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Abstract
Antidepressants exhibit a considerable variation in e�cacy, and increasing evidence suggests that
individual genetics contribute to antidepressant treatment response. Here, we combined data on
antidepressant non-response measured using rating scales for depressive symptoms, questionnaires of
treatment effect, and data from electronic health records, to increase statistical power to detect genomic
loci associated with non-response to antidepressants in a total sample of 135,471 individuals prescribed
antidepressants (25,255 non-responders and 110,216 responders). We performed genome-wide
association meta-analyses, genetic correlation analyses, leave-one-out polygenic prediction, and
bioinformatics analyses for genetically informed drug prioritization. We identi�ed two novel loci
(rs1106260 and rs60847828) associated with non-response to antidepressants and showed signi�cant
polygenic prediction in independent samples. Genetic correlation analyses show positive associations
between non-response to antidepressants and most psychiatric traits, and negative associations with
cognitive traits and subjective well-being. In addition, we investigated drugs that target proteins likely
involved in mechanisms underlying antidepressant non-response, and shortlisted drugs that warrant
further replication and validation of their potential to reduce depressive symptoms in individuals who do
not respond to �rst-line antidepressant medications. These results suggest that meta-analyses of GWAS
utilizing real-world measures of treatment outcomes can increase sample sizes to improve the discovery
of variants associated with non-response to antidepressants.

Introduction
Antidepressants are the �rst-line pharmacological treatment for depression. Over 10% of the adolescent
population uses antidepressant medication, and the rate of antidepressant prescriptions is increasing1, 2.

Selective serotonin reuptake inhibitors (SSRIs) are the most used antidepressants3–5, because they are
generally better tolerated compared to other antidepressant classes4, 5. However, treatment response to
SSRIs and other antidepressants varies considerably between treated individuals, and less than half of
individuals with major depression achieve remission of symptoms after initial antidepressant treatment6,

7. It has been shown that individuals who require several antidepressant treatment steps show worse
longer-term treatment outcomes7. Although antidepressants are linked to a reduction in depressive
symptoms8, they are often ineffective, with only approximately 35% achieving remission after their

primary antidepressant treatment6, and approximately 50% achieving remission after completing two
treatments of antidepressants7. Antidepressant non-response has been associated with illness severity,
more comorbidities, higher antidepressant dose requirements, and higher suicide risk as well as suicide
attempts9, 10. Thus, non-response to antidepressants is a major clinical problem, and early identi�cation

remains a critical priority in psychiatry research11.

Increasing evidence suggests that genetic variation contributes to antidepressant treatment
outcomes11. Discovering genomic variants associated with antidepressant treatment outcomes could
facilitate the early identi�cation of individuals who do not respond to �rst-line treatments to avoid delay
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in reaching recovery and advance personal treatment. However, although common single nucleotide
polymorphisms (SNPs) are reported to explain a portion of the variance of antidepressant response12, 13,
no robustly replicated associations have been detected to date14–18. Moreover, the largest genome-wide
association study (GWAS) of antidepressant response, measured using depression symptom scores (N 
= 5,218), did not identify any genome-wide signi�cant loci13. Antidepressant response is a polygenic
phenotype, requiring larger sample sizes to elucidate the genetic architecture of antidepressant
response13. Use of alternative outcome phenotypes such as antidepressant response information
obtained from electronic health records (eHR)19 or self-reported questionnaires20 have been used to
increase sample sizes. Combining these real-world data sources could provide the sample sizes needed
for discovering genetic factors associated with antidepressant treatment outcomes21. In the current
study, we integrated GWAS data on antidepressant non-response measured using rating scales for
depressive symptoms, questionnaires of treatment effect, and outcome data from eHR, to increase
statistical power to detect genomic loci associated with non-response to SSRIs and serotonin-
norepinephrine reuptake inhibitors (SNRIs).

