
Supplementary Note 1: Determination of local Ea and Q10
In the case of a duration or rate that scales according to the Arrhenius equation

k = Ae
→Ea
RT (14)

the activation energy is a constant. The formula above is equivalent to

lnk = lnA→ Ea

R

1
T

. (15)

The value of Ea can thus be calculated from the slope of the line obtained when plotting lnk vs 1/T . Or,

Ea = →R ↑ d(lnk)
d(1/T ) . (16)

This equation can also be used as the definition of a local activation energy Ea(T ) for any function k(T ).
Similarly, we can define a local Q10 value. In this section we explain how a Q10 value can be obtained for a process with
temperature-dependent rate. The Q10 is the fold change in rate when the temperature increases by 10 degrees Celsius. If the
value of Q10 is constant over all temperatures, the rate dependence should have the form

k ↓ QT/10
10 .

This form is different from the Arrhenius equation. It would therefore be incorrect to say of a process that its activation energy
is Ea and that its Q10 is a given value.
The Q10 can be calculated as

Q10 =
(

k(T2)
k(T1)

) 10
T2 →T1 ,

where k(Ti) is the rate of the process calculated at temperature Ti. Since this formula holds for any choice of T1 and T2, we
can look at the limit T2 ↔ T1 and use this formula to define a local Q10, Q10(T ). The use of ‘local’ for a number that is meant
to convey what happens over a temperature change of 10 degrees is a bit contradictory, but we will make abstraction of this and
use Q10(T ) to indicate a local sensitivity to temperature.
If the rate of a process depends on temperature through any (differentiable) function k(T ), then for any h we would have

Q10(T ) =
(

k(T1 +h)
k(T1)

) 10
h

A Taylor expansion for small h gives that this is approximately equal to

(
1+h

k→(T1)
k(T1)

) 10
h

,

where k→ = dk
dT . Using the definition of the exponential function, this goes to

exp
(

10k→(T1)
k(T1)

)

for small h. We thus define the local Q10 as

Q10(T ) = e
10 k↑(T )

k(T ) . (17)

We can also express the formula for the local Ea (Eq. Eq. (16)) using the derivative of the rate:

Ea(T ) = →R
d(lnk)
d(1/T ) = →R

1
k

dk

d(1/T ) = R
k→

k
T 2.

This also gives a link between Q10 and Ea:

Q10(T ) = exp
(

10Ea(T )
RT 2

)
. (18)
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A Two-ODE cell cycle model

Supplementary Note 2: Bootstrapping

The histograms that describe the uncertainty on the fitted activation energies on the rates, shown in Figs. 1 and 6, were obtained
using a bootstrapping procedure. First, we generated a new dataset by resampling the rate measurements with replacement from
the original data. In this case, we used a stratified bootstrap: we resampled per temperature. So if in the original dataset, there
were three values of Ea for a given temperature, in a bootstrapped dataset there will also be three values for that temperature, and
they are resampled with replacement from the original three. For each bootstrapped dataset, we inferred the activation energy
by fitting a straight line in the Arrhenius plot. We fitted on the median per temperature. We did this for 1000 bootstrapped
datasets, and these 1000 values of Ea are represented in the histograms.

Supplementary Note 3: Computational cell cycle models

A. Two-ODE cell cycle model. As described in the main text, we made use of a two-ODE cell cycle model based on one
originally described in (67):

dcyc
dt

= ks →kdd[cdk1a]cyc,

ω
dcdk1a

dt
= ks →kdd[cdk1a]cdk1a +kaa[cdk1a](cyc → cdk1a)→kii[cdk1a]cdk1a, (19)

The first equation describes how cyclin B (cyc) is synthesized throughout the cell cycle at a rate ks (nM/min) and how it
is degraded at a rate kd (1/min) by the proteasome after ubiquitination by active APC/C. APC/C is assumed to be activated
instantaneously by active cyclin B - Cdk1 complexes (abbreviated as cdk1a) in an ultrasensitive way (given by d[cdk1a]). The
second ODE describes the time evolution of active cyclin B - Cdk1 complexes, assuming that all synthesized cyclin B quickly
binds to Cdk1 to form a complex. Moreover, the positive feedback of Cdk1 via Cdc25, and the double negative feedback of
Cdk1 via Wee1 are included as an activating (a[cdk1a]) and inhibiting (i[cdk1a]) ultrasensitive function as well, motivated by
direct experimental measurements of those response functions (68, 69). The different ultrasensitive functions have the following
form:

a[x] = aCdc25 + bCdc25
xnCdc25

ECnCdc25
50,Cdc25 +xnCdc25

, (20)

i[x] = aWee1 + bWee1
ECnWee1

50,Wee1
ECnWee1

50,Wee1 +xnWee1
, (21)

d[x] = aAPC + bAPC
xnAPC

KnAPC
APC +xnAPC

. (22)

