples (E8, C3 and C4), the inserted sequences contain intronic sequences flanked by cryptic splicing
acceptor (AG) and endogenous L1 elements. For these four cases, the insertion of these rare transcripts instead of the canonical
transcripts suggests a preferred interaction between ORF2p and mRNAs with subsequences from L1 at the 3’ end.

In the last example (G8), the retained intronic sequence is flanked by cryptic AC and CT sequences that are identical to the donor
and acceptor sequences of the up- and down-stream exons.
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Figure S7 | (Figure on next page.) Additional examples of complex insertions and their mechanistic interpretations.

A. Additional examples of complex insertions reflecting template-switching RT or annealing/end-joining between twin-primed RT
ends. Except for the insertion in Dox clone D6, which is assembled based on junctions detected from short reads, all the other
insertions are completely resolved by long reads. Note the proximity between the two RT sequences of SEMA3C in sample D6
that recapitulates the feature of 5’-inverted insertions as shown in Figure 2C.
B. Two alternative outcomes of twin priming suggested by the insertion rearrangements shown in A. In the first model, the recip-
rocal end is primed to the 3’ poly-A sequence, resulting in a 3’-inverted insertion; this model explains insertions with poly-A/T
on both sides. In the second model, the primary and the twin-primed RT ends are joined by ligation with DNA or DNA/RNA
duplexes. The insertion of two retrocopied sequences between two DNA ends is seen in another example in Figure 6C.
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Figure S8 | Retrocopied pseudogene insertions containing substitutions due to ADAR editing. ADAR editing (A>I) results in
T:A>C:G substitutions. All the examples are from Dox clones and are validated by long reads. In A, the clustered substitutions are
restricted to a palindromic sequence near the 3’-end of an aberrantly spliced CARD8 transcript (gray bars showing alignment of the
inserted sequence). In B, the substitutions are restricted to a pair of inverted Alu sequences. In C, the substitutions are restricted to a
single Alu sequence that likely forms a duplex with an inverted Alu that was not retrocopied due to incomplete reverse transcription.
The insertion in A is identified at an insertion junction; the insertions in both B and C are identified at rearrangement junctions
instead of insertion junctions.
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Figure S9 | (Figure on next page.) Insertions with inversions of genomic DNA sequences near the insertion site.

A. An inversion (chr2:201691621-2537) next to an L1 insertion between chr2:201691555(-) and chr2:201692543(+) identified in
a GFP+ clone. A plausible mechanism for the inversion is shown below. Starting from the right: (i) ORF2p creates two sticky
DNA ends with 3’-ends at 201692537 and 201692543 and extends 201692543(+) by RT; (ii) the reciprocal end (201692543) is
resected, creating a long ssDNA overhang; (iii) the ssDNA overhang folds back to itself and forms a hairpin; (iv) cleavage of the
top strand results in an inversion of the ssDNA overhang from the top strand to the bottom (highlighted by the gray arrow), creating
a 5’-overhang; (v) after fill-in synthesis, the left DNA end joins the primary RT end to complete the insertion. The self-annealing
step is supported by the observation of 14bp homology between the two breakpoints. By contrast, the junction between the L1
insertion and the inverted DNA end shows no homology.
B. An inversion of genomic DNA next to a 5’-inverted L1 insertion. The inferred process is similar to A, except with the additional
step of twin priming that gives rise to a secondary 5’-inverted insertion. The large gap between the two inverted RT sequences
is distinct from most 5’-inverted insertions (see Figure 2C). The self-annealing step is supported by a 6bp homology (TTGTTT)
between 24871375-1381 (reverse strand) and 24871508-1513 (forward strand).
C. An inverted duplication next to a L1 insertion. The first three steps (i-iii) of the inferred process are similar to A and B. The
inverted duplication is generated by the displacement of newly synthesized DNA from the inverted 3’-end (red bases), which is
then ligated to the RT DNA end.
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Insertions with inversions of genomic DNA sequences near the insertion site
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Figure S10 | Insertions containing both RT sequences and templated genomic sequences.

A. An insertion containing two retrocopied sequences and four genomic DNA sequences. The two sequences from chr1 (in black)
are consistent with an origin from retrotransposition followed by cleavage of ssDNA fragments (also see Figure 6); the same
mechanism can explain the short chr10 sequence (102191082-1391). The origin of the chr2 sequence cannot be determined.
B. An insertion junction containing four short sequences mapped to regions near the insertion site. The two pieces 12108205-8328
and 12108331-8467 reflect a deletion of one of two nearly identical tandem copies (capital letters for the retained sequence):
(12108274-8330) CCATAATTGAAGCCCTTGGACAAAGTTTGTTTACTGTGATTTAAGATTTTGGTTAcT and
(12108331-8387) CCATAATTGAAGCCCTTGGACAAAGTaTGTTTACTGTGATTTAAGATTTTGGTTATT.
This deletion may be explained by a slippage during DNA synthesis from a ssDNA template (12108205-8467).
C. An insertion containing two genomic DNA sequences plus an L1 insertion. The L1 insertion is not completely resolved from
short reads. The two genomic DNA insertions are mapped to regions on chr4 with local DNA fragmentation. See Figure S17B.
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Figure S11 | (Figure on next page.) Additional examples of L1-mediated translocations.

