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Supplementary Figures

GO enrichment analysis
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Supplementary Fig. 1. Transcriptome analysis of metabolic differences between Tig-R
and Tig-S.

a GO enrichment analysis annotated the up- and down-regulated gene numbers when
compared Tig-R and -S. b A visual summary of GO analysis data via the circle diagram. 15
pathways are represented by the outermost layer. The second layer shows the number of
differential genes that correspond to each pathway. The yellow in the third layer represents
the number of up-regulation genes, the blue represents the number of down-regulation genes,

and the fourth layer represents rich factors of different pathways.
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Supplementary Fig. 2. Differentially expressed genes in amino acid metabolism between
Tig-R and -S.

Genes and encoded enzymes were colored according to clustered pathways. The left section
shows the lysine biosynthesis; tryptophan metabolism; glycine, serine and threonine
metabolism (down-regulated); arginine and proline metabolism (down-regulated); valine,
leucine and isoleucine biosynthesis (up-regulated). The upper right section shows the lysine
degradation; tyrosine metabolism; phenylalanine, tyrosine and tryptophan biosynthesis
(down-regulated); alanine, aspartate and glutamate metabolism (down-regulated). The lower
right section shows the cysteine and methionine metabolism (up-regulated). FC reflect the
fold change of gene expression when compared Tig-R and -S. Log>FC were calculated for
taking the direction of the expression difference in account. P-adjusted value < 0.05 were

identified as significant different.
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Supplementary Fig. 3. Differentially expressed genes in nucleotide metabolism between

Tig-R and -S.

Genes and encoded enzymes in nucleotide metabolism were clustered to pyrimidine

metabolism (left) and purine metabolism (right). Among these genes, purine biosynthesis-

related genes (purC, purD, purF, purH, purK, purL, purM, purN and purT), which have been

reported to participate in antibiotic lethality, were downregulated in Tig-R. FC reflect the fold

change of gene expression when compared Tig-R and -S. Log>,FC were calculated for taking

the direction of the expression difference in account. P-adjusted value < 0.05 were identified

as significant different.
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Supplementary Fig. 4. Metabolomic analysis of differential metabolic characteristics.

a Scatter diagram of differentially enriched metabolites (DEMs) in Tig-R vs Tig-S. A subset
of significantly DEMs was labelled. Yellow dots: up-regulated, gray dots: not-significant,
blue dots: down-regulated. -logio(P value) > 2 and logoFC value > 0.1 or logoFC value <-0.1.
b Classification of the identified 74 metabolites according to Human Metabolome Database.
¢ KEGG pathway enrichment analyses based on the significantly altered metabolites. The
secondary classification category of KEGG pathways was shown on the left, and the number
of metabolites annotated into this classification was shown on the right. The size of the circle
indicates the number of metabolites, the color shade represents the P value, the bluer the
color, the more significant the difference. d Pearson’s correlation of the major biomarkers. e
The relative abundance of L-cysteine, L-methionine and aspartic acid in Tig-R and -S. Data
were displayed as mean =SEM. Three biological repeats were performed. P values were

determined using an unpaired two-tailed Student’s #-test.



Supplementary Fig. S. Interactive Pathways Explorer (iPath) analysis.
[Path analysis shows significant annotated pathways in Tig-R and -S, the altered pathways were
colored with blue, and the significant metabolites were colored with orange. Top enrichments

include energy metabolism, amino acid metabolism and nucleotide metabolism.



a GO term (S+Tig vs S) b GO term (R+Tig vs R)
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Supplementary Fig. 6. Go enrichment analysis of antibiotic-incurred transcriptome
changes of energy system in Tig-R and -S.