Methods

GWAS sample description
Using questionnaire data about the effectiveness of prescribed antidepressant drugs, we performed
GWASs on non-response to SSRIs in the Estonian Biobank (EstBB)22, 23, the Australian Genetics of
Depression Study (AGDS)24, the Genetic Links to Anxiety & Depression (GLAD) Study25, and the UK

Biobank (UKB)26. Additionally, we performed GWASs on non-response to SNRIs in the EstBB and AGDS
cohorts. Utilizing prescription registry data, we de�ned treatment response and non-response to
antidepressants based on antidepressant switching and performed GWASs on non-response to SSRIs
and SNRIs in an Icelandic cohort from deCODE Genetics. In all cohorts, treatment response and non-
response was de�ned as a binary measure, see Supplementary Materials for more details about
phenotype de�nitions, antidepressant drugs included, and description of cohorts including genotype
information.

Publicly available GWAS summary statistics were obtained from a GWAS on treatment response to
antidepressants performed by the Psychiatric Genomics Consortium (PGC)13. We used summary
statistics from the European sample of the genome-wide analysis of remission after antidepressant
treatment (predominantly SSRIs) in individuals diagnosed with major depressive disorder (MDD).
Summary statistics from two GWASs on antidepressant treatment response performed by the 23andMe
Research Team from 23andMe, Inc.20, 27 were obtained upon request, to meta-analyze these two GWASs.

In the GWASs from the 23andMe Research Team20, 27, treatment response and non-response to
antidepressants was de�ned according to an antidepressant e�cacy survey. We used separate
summary statistics for treatment response to SSRIs and SNRIs. All GWAS samples and corresponding
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numbers of responders and non-responders are summarized in Table 1. All subjects provided written
informed consent after receiving a complete description of the respective study.
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Table 1
GWAS samples included in the GWAS meta-analysis of non-response to SSRIs, non-response to SNRIs,

and non-response to SSRIs/SNRIs
GWAS
sample

Antidepressant

class

N total
(Neff
total)

N

responders

N

non-
responders

Treatment
response measure

Pain et al.
202213

SSRIs 5,151
(4,479)

1,852 3,299 Depression
symptom scores

Li et al.
201627 + Li
et al. 202020

SSRIs 19,740
(17,586)

13,130 6,610 Antidepressant
e�cacy survey

  SNRIs 7,079
(6,943)

4,030 3,049  

EstBB SSRIs 7,168
(4,272)

5,862 1,306 Antidepressant
e�cacy survey

  SNRIs 968

(584)

789 179  

AGDS SSRIs 9,208
(6,902)

6,908 2,300 Antidepressant
e�cacy survey

  SNRIs 4,426
(4,304)

2,580 1,846  

GLAD SSRIs 4,184
(2,416)

3,452 732 Antidepressant
e�cacy survey

UKB SSRIs 19,811
(10,632)

16,648 3,163 Antidepressant
e�cacy survey

deCODE SSRIs 49,062
(8,391)

46,866 2,196 Antidepressant
switching

  SNRIs 8,674
(2,148)

8,099 575  

Total SSRIs 114,324
(64,975)

94,718 19,606  

  SNRIs 21,147
(16,560)

15,498 5,649  

  SSRIs/SNRIs 135,471
(82,187)

110,216 25,255  

Neff = 4/(1/Ncases + 1/Ncontrols). EstBB = Estonian Biobank, AGDS = Australian Genetics of
Depression Study, GLAD = Genetic Links to Anxiety & Depression, UKB = UK Biobank
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Genome-wide meta-analyses
Meta-analyses of GWAS summary statistics were conducted using inverse-variance-weighted �xed
effects models in METAL28. Separate meta-analyses were performed for non-response to SSRIs, non-
response to SNRIs, and non-response to either SSRIs or SNRIs. We used the standard p value thresholds
for GW signi�cance, p-value < 5e-8, and nominal p-value < 7e-8. We assessed the heterogeneity across
studies using the Cochran Q-test (Hetpval < 0.05) and I2 statistics (I2 > 50%), to estimate the

heterogeneity of effect sizes across cohorts28. Due to differences in the de�nition of antidepressant
treatment response across GWASs, we also performed sensitivity meta-analyses restricted to samples
where treatment response was measured using only questionnaires (EstBB, AGDS, GLAD, UKB, and the
GWASs from the 23andMe Research Team20, 27).