This type of model has previously been used to successfully describe various aspects of cell cycle oscillations (34, 67, 70). In
the present work, we simplified this model further as follows, to have a clearer separation of the first ODE with cyclin synthesis
and degradation, and the second ODE just describing Cdk1 activation and inactivation processes. The results are very similar
and do not influence the conclusions in this work.

dcyc
dt

= ks →kdd[cdk1a]cyc,

ω
dcdk1a

dt
= kaa[cdk1a](cyc → cdk1a)→kii[cdk1a]cdk1a, (23)

Using experimentally motivated parameters (67), model (23) reproduces cell cycle oscillations with a period of approx. 30
min (Fig. 3C). These oscillations manifest as a closed trajectory, a limit cycle, in the (cyc, cdk1a) phase plane (Fig. 3B, red),
helping to better understand their existence via the intersection of nullclines (NCs). NCs are defined by points where dcyc

dt = 0
(Cyc NC) or dcdk1a

dt = 0 (Cdk1 NC). When ω << 1, oscillations occur at the intersection of the cyclin NC and the middle
branch of the S-shaped Cdk1 NC (as depicted in Fig. 3B).

B. Five-ODE mass action model.

B.1. The model. We used a five-equation model for relaxation oscillations arising out of the interaction between Cdk1, Great-
wall and PP2A (Fig. S6A). This pathway is a different part of the mitotic control system, which underlies the second mitotic
switch. In the two-ODE model used in the main text, Cdk1 is involved in two feedback loops, through Wee1 and Cdc25. These
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Symbol Meaning Value
ks Cyclin production rate 1.25 nM/min
kd Cyclin degradation rate 0.1 min↑1

ki Maximal Wee1 activity 0.5 min↑1

ka Maximal Cdc25 activity 1 min↑1

aCdc25 Basal Cdc25 activity 0.2
bCdc25 Maximal increase in Cdc25 activity 0.8
KCdc25 Threshold for Cdc25 activation 30 nM
nCdc25 Hill exponent for Cdc25 activation 10
aWee1 Basal Wee1 activity 0.1
bWee1 Maximal increase in Wee1 activity 0.4
KWee1 Threshold for Wee1 activation 30 nM
nWee1 Hill exponent for Wee1 activation 5
aAPC Basal APC/C activity 0.1
bAPC Maximal increase in APC/C activity 0.9
nAPC Hill exponent for APC/C activation 15
KAPC Threshold for APC/C activation 30 nM

ω Timescale parameter 0.1

Table 1: Parameter values used in the 2-ODE cell cycle model. These are the basal values that correspond roughly to the period
of the X. laevis and D. rerio cell cycle. To describe the X. tropicalis cycle, which is faster, we multiply ks and kd by 1.3. The
basal values of ks, kd and ω are also different for extracts. These values are part of the fitting to the time series.

feedbacks lead to bistability of Cdk1 activity as function of cyclin B levels. In the five-equation model, these feedback loops
are not present, as is appropriate for cycles 2–12 in embryos (70). Here, any cyclin B-Cdk1 complex is directly activated: the
response curve of Cdk1 activity as function of cyclin B levels would be linear. The production rate of cyclin B therefore directly
corresponds to the production rate of active cyclin B-Cdk1 complexes. The equations we use are based on the paper by Hopkins
et al. (65), who show that the equations for Greatwall, ENSA and PP2A lead to bistability. We complement their system with
equations for Cdk1 and APC/C to turn the bistable system into a relaxation oscillator (73) (Fig. S6B).
We use the following equations:

u→ = kp,a(AT →u)v →kd,au(PT →y) (24)
v→ = ks →kduv (25)
w→ = kp,g(GT →w)v →kd,g(PT →y)w (26)
x→ = →kp,exw +kcaty (27)
y→ = kass(ET →x→y)(PT →y)→kdissy →kcaty. (28)

Here, u denotes active APC/C, v are the active cyclin B-Cdk1 complexes. The variable w corresponds to phosphorylated
Greatwall, x is free, unphosphorylated ENSA and y is the complex ENSA-PP2A. The parameters of the model are the
biochemical rates and the total amounts of APC/C (AT ), Greatwall (GT ), ENSA (ET ), and PP2A (PT ).