A. Four-way translocations between chr11, chr18, chr12, and chr22. Copy-number data are similar to Figure 4. Two inverted RT
sequences derived from the OSBPL8 mRNA, chr12:76351797-2977 and chr12:76352990-4325 are identified at primary and twin-
primed ends on chr18 [5414307(-)/5414292(+)], displaying all features of 5’-inverted retrotransposition except that the two ends
are ligated to distal DNA ends. Although there is no evidence of retrotransposition at either breakpoint from chr11, the breakpoint
at chr11:76199662(-) is adjacent to two plausible ORF2p EN cutting sites (underlined); it is therefore possible that this breakpoint
originates from the reciprocal end generated by ORF2p. The breakpoint chr11:76202973(+) could have been generated by cleavage
of the RT DNA as shown in Figure S10A; the short insertion mapped to chr11:76202407-916 could have been generated in the
same event. The 11p arm is ligated to the chr22q terminus (with a small inverted terminal duplication, see Figure 6C), therefore
forming a dicentric chromosome; there is subclonal copy-number loss between the two centromeres (black dots).
B. A dicentric chromosome inferred to be present in Dox clone H8 with two translocations between chr10, chr4, and chr8. The
junction between the 4q breakpoint [chr4:136923571(+)] and [chr8:37006129(+)] contains two independent RT insertions, in-
dicating both breakpoints originating as primary ends generated by ORF2p. The reciprocal breakpoint chr4:136923575(-) (see
IGV screenshot of a 5bp target-site duplication) originates as the reciprocal end and is extended by RT using a different mRNA
(EIF4G2). The extension of both DNA ends generated by ORF2p is essentially the same as shown in Figure 3B, except that
the two ends are ligated to distal DNA ends. Finally, the breakpoint at chr4:140628115(-) is to the right of a plausible ORF2p
EN cutting site (TAAAT|gac), suggesting a plausible origin as the reciprocal end generated by ORF2p. Taken together, all four
breakpoints (three on chr4 and one on chr8) are directly attributed to retrotransposition.

The 4p breakpoint chr4:39911656(+) is extended by RT of the BCL2L2 mRNA from within the 3’-UTR (no poly-A); it also
does not have any adjacent ORF2p EN cutting site. This junction could result from reverse transcription at a DNA end generated
independent of ORF2p.
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Translocations between chr11, chr18, chr12 and chr22 in Dox clone A5
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Figure S12 | Dicentric chromosomes in Dox clones. The inference of dicentric chromosomes is based on similar evidence as
discussed in Figure 4C.

A. A dicentric chromosome inferred to be present in Dox clone A6. Both breakpoints are adjacent to ORF2p EN cutting sites
(underlined/overlined) consistent with these breakpoints originating as the reciprocal DNA ends generated by ORF2p.
B. Another example similar to A.
C. A dicentric chromosome with both translocation breakpoints adjacent to ORF2p EN cutting sites. Notably, the homeology
between the junction sequence and the genomic DNA sequence suggests that the joining between DNA ends involves some form
of error-prone DNA synthesis.
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Figure S13 | Dicentric chromosomes in GFP+ clones. The C3 clone is derived from a tetraploid ancestor; the E8 and F2 are
derived from diploid ancestors. As none of the breakpoints is adjacent to an ORF2p EN cutting site, these translocations may have
arisen independent of or downstream of ancestral DNA breaks generated by retrotransposition.
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Figure S14 | Additional examples of large segmental deletions in Dox clones and GFP+ clones.
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Figure S15 | Examples of sloping copy-number variation indicating BFB cycles in Dox clones and GFP+ clones. For the example
in GFP+ clone H7, the sloping copy-number variation is on the extra copy of the 10q segment that is appended to the active X.
Note the minor copy-number gain in Xa (black dots) but copy-number losses in the 10q arm relative to trisomy in the parental line.
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Figure S16 | Additional instances of foldback junctions in Dox clones (A) and GFP+ clones (B). C. An example of multiple
adjacent foldback junctions. Potential ORF2p EN cutting sites near the breakpoints are highlighted.
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Figure S17 | Additional instances of chromothripsis in GFP+ clones.

A. An example of complex rearrangement/CNAs consistent with the outcome of a BFB cycle leading to regional chromothripsis.
L1 insertions are found at three junctions with the following breakpoints: 217713213(+), 217715699(-), and 221044734(-).
B. A similar example as in A identified in a different clone. L1 insertions are found at three junctions involving the following
breakpoints: 144917551(+), 148637312(+), 148748795(-). These breakpoints and their reciprocal breakpoints are highlighted in
bold. We also identify a junction involving the breakpoint chr4:128140824(-) that is joined to a poly-T sequence.
C. Three examples of chromothripsis indicated by oscillating DNA deletion and retention.
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Figure S18 | Spectra of single-base substitutions (SBS) in clones with L1 expression (Tet-On L1 with Dox treatment and GFP+)
and control clones (Tet-On L1 with DMSO treatment and GFP-) suggest no apparent SBS signature associated with L1 expression.

Private mutations in 10 control (DMSO treated) clones: 19,813 total mutations

Private mutations in 31 clones with L1 expression (DMSO treated): 53,146 total mutations

Private mutations in 5 control (GFP-) clones: 12,250 total mutations

Private mutations in 29 clones with L1 expression (GFP+): 71,588 total mutations

33

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 17, 2024. ; https://doi.org/10.1101/2024.12.14.628481doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.14.628481
http://creativecommons.org/licenses/by-nc-nd/4.0/