Locus de�nition, variant annotation, and gene mapping

To de�ne genetic loci based on the association summary statistics produced with METAL28, we used

Functional Mapping and Annotation of GWAS (FUMA)29 with default settings. Genetic variants with a p-
value < 5e− 8 and with a linkage disequilibrium (LD) r2 < 0.6 with each other were de�ned as independent
signi�cant variants. Of these, variants with an LD r2 < 0.1 were selected as lead variants. Loci that were
separated by less than 250 kb were then merged. To investigate previous phenotype associations, we
queried the identi�ed loci in the GWAS catalogue30. SNPs were also queried for known expression
quantitative trait loci (eQTLs) across multiple tissues using the GTEx portal (GTEx v8)31, and in different
brain tissues using the BRAINEAC portal32. SNPs were annotated with Combined Annotation Dependent

Depletion (CADD)33 scores and RegulomeDB34 scores. The Open Targets Genetics platform35 was used
to map the identi�ed loci to genes. For each locus, we considered the top 3 genes with the highest
Variant to Gene (V2G) scores.

Multi-trait conditional and joint analysis, SNP-based heritability, and
genetic correlation
To account for the possible effect of major depression, we used multi-trait conditional and joint analysis
(mtCOJO)36. We conditioned the effect of SNPs estimated for non-response to antidepressants on those
of depression, using summary statistics of a GWAS on depression phenotypes37 including 246,363
cases and 561,190 controls, performed by the Psychiatric Genetics Consortium (PGC), excluding a
23andMe sample. This was done for non-response to SSRIs, non-response to SNRIs, and non-response
to either SSRIs or SNRIs. We utilized linkage disequilibrium score regression (LDSC)38 to estimate the
SNP-based heritability of our meta-analyzed GWAS as well as the GWAS summary statistics produced
with mtCOJO. The SNP-based heritability was calculated on the observed scale. As non-response to
antidepressants has been previously associated with genetics of other psychiatric traits as well as
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cognitive traits39, LDSC38 was used to estimate bivariate genetic correlations between antidepressant
non-response and various psychiatric and cognitive traits, using summary statistics from the following
GWASs: Alzheimer’s disease40, attention de�ciency hyperactivity disorder (ADHD)41, autism spectrum

disorder42, anxiety disorder43, bipolar disorder44, general cognitive performance45, educational
attainment46, intelligence47, insomnia48, depression phenotypes37, mood instability49, neuroticism50,
posttraumatic stress disorder (PTSD)51, schizophrenia52, subjective well-being53.

Leave-One-Out Polygenic Scoring
Polygenic scores (PGSs) were constructed based on the association summary statistics produced in the
GWAS meta-analysis of non-response to SSRIs, excluding each cohort in turn to create independent
discovery and target datasets. The target samples were EstBB, UKB, AGDS, and deCODE. In EstBB, the
PGS was calculated using the polygenic risk score continuous shrinkage (PRS-cs) approach54 with
default options. In UKB and AGDS, PGSs were calculated using SBayesR55. In the deCODE sample, the
PGS was calculated using LDPred56. In all four samples, the European sample of the 1000 Genomes

Phase III57 was used to adjust for LD. To facilitate the interpretability of the results, PGSs were
standardized within each sample (mean = 0, SD = 1) before statistical analysis. We performed logistic
regression analyses to investigate if the PGS is associated with non-response to SSRIs in each of the
four target samples. Age, sex, and the �rst ten principal components for genetic ancestry were included
as covariates. Meta-analyses of results from the four cohorts were performed using the R-package
metaplus58 with standard normal random effect. We also weighted the samples based on effective
sample size, using the metafor59 R-package.

Genetically informed drug prioritization
To estimate gene associations, we used GSA-MiXeR60 for the summary statistics produced in the GWAS
meta-analysis of non-response to SSRIs, SNRIs, and SSRIs/SNRIs. From the outputs, we chose genes
with a positive MiXeR Akaike information criterion (AIC) value, as positive AIC indicates evidence for
enrichment of individual genes60. To further sort by enrichment for biological relevance, we selected

genes with an enrichment value of > 10. All genes identi�ed from GSA-MiXeR60 and Open Targets
Genetics35 were then studied within networks of protein-protein interactions (PPIs) of gene products,
using the latest version of the human protein interactome61, consisting of 18,217 unique proteins
(nodes) interconnected by 329,506 PPIs after removing self-loops.