The first equation describes the activity of APC/C. We assume that APC/C can be converted from its inactive (unphosphory-
lated) form to its active (phosphorylated) form by Cdk1 through mass-action kinetics. The dephosphorylation is performed
by PP2A. Note that y is the concentration of the ENSA-PP2A complex and PT is total PP2A, such that the available PP2A
is PT → y. The second equation describes cyclin B-Cdk1 levels. These are governed by production and degradation of
cyclin B, the latter of which is modeled through mass action. The equation for active Greatwall (variable w) describes the
conversion between active and inactive Greatwall by Cdk1 and PP2A respectively — analogous to the APC/C equation. The
fourth equation describes free unphosphorylated ENSA. This concentration decreases through phosphorylation of ENSA
by Greatwall, and it increases through the dephosphorylation, which is mediated by PP2A. The final equation describes the
concentration of the ENSA-PP2A complex.

The parameters, their meaning and their standard values can be found in 2. The parameter set is not based on experimental
values, but was chosen to obtain a relaxation oscillation of amplitude (in the Cdk1 variable) and period that correspond to
observations. All variables except for cyclin B-Cdk (v) are in arbitrary units, this is why the units of the rate constants look a
bit awkward. As for the Yang-Ferrell model, ks and kd are multiplied by 1.3 if simulations are to be compared with data from
X. tropicalis.
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B Five-ODE mass action model

Symbol Meaning Value
kp,a phosphorylation rate of APC/C by Cdk1 0.4 nM↑1min↑1

kd,a dephosphorylation rate of APC/C by PP2A 100 min↑1

kp,g phosphorylation rate of Greatwall by Cdk1 0.06 nM↑1min↑1

kd,g dephosphorylation rate of Greatwall by PP2A 20 min↑1

kp,e phosphorylation rate of ENSA by Greatwall 6 min↑1

kass association rate of phosphorylated ENSA and PP2A 100 min↑1

kdiss dissociation rate of ENSA-PP2A complex 1 min↑1

kcat rate of catalyzed dephosphorylation of ENSA 4.5 min↑1

ks Cyclin production rate 1.5 nM/min
kd Cyclin degradation rate 0.15 min↑1

AT Total APC/C in the system 1
GT Total Greatwall in the system 1
ET Total ENSA in the system 3
PT Total PP2A in the system 1

Table 2: Parameter values used in the mass action model

B.2. Interpretation in the phase plane. The model with only Greatwall, ENSA and PP2A (w,x,y) has been shown to produce
a bistable response as function of the amount of active Cdk1 (v) (65). In our version, we added production of cyclin B and
its degradation by APC/C to turn the bistable system into a relaxation oscillator. Even though the system is five-dimensional,
we can understand it in the phase plane. To do this, we perform a reduction to a two-variable system. We assume a quasi-
steady-state condition on w,x and u, and set their derivatives to zero. When we do this, we assume that these variables evolve
on a faster timescale than the others. We do expect that the levels of cyclin B-Cdk1 evolve on a slower timescale than the
other variables: production and degradation are slower than the phosphorylation reactions. The reasons for keeping y as the
additional variable and not one of the others is more practical: taking w→ = x→ = u→ = 0 leads to explicit expressions for these
variables as function of v and y, which does not work if we take, say, u as remaining variable. We find

w(v,y) = 1
1+ kd,g(PT ↑y)

kp,gv

GT

x(v,y) = kcaty

kp,ew
= kcaty

kp,eGT

(
1+ kd,g(PT →y)

kp,gv

)

u(v,y) = 1
1+ kd,a(PT ↑y)

kp,av

AT .