As most approved drugs do not target disease-associated proteins but bind to proteins in their network
vicinity62, we de�ned a network not only including the genes identi�ed from GSA-MiXeR60 and Open
Targets Genetics35, but also genes in their immediate network proximity. To de�ne antidepressant non-
response networks (one for non-response to SSRIs, one for non-response to SNRIs, and one for non-
response to SSRIs or SNRIs), we used the method network propagation63–65, implemented in the
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Cytoscape66 application Diffusion65. Genes identi�ed from GSA-MiXeR60 and Open Targets Genetics35

were used as input query genes, and the top 1% of proteins from the diffusion output were included in
the antidepressant non-response network. The Drug Gene Interaction Database (DGIdb,
(https://www.dgidb.org/) v.5.0.6 (04/04/2024)67 was used to identify drug-gene interactions between
approved drugs and genes in the three antidepressant non-response networks. Gene-set enrichment
analysis (GSEA) was performed to test for enrichment of drug-gene interactions within our networks.

For the drugs interacting with genes in our networks, we retrieved drug-induced gene expression data
(drug versus no drug) from the Connectivity Map (CMap) 202068, 69, extracted from the Phase 2 data
release of the Library of Integrated Cellular Signatures (LINCS) using the cmapR package70 in R version
4.3.1. As low drug concentrations in CMap have been shown to reduce the quality of the data71, we
selected the highest concentration per drug.

We performed transcriptome-wide association studies using S-PrediXcan72 to impute the genetically
regulated gene expression using summary statistics produced in the GWAS meta-analysis of non-
response to SSRIs, SNRIs, and SSRIs/SNRIs as input. Gene expression was imputed using high-
performance gene expression prediction models trained on gene expression data from whole blood as
well as 13 brain expression data sets from GTEx (version 8)73, 74 and covariance matrices calculated
from 503 individuals with European ancestry from the 1000 Genomes project57. For gene expression in

brain, S-MultiXcan75 was used to combine the S-PrediXcan results across the 13 brain tissues (more
details in Supplementary Methods).

To evaluate if the drugs interacting with genes in our networks could change the predicted expression
levels associated with antidepressant non-response (whether these drugs down-regulate genes up-
regulated in antidepressant non-response or vice versa), the Spearman correlation ρ between the drug-
induced gene expression perturbations and the predicted expression in drug target genes within the
antidepressant non-response networks was calculated for each drug (separately for non-response to
SSRIs, SNRIs, and SSRIs/SNRIs), where negative correlation coe�cients indicate that the drug could
reverse gene expression changes associated with antidepressant non-response.

Results

GWAS meta-analyses
From the meta-analysis of non-response to SSRIs (NSNPs=8,168,467), including a total of 114,324
individuals (19,606 non-responders and 94,718 responders), we identi�ed one novel genome-wide
signi�cant locus (rs1106260 T/C; chr9: 138,111,032–138,136,174; OR = 1.0502; SE = 0.009; p-value = 
3.55e-08). Another locus was found to be nominally signi�cant (rs4884091 A/G; chr13: 78,971,895 − 
79,003,053; OR = 1.0602, SE = 0.011, p-value = 6.38e-08). No genome-wide signi�cant loci were identi�ed
from the meta-analysis of non-response to SNRIs (NSNPs=8,011,440), including 21,147 individuals (5,649
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non-responders and 15,498 responders). However, one locus was nominally signi�cant (rs10104815 T/C;
chr8: 136,780,782 − 136,869,414; OR = 0.9213; p-value = 6.62e-08). From the meta-analysis of non-
response to SSRIs/SNRIs (NSNPs=8,416,883), including a total of 135,471 individuals (25,255 non-
responders and 110,216 responders), we identi�ed one novel genome-wide signi�cant locus
(rs60847828 T/C; chr16: 8,460,781-8,490,789; OR = 1.0844; SE = 0.014; p-value = 1.18e-08), and one locus
that was nominally signi�cant (rs11677238 T/G; chr2: 114,336,733 − 114,512,514; OR = 1.0439; SE = 
0.008; p-value = 5.424e-08). Manhattan plots from the three meta-analyses are shown in Fig. 1. Quantile-
quantile plots are shown in Figure S1. SNPs at the two genome-wide signi�cant loci show no evidence of
heterogeneity (Hetpval > 0.05), indicating that the effect is consistent across datasets (Table S1, Figures
S2-3). When restricting the meta-analyses to samples where treatment response was measured using
only questionnaires, similar results were obtained albeit the associations were no longer signi�cant (p > 
5e-8) (Figure S4-5). All loci achieving genome-wide signi�cance as well as p < 1e-5 are reported in Tables
S2-7.