(29)

Using these, we can reduce the system to two equations:

v→ = ks →kdu(v,y)v
y→ = kass(ET →x(v,y)→y)(PT →y)→kdissy →kcaty.

(30)

Fig. S6B shows the phase plane of this system with the associated limit cycle. The projection of the solution of the five-ODE
system for the same parameter values is also shown. The two limit cycles are close in the phase plane, but their period is
significantly different (Fig. S6B). In any case, this reduction shows that we can qualitatively understand the oscillations of this
system in the phase plane. In particular, we confirm that the limit cycle is of relaxation type and goes around the underlying
bistable switch. The cycle is, as always in the cell cycle oscillator, driven by cyclin B accumulation and degradation. Once
cyclin B-Cdk1 levels cross a threshold, the activity of the phosphatase is quickly suppressed. This allows activation of APC/C,
which leads to cyclin degradation and brings the system back to a state of low Cdk1 activity. In particular, we can see from Eq.
(30) that the production and degradation rates affect the non-S-shaped nullcline only.

For this model, we studied how the period of the oscillation changes if each of the parameters has a dependence on temperature.
We analyzed how different activation energies for the different parameters can lead to different scaling as well as thermal
ranges. As for the Yang-Ferrell model, this analysis can be interpreted in the phase plane, by examinining how parameter
changes affect the location of the nullclines. From the phase-plane picture we can see that, when the oscillations disappear,
the system becomes stuck in a state with either high or low phosphatase activity. As before, which one it is will depend on the
relative magnitude of Ea,ks and Ea,kd

.
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The steady state of the system only depends on the ratios of the following parameters:

ks

kd
,

kp,a

kd,a
,

kp,g

kd,g
,

kp,e

kcat
and

kass

kcat +kdiss
.

It follows that, for any set of activation energies such that

Ea,ks =d, Ea,kp,a = Ea,kd,a
,

Ea,kp,g = Ea,kd,g
, Ea,kp,e = Ea,kcat = Ea,kass = Ea,kdiss ,

the steady state of the system is independent of temperature. Under the assumption that the relative magnitude of the timescales
stays the same, this means that we would expect oscillations over a large range of temperatures if these rates scale in a similar
way. These ratios usually have the rates for two counteracting reactions in numerator and denominator.

C. Fitting temperature-dependent computational models to data using the ABC algorithm.

C.1. Fitting cycling extract data with the two-ODE model. In Fig.4 we show the results of parameter fits to the time scaling of
extract data. These fits were obtained using Approximate Bayesian Computation - Sequential Monte Carlo (ABC-SMC) (93).
This algorithm sequentially samples parameter sets that provide better and better fits to the data. The output of the algorithm is
N parameter sets !i with associated weights wi. Each of these parameter sets provides a fit closer than a prescribed distance
ε to the data. The N weighted parameter sets constitute a sample from the posterior distribution P (! | d(x↓,x0) < ε), where
x0 is the data, x↓ is the data resulting from a simulation with parameters ! and d is a distance function. If ε is small, this
distribution approximates the posterior distribution P (! | x0): the probability that a parameter set ! is the true one, given the
observed data. In ABC-SMC, the value of ε is lowered over the course of different generations as a way of getting better and
better approximations of the posterior. We use the implementation of this algorithm given in pyABC (94).

For the extract fits, we describe the temperature scaling of each of the rates ks, kd and ω using a double-exponential formula.
Instead of the four parameters A1,E1,A2,B2 that go into a formulation of the form

rate = A1e
E1
RT +A2e

E2
RT ,

we decide to use more interpretable parameters: the basal value of the rate at 18 degrees Celsius, the temperature Tm at which
is maximal (minimal for ω) value is obtained, and the two activation energies E1 and E2. Note that we can map k0,Tm,E1,E2
to A1,E1,A2,E2 directly.

A parameter vector ! contains 12 values (E1,ks ,E2,ks ,Tm,ks ,ks,0,E1,kd
,E2,,Tm,kd

,kd0,E1,ε,E2,ε,Tm,ε,ω0). Each parame-
ter set thus defines three functions ks(T ), kd(T ) and ω(T ). We simulate the Yang-Ferrell model over the temperatures from the
dataset (the Ti are 16,17, . . . ,36 for the extract data), using the rates defined by these scaling functions. All the other rates are
kept to their basal value. The output of the simulation is xs = (Ri,Fi): the duration of rising and falling part of the cycle, for
each temperature Ti in the dataset. The durations are determined by taking the time from minimum to maximum of the cycle
and maximum to minimum. These data from the simulation are then compared to the same data obtained from the extract time
series xd. The distance function we use is

d(xd,xs) = 1
N

∑

i

| lnFd,i → lnFs,i|+ | lnRd,i → lnRs,i|. (31)

We thus take the differences of the rising and falling times, for each temperature, and take the average of the absolute values.
Note that we use the logarithms of the durations. The durations can vary quite a bit in absolute value, and we use the logarithms
to prevent the algorithm being skewed to approximating the large durations (at extreme temperatures). We take d(xd,xs) = ↗
if there is a temperature in the dataset for which the simulation did not produce an oscillation.

For the extract simulations, we use 1000 particles per generation. The prior distributions were uniform distributions for all
parameters, for the E1 between 0 and 200 kJ/mol, for the E2 between -200 and 0 kJ/mol, for the Tm between 10 and 45
degrees Celsius, for ks,0 between 0 and 5, for kd0 bewteen 0 and 2 and for ω0 between 0 and 100.

We let the algorithm run with for 40 generations and inspected visually the resulting fits described. We did not retain the last
generation for the figures shown, because these fit the data too closely. Since the data itself has variability we did not want
to overfit. We picked the 35th generation (corresponding to a value of ε in the ABC algorithm of 0.1303. Fig. S8 shows the
parameter distributions in this generation. All the parameters for ks, as well as kd0 and ω0, are clearly centered on one value.
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D Fitting embryo data with the five-ODE mass action model

Moreover, E1,kd
and E2,kd

are peaked close to zero. For the other parameters, the distribution is much wider. This is also clear
from the plots in Fig. S9 These show the marginal distribution of the different parameters over the different generations of the
ABC SMC run. For the parameters peaked around one value, we see clear convergence of the posteriors. For the others, this is
less clear.

C.2. Fitting embryo data with the two-ODE model. We use the two-ODE cell cycle model to capture the period scaling observed
in the data for Xenopus laevis, Xenopus tropicalis and Danio rerio. We use the ABC-SMC algorithm implemented in pyABC.

For the Yang-Ferrell (2 ODE) model, we use four different parameters: the activation energies of ks, kd and of the ’forward’
and ’backward’ reactions. The ’forward’ activation energy can be thought of as scaling the dephosphorylation rate of Cdk1
by Cdc25. It modifies the parameters aCdc25 and bCdc25 in the model. The backward rate scales phosphorylation by Wee1,
corresponding to the parameters aWee1 and bWee1. Each simulation produces the period Pi of the oscillation for each of the
temperatures Ti in the embryo dataset (or zero if for a temperature there is no oscillation).

We compare the distance between the simulated dataset xs and the observed data xd (the durations of the embryonic cycles)
with the distance function

d(xd,xs) = 1
N

∑

i

| lnPd,i → lnPs,i|. (32)

The distance is set to infinity if the simulation does not produce an oscillation for any of the temperatures Ti.

Since the temperature scaling of a rate is defined by

rate = basal rate ↑e
→Ea

R

(
1
T ↑ 1

T0

)
,

only varying the Ea will lead to always the same value of the rate at T0, which is 18 degrees Celsius in our case. This means
that all period curves will go through the same point at 18 degrees. To circumvent this, we include an additional parameter
which adds an overall scaling of the period, by scaling the basal values of ks and kd. In all the samples, this parameter is very
close to one.

We use 200 particles in the ABC run and let the algorithm run for 15 generations. The prior distributions for all activation
energies were uniform on [0,150] kJ/mol. The final distances ε were 0.04 for X. laevis, 0.05 for X. tropicalis and 0.07 for D.
rerio. Fig. S5 shows the resulting fits from the ABC algorithm.