Investigation of the genome-wide signi�cant loci (rs1106260 and rs60847828) in the GWAS catalogue30

showed no previous associations. Functional annotation of rs1106260 and rs60847828 using FUMA29

does not suggest these SNPs to be deleterious (CADD scores < 12.37) or likely to have regulatory
functionality (RegulomeDB scores = 5–7). The top three genes with the highest V2G score for the
identi�ed locus for non-response to SSRIs (rs1106260) were OLFM1, MRPS2, and PIERCE1, of which the
nearest gene is OLFM1 (distance = 168,906 bp, downstream gene variant). No signi�cant associations
were found in the GTEx portal (GTEx v8)31 for the lead SNP (rs1106260). Additional assessment of the
lead SNP (rs1106260) and gene expression of OLFM1, MRPS2, and PIERCE1 in the BRAINEAC
database32 showed signi�cant associations between rs1106260 and gene expression of OLFM1 in the
medulla (p = 0.015) and temporal cortex (p = 0.005). The top three genes for the identi�ed locus for non-
response to SSRIs/SNRIs (rs60847828) were TMEM114, METTL22, and ABAT, of which the nearest gene
is TMEM114 (distance = 154,116 bp, intergenic variant). The lead SNP (rs60847828) was neither found in
the GTEx portal (GTEx v8)31 nor in the BRAINEAC database32.

The locus that was nominally signi�cant associated with SSRI non-response (rs4884091) has been
previously associated with SSRI non-response in the GWAS from the 23andMe Team20. The top three
genes with the highest V2G score for this locus were OBI1, POU4F1, and EDNRB, of which POU4F1 is the
nearest gene (260,067 bp, intron variant). One gene was mapped to the locus that was nominally
signi�cant associated with SNRI non-response (rs10104815), KHDRBS3 (339,483 bp, intergenic variant),
and this locus has been previously associated with non-response to SNRIs in the GWAS from the
23andMe Team20. The top three genes for the locus that was nominally signi�cant associated with
SSRI/SNRI non-response (rs11677238) were SLC35F5, RABL2A, and PAX8, of which the nearest gene is
RABL2A (40,168 bp, upstream gene variant).

Multi-trait conditional and joint analysis, SNP-based
heritability, and genetic correlations
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After conditioning on depression, the identi�ed loci were still signi�cantly associated with non-response
to antidepressants (Table S8-10). SNP-based heritability estimates for all meta-analyses were in the
range 0.019–0.028. For non-response to SSRIs and SSRIs/SNRIs, the SNP-based heritability estimates
were signi�cantly different from zero, but not for non-response to SNRIs (Table S11). Genetic correlation
analyses show positive associations between non-response to antidepressants and most psychiatric
traits, and negative associations with cognitive traits and subjective well-being (Fig. 2, Table S12-14).
However, some of these associations remained non-signi�cant after multiple testing correction (FDR > 
0.05). Similar results were obtained using the meta-analyses restricted to questionnaire data (Figure S6-
8, Table S15-17) and non-response to antidepressants conditioned on depression (Figure S6-8, Table
S18-20).

Polygenic prediction of non-response to SSRIs
Meta-analysis of leave-one-out PGS analyses using SSRI non-response GWAS results in four samples
showed a signi�cant association with non-response to SSRIs (OR = 1.016, CI = 1.005–1.039, p-value = 
0.029), shown in Fig. 3. However, in two out of the four samples, the PGS was not signi�cantly
associated with SSRI non-response (Table S21). Similar results were obtained when the samples were
weighted based on effective sample size (OR = 1.03, CI = 1.00-1.05, p-value = 0.025) (Figure S9).

Genetically informed drug prioritization
From GSA-MiXeR, all genes with a positive AIC value and an enrichment score > 10 can be found in Table
S22 (non-response to SSRIs, N = 65), Table S23 (non-response to SNRIs, N = 108), and Table S24 (non-
response to SSRIs/SNRIs, N = 76). The genes included in the three networks and the corresponding
diffusion output values as well as their node degrees can be found in Table S25 (SSRIs, N = 252), Table
S26 (SNRIs, N = 287), and Table S27 (SSRIs/SNRIs, N = 260).