The two-dimensional probability densities in Fig. S5B are projections of the points (Ea,ks , Ea,kd
,Ea,act, Ea,inact) into two

different planes. Lighter color means higher probability. The bottom row in this figure shows a white cloud along the diagonal.
This means that the best fits to the data are obtained when Ea,act ↘ Ea,inact. The upper heatmaps show that the activation
energies of ks and kd need to be different (off-diagonal clouds) for good fits. Whereas for X. tropicalis and D. rerio, good
fits are obtained when Ea,ks is larger than Ea,kd

, for X. laevis there are two off-diagonal clouds. These density plots were
obtained from the 200 weighted points that are the output of the ABC algorithm, smoothed using a Gaussian kernel. In Fig.
S5A we show the actual fits corresponding to each of these sampled points in gray, with more transparent lines corresponding
to parameter sets with lower weight. In orange, we show the best fit (lowest distance). The fits are quite good overall, but the
upper thermal limit and the bend upwards are not so easy to capture.

The results from the ABC algorithm give us similar insights to what we obtained from a full parameter scan. However, it is
less computationally intensive. We conclude from the results here that good fits to the data can be obtained using the two-
ODE model. The parameter sets that best capture the scaling in the data and the upper thermal limit have activation energies
for Cdc25 and Wee1 (activation/inactivation) that are close and different values for the production and degradation activation
energies.

D. Fitting embryo data with the five-ODE mass action model. The five-ODE mass action model has ten different
activation energies. A full parameter scan is unfeasible here, but the ABC algorithm can still be used. We also used 200
particles and let the algorithm run for 15 generations. The final distances ε were 0.05 for X. laevis, 0.07 for X. tropicalis and
0.09 for D. rerio. Prior distributions were uniform on [0,150] kJ/mol for all activation energies. We also included a period
scaling to avoid every temperature-period curve going through the same value at 18 degrees, as explained above. This value
was close to one for all sampled parameter sets.

Good fits can generally be obtained using this model, although there are not so many parameter sets that can capture the bend
upwards for high temperatures Fig. S6C. We are not entirely sure whether this is unexpected or not: in general more parameters
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to vary increases the possibility of an accurate fit, and ten parameters is already quite a lot. On the other hand, the oscillations
in this system are quite sensitive to changes in the rate constants, making a good fit more difficult. We did observe that the
sets of activation energies that provide a good fit are more localized in parameter space, whereas for the two-ODE Yang-Ferrell
model there were quite broad areas that gave a good fit. The output of the algorithm is now a set of parameters which represents
a probability distribution in ten-dimensional space. This is not so easy to visualize. We can however look at some summary
statistics of this distribution, as in Fig. S6D. This figure shows the marginal distribution of the different activation energies and
the pairwise correlations between them. Some of the pairs with high correlations correspond to antagonistic rates, such as kp,g

and kd,g . This suggests that the parameter sets that provide a good fit have more or less equal activation energies for the faster
reactions, forward and backward, and that the thermal limits are generated by an imbalance between the Ea of production and
degradation rates. This is a tentative conclusion, however, since the complete distribution of the distribution of all 10 rates is
not completely capture by looking only at pairwise correlations and marginal distributions.

Supplementary Note 4: Fitting rate measurements of individual regulatory processes

We describe how the rates for cyclin B synthesis, CDK1 activity, PP2A activity and APC/C activity were fitted from the times
series to obtain Fig. 6. For the linear fit we used the numpy function ‘polyfit’, and for the nonlinear fits we used the function
‘curve_fit’ from the scipy.optimize package.

A. Cyclin B synthesis rates. Fig. S12A-B shows a representative Western blot. By calculating the integrated density for
each band and subtracting the background using FIJI, we obtain the intensity for each time point. This value is then divided
by the average intensity for a CSF extract, to obtain the normalized intensities as shown in Fig. S12C. To obtain the cyclin
accumulation rates, we next fit the slopes for each of the cycles, e.g. for the points indicated in red in S12C. The obtained
results for the cyclin accumulation rates ks from all Western blots, obtained from three independent extracts, are summarized
in Fig. S7A (left).

B. Cdk1 rates. The time series from which we derive the rates are shown in Fig. S13. We fit a function of the form

y = at+ b

to the time series, and save a as the resulting rate. We do this for every replicate, giving us multiple rate measurements per
temperature. Where available, we use the P32 decay adjusted rates.

C. PP2A rates. The time series from which we derive the rates are shown in Fig. S14. We fit a function of the form

y = A(1→e↑kt)

to the time series. The rate is determined as the derivative of this function at t = 0, i.e. kA.