Drug target genes in the SSRI non-response network were most signi�cantly (p < 5e-4) enriched for
targets of the synthetic cannabinoid nabilone, and the target genes in the SSRI/SNRI non-response
network were most signi�cantly (p < 5e-4) enriched for targets of bremelanotide, a drug developed to
treat sexual dysfunction. However, after correction for the total number of drug-gene interactions (N = 
2,896), the enrichments remained non-signi�cant (FDR > 0.05). The drug target genes in the SNRI non-
response network were signi�cantly (FDR < 0.05) enriched for several GABA receptor agonists (Table
S28-30).

In the SSRI non-response network (Figure S10), six drugs (letrozole, clozapine, vandetanib,
decamethonium, paclitaxel, budesonide) showed signi�cant (p < 0.05) opposite gene expression
perturbations in drug (drug-induced expression) versus SSRI non-response-associated expression in
drug target genes in brain tissue. For blood, eight drugs (temazepam, acetazolamide, chlordiazepoxide,
ethionamide, amisulpride, rimonabant, clonazepam, �uorouracil) showed signi�cant opposite gene
expression (Table S31-S34). In the SNRI non-response network (Figure S11), two drugs (selegiline and
norethindrone) showed signi�cant (p < 0.05) opposite gene expression perturbations in brain, and 2
drugs (dexamethasone and kinetin) in blood (Table S35-38). In the SSRI/SNRI non-response network
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(Figure S12), the drug simvastatin showed signi�cant (p < 0.05) opposite gene expression perturbations
in brain, and the drug ascorbic acid showed signi�cant opposite gene expression in blood (Table S39-
42). However, after correction for multiple correlation analyses (number of drugs), all correlations
remained non-signi�cant (FDR > 0.05). Figure S13 summarizes the steps undertaken to identify drugs
that could potentially address antidepressant non-response (more details in Supplementary Results),
and the top drugs are shown in Fig. 4.

Discussion
In the present study, we identi�ed two novel genome-wide signi�cant loci associated with antidepressant
non-response and showed that a polygenic score derived from our results predicted non-response to
SSRIs in independent cohorts. By meta-analyzing real-world pharmacogenomic information on
antidepressant non-response based on clinically assessed symptom scores, self-reported treatment
outcomes, and data from eHR, this study represents the largest genetic investigation of non-response to
antidepressants to date.

For the locus associated with non-response to SSRIs (rs1106260), the gene with the highest V2G score
is OLFM1, which is also the nearest gene. The glycoprotein olfactomedin 1 (OLFM1) is highly expressed
in the brain and participates in neural progenitor maintenance, cell death in brain, optic nerve
arborization, and axonal growth76, 77. As OLFM1 plays a role in neuronal development, it has previously
been suggested as a candidate gene for neuropsychiatric disorders78. In a study aiming to identify
biomarkers for mood disorders, OLFM1 showed strong evidence for predicting both depression and
mania and was suggested as a target gene to treat depression79. One of the genes mapped to the
identi�ed locus for non-response to SSRIs/SNRIs (rs60847828) was ABAT. Variants within the GABA
transaminase (ABAT) gene region have been associated with altered processing of somatosensory
stimuli, indicating ABAT as a potential vulnerability marker for affective disorders80. Furthermore, it has
been suggested that variants within ABAT affect valproic acid response81. Increasing evidence indicates
that dysfunction of GABA, as well as glutamate systems contributes to depression-related behavior, and
that ketamine’s antidepressant effects are related to its effect on glutamatergic and GABAergic
neurons82, 83. Interestingly, our SNRI non-response network includes several GABA receptor genes, and
we shortlist several drugs acting on the GABA system. These GABA receptor agonists may counteract
the GABAergic de�cits in depression84. We also shortlist several drugs with anti-in�ammatory actions. A
growing body of evidence supports an association between depression and in�ammatory processes,
and clinical trials have indicated antidepressant treatment effects for anti-in�ammatory agents, both as
add-on treatment and as monotherapy85. Our SSRI network includes CNR1 and CNR2, the genes
encoding the two main cannabinoid receptors, which are the primary targets for endogenous and
exogenous cannabinoids. Studies suggest that the endocannabinoid system may be involved in the
aetiology of depression and that targeting this system has the potential to relieve depressive
symptoms86. However, the evidence that cannabinoids improve depressive disorders is weak and