D. APC rates. The time series from which we derive the rates are shown in Fig. S15. We fit a function of the form

y = Ae↑kt +B

to the time series where we impose that A,B,k > 0. The rate we save is →k and we only do this for the experiments label
’Mitotic’. We only fit this function form on times larger than or equal to 10 minutes, because the exponential decay does not
start in the beginning.

Supplementary Note 5: Determination of the average cycle of CDK1 activity

For each temperature, we have a set of time series measurements (ti,ui), where ui is the measurement of CDK activity. From
this, we aim to derive the shape of an ’average cycle’. We do this as follows. This is also illustrated in Fig. S10.

1. We start with the values of time and CDK1 activity (ti,ui) for i1 ≃ i ≃ i2.

2. We rescale time to the interval [0,1]: set t̃i = (ti → ti1)/(ti2 → ti1) and we shift the values of u vertically by subtracting
the mean: ũi = ui → ūi.

3. We interpolate the values of ũ at 100 evenly spaced time points in the interval [0,1] (excluding 1), obtaining a new time
series (t̂i, ûi), i = 1 . . .100 with t1 = 0 and t100 = 1.

4. We do this for all the time series at a given temperature, giving us (tk,i,uk,i) where k indexes the different time series
(droplets). The average shape of the time series is then obtained by taking, for each i, the median of the values of u. The
resulting time series is (ti,Ui) with Ui = medianover k uk,i
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D APC rates

Supplementary Note 6: Direct estimation of the cyclin production rate scaling from extract

time series

In Fig. 4, we plot estimates of the scaling of ks with temperature obtained directly from the time series. These measurements
are the slopes of the increasing part of the CDK activity. We use a heuristic algorithm to determine these slopes automatically.
The time series mostly have a slow linear increase and then a fast jump. We want to capture the slope of the linear increase
only. To detect the interval of this linear increase, we do the following. The idea behind this is shown in Fig. S11.

1. We start from one cycle of CDK activity with values (ti,ui) with i1 ≃ i < i2 (as in Supp Note 5).

2. Let im = argmini ui, the index of the minimal value of the u-values.

3. For j in im + 2 . . . i2, we determine the slope of a linear fit on the points (ti,ui), i = im . . . j. In other words, we start
from the first three points starting at im, and then always add one more point to the right until we hit the last point of the
cycle. For each of these intervals, we obtain a slope a.

4. This yields a set of slopes aj . We then look at this array starting from its last element, i.e. we have a0 be the slope
obtained fitting from im to the last point of the cycle, a1 from im to the one-to-last point, etc.

5. We determine rj = (aj →aj↑1)/aj , the relative errors in this array of slope (j starting from 1).

6. Reasoning that first, rj will be large because at the end of the cycle there are large variations, and that for points on the
linearly increasing part of the cycle the relative errors do not change much, we fix the final slope as the one corresponding
to the first relative minimum of the rj (we exclude the first two rj to avoid detecting the very first point as a minimum).
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Supplemental Figures
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Fig. S1: Cell division timing in early Xenopus laevis embryos does not scale Arrhenius A. In Fig. 1C, we show the duration
of several early developmental periods in function of temperature in the range [Tmin = 9C,Tmax = 29°C], with the apparent
activation energy as obtained by an Arrhenius fit between 12°C and 21°C in Fig. 1D. Bootstrapping provides a probability
distribution for the apparent activation energies (Fig. 1E). Here, we show the mean and 90% confidence interval (CI) for
comparison, illustrating the statistical significance of the activation energy differences. B. Cleavage cycle duration in function
of temperature for the second to fourth cell cycle in the range [Tmin = 9C,Tmax = 29°C] for Xenopus laevis. Optimal fits using
single exponential Arrhenius (SE) are shown in two different temperature ranges: from 12°C and 21°C (orange), and the whole
temperature range (blue). The mean square error (MSE) is much higher over the whole temperature range than within the
selected range, indicating that the Arrhenius equation does not fit the data well over the whole measured data rang

Fig. S2: Temperature scaling of embryonic processes in Drosphila melanogaster A. Median cleavage period in function of
temperature for the second to fourth cell cycle (all pooled) in X. laevis (this work), and for the eleventh and thirteenth cell cycle
D. melanogaster (32). Optimal fits using a double exponential (DE) function are overlayed. B. The in vivo range of viable cell
cycles in both species, including their thermal limits and their corresponding apparent activation energies. C. The experimental
data of both species is fitted using different functional forms: single exponential Arrhenius (SE), double exponential (nonlinear
fit: DEN, sequential linear fit: DES), and a power law – exponential (PE) function. D. Using the best DE fit, the local Q10
value is plotted in function of temperature.
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Fig. S3: Temperature scaling of embryonic processes in Drosphila melanogaster. Median cleavage period in function of tem-
perature for the eleventh and thirteenth cell cycle D. melanogaster (32). Optimal fits using a double exponential (DE) function
are overlayed. ** TO DO**

Fig. S4: Temperature dependence of nullclines in the phase plane Thermal limits are determined by intersection of null-
clines. Depending on the relative size of Ea,ks and Ea,kd, the non-S-shaped nullcline shifts upward or downward with rising
temperatures. When the intersection of the nullclines lies on the upper or lower branch of the S-shaped nullcline, oscillations
cease to exist. A. The system ends up in a low-activity state at high temperatures. B. The second nullcline is temperature
independent. There is no thermal limit. C. The system is stuck in a high-activity state at high temperatures.
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Fig. S5: Optimal fits of the two-ODE model to the measured data using the ABC method A. Resulting fits from the ABC
algorithm for the two-ODE model. Gray lines show the 200 resulting parameter sets, with more transparent lines corresponding
to lower weighted points. The orange line is the best fit (smallest distance). B. Projection of the four-dimensional probability
density onto the (Ea(ks) , Ea(kd)) -plane. B. Projection onto the (Ea(ka), Ea(ki))- plane. The heatmaps were constructed
from 200 weighted points and smoothed with a Gaussian kernel.
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Fig. S6: The five-ODE mass action model and fits to the measured data using ABC method A. The interaction diagram
for the five-ODE mass action model. B. Reduction of the mass-action model and comparison to the full model. Left: Phase
plane of the reduced two-ODE model and projection of the five-ODE model onto this plane. Nullclines are shown in black and
gray, the blue limit cycle is the projection of the oscillation of the five-ODE system and the red limit cycle is the one in the
two-ODE system. Right: Time series of v in full (blue) and reduced (red) model. C. Resulting fits from the ABC algorithm
for the mass action model. Gray lines show the 200 resulting parameter sets, with more transparent lines corresponding to
lower-weighted points. The orange line is the best fit (smallest distance). D. Results of the ABC algorithm for the mass-action
model. Marginal distributions of the different activation energies (smoothed using a Gaussian kernel). Pairwise correlation of
the activation energies of the different rates.
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Fig. S7: Fitting the duration of the total cell cycle, rising phase, and falling phase. Analogous to Fig. 4C-E: left the raw
data, middle the median per rounded temperature with double exponential fit, right the local Ea computed from the double
exponential fit. Three first rows are the data for cycles 2, 3, 4 separately. The bottom row shows the plots combining all the
cycles that occur in the first 300 minutes of the experiment.
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Fig. S8: Marginal distributions of the parameter sets. Corresponds to the temperature scaling of parameters shown in Fig. 4.
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Fig. S9: Evolution of the marginal distributions of the parameter sets over the course of the ABC algorithm. Corresponds to
the temperature scaling of parameters shown in Fig. 4.

Fig. S10: Determination of the average cycle shape for CDK1 activity per temperature, in this case for T = 22 degrees Celsius.
the bottom right one shows the final average cycle.
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Fig. S11: Determination of the cyclin synthesis rate ks from the time series.
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Fig. S12: Measuring cyclin synthesis rates using quantitative Western blotting. A. Time course of a representative Western
blot using anti-cyclin B2 antibody on a cycling frog egg extract. B. Selected region of same Western blot as in A. C. Quan-
tification of the Western blot by calculating the integrated density for each band and subtracting the background using FIJI,
we obtain the intensity for each time point. This value is then divided by the average intensity for a CSF extract, to obtain the
normalized intensities. To obtain the cyclin synthesis rates, we next fit the slopes for each of the cycles for the points indicated
in red.
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Fig. S13: Time series for CDK1 activity.
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Fig. S14: Time series for PP2A activity.
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Fig. S15: Time series for APC activity.
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