studies examining the effects of cannabinoids on mental disorders are needed86, 87.
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Individual differences in pharmacological treatment response can often be attributed to genetic
variability in cytochrome P450 genes (CYP450). In our antidepressant non-response GWASs as well as
previous GWASs on antidepressant non-response, no association with CYP450 genes was detected.
However, our SNRI network includes CYP17A1 and CYP2B6, both identi�ed from network propagation
that prioritizes genes with biological and functional similarity to the input genes. Genetic variation in
CYP2B6 in�uences the metabolism of several SSRIs and SNRIs88. Guidelines from the Clinical
Pharmacogenetics Implementation Consortium (CPIC) highlight the impact of CYP2B6, and HTR2A
genotypes, among others, on antidepressant dosing, e�cacy, and tolerability88. The pharmacodynamic
gene HTR2A (serotonin-2A receptor) is included in our SSRI non-response network, also identi�ed from
network propagation.

We show an association between genetic liability of psychiatric disorders and non-response to
antidepressants, which is in line with clinical studies89. We also identi�ed a signi�cant association
between genetic propensity for cognitive phenotypes and improved antidepressant response. Similar
genetic correlations have been shown in the previous GWAS on antidepressant response from the PGC13

as well as in a study investigating the genetic and clinical characteristics of treatment-resistant
depression39. The strongest negative genetic correlations with non-response to antidepressants were
observed for ADHD. This may indicate that phenotypic misspeci�cation could underlie non-response to
antidepressants. In fact, undetected ADHD has been associated with lack of response to SSRIs in MDD
cases90. In adults, ADHD may be undiagnosed, and ADHD symptoms are often mistaken for those of
their psychiatric comorbidities91.

Some limitations of the present study should be acknowledged. We combine various samples with
differences in the assessment of treatment non-response, which introduces heterogeneity. Moreover, our
study could potentially include individuals who were treated with antidepressants for conditions other
than depression, especially in the sample where eHR were used to de�ne non-response based on
switching as proxy phenotype. Heterogeneity could also be introduced by differences in dosing,
treatment duration, and co-treatment with other drugs. However, we performed heterogeneity tests and
restricted our meta-analyses to samples where non-response was measured using only similar
questionnaires, and these sensitivity analyses showed that the results were consistent across samples.
It should also be noted that the individuals in our samples are of European ancestry, and our results may
therefore not be directly translatable to other ethnicities.

In conclusion, these results suggest that meta-analyses of GWAS utilizing real-world measures of
treatment outcomes can increase sample sizes to improve the discovery of variants associated with
non-response to antidepressants.
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Figures

Figure 1
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Manhattan plot showing genome-wide association results of the GWAS meta-analysis on non-response
to SSRIs (blue), SNRIs (green), and SSRIs or SNRIs (pink). Genome-wide signi�cant lead SNPs are
encircled in black.

Figure 2

Genetic correlation between non-response to antidepressants and Alzheimer’s disease (AD), attention
de�ciency hyperactivity disorder (ADHD), autism spectrum disorder (ASD), anxiety disorder, bipolar
disorder (BD), cognitive performance (COG), educational attainment (EDU), insomnia, intelligence,
depression phenotypes, mood instability (MOOD), neuroticism, posttraumatic stress disorder (PTSD),
schizophrenia (SCZ), subjective well-being (SWB). *p<0.05, **p<0.01, ***p<0.001

Figure 3

Forest plots showing the results from leave-one-out polygenic prediction of non-response to SSRIs in
four independent cohorts, as well as meta-analyzed across these cohorts. Effects are reported as odds
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ratios (95% con�dence interval).

Figure 4

Top drugs identi�ed based on gene-set enrichment analyses and drug-induced versus antidepressant
non-response-associated gene expression, and their protein interaction partners in the SSRI non-
response network (A), the SNRI non-response network (B), and SSRI/SNRI non-response network (C).
Nodes refer to genes or drugs, and edges refer to gene-drug interactions or gene-gene interactions
through identi�ed protein-protein interactions between gene products (proteins).
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