a The relationship between the secondary categorized pathways (right) and involved genes
(left) when compared S + Tig and S. The contained genes in energy derivation pathways were
annotated with green diamonds. The semi-arc color block next to the gene represents the fold
change (log>FC), red represents up-regulation and blue represents down-regulation by
antibiotic exposure. b The relationship between the secondary categorized pathways (right)

and involved genes (left) when compared R + Tig with R.
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Supplementary Fig. 7. Met failed to resensitize ze7(X4)-negative bacteria to tigecycline.
Percent survival of four tet(X4)-negative clinical strains, including E. coli G6, E. coli G92, K.
pneumoniae KPC C14 and K. pneumoniae D120, in the presence of Tig, Met (20 mM) or
both. Data were displayed as mean + SEM, and statistical significance was determined by

unpaired two-tailed #-test. ns, not significant.



a Met supplement before Tig treatment b Met supplement after Tig treatment
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Supplementary Fig. 8. Effect of adding Met before or after Tig treatment in E. coli B3-1
(tet(X4)).
a The impact of adding Met at 60 min, 50 min, 40 min, 30 min, 20 min, 10 min before Tig
treatment in E. coli B3-1 (tet(X4)). b The impact of adding Met at 10 min, 20 min, 30 min, 40
min, 50 min, 60 min after Tig treatment in E. coli B3-1 (te#(X4)). ¢ The intracellular Tig
accmulation of E. coli B3-1 (tet(X4)) under Met supplement at different time points.
Data were displayed as mean = SEM, and statistical significance was determined by an

unpaired two-tailed Student’s #-test. ns, not significant.
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Supplementary Fig. 9. Effect of continuous supplementation on the Tig plus Met

treatment.

Growth curves of E. coli B3-1 (tet(X4)) within 19 h in the presence of Tig (32 pg/mL), Met
(20 mM) or both, as well as continuous adding Met, Tig or both at 1 h (a), 2h (b),4h (¢), 6 h

(d) and 8 h (e) after combination treatment. Data were displayed as mean =SEM.
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Supplementary Fig. 10. Met resensitizes ze#(X) variants-positive E. coli to Tig rather
than other resistance genes-carrying bacteria.

a Survival of E. coli carrying different tet(X) variants following 6 h treatment with Tig (1-
fold MIC) and supplemented with or without Met (20mM). b Survival of MRSA T144
following 6 h treatment with different classes of antibiotics [Colistin (Col), Tigecycline (Tig),
Ciprofloxacin (Cip), Gentamicin (Gen)] and supplemented with or without Met (20 mM). ¢
Survival of E. coli B2 with different classes of antibiotics [Meropenem (Mem), Col, Tig, Cip,
Gen] following 6 h treatment and supplemented with or without Met (20 mM). Data were

displayed as mean + SEM, and statistical significance was determined by unpaired two-tailed

Student’s #-test. ns, not significant
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Supplementary Fig. 11. No direct synergistic activity of Met in combination with Tig
against E. coli B3-1 (tet(X4)).

(a-f) Checkerboard assay of Tig in combination with Met, L-Homoserine, L-Homocysteine,
Cystathionine (CYSTAT), S-Adenosyl-L-methionine (SAM), 5'-Methylthioadenosine (MTA)
against E. coli B3-1 (tet(X4)). Dark blue regions represent higher bacterial cell density. The
mean OD at 600 nm of three biological replicates. g Summary of FIC index (FICI) of
different combinations, FICI < 0.5, synergistic effect; 0.5< FICI < 1, additive effect; 1< FICI

<4, indifferent; FICI > 4, antagonistic effect. Data were displayed as mean.
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Supplementary Fig. 12. Met plus Tig increases PMF in E. coli B3-1 (tet(X4)).

a Swimming motility of E£. coli B3-1 (tet(X4)) in the presence of Tig, Met alone or their
combinations. Varied concentration of Tig and Met were set, and 40 mM Met plus 16 pg/mL
Tig displayed the strongest motility. b The diameters of these bacterial population under
different treatments, calculated by ImageJ. ¢ Transmembrane proton gradient (ApH) of E. coli
B3-1 (fet(X4)) within 40 min in the presence of Tig (1-fold MIC), Met (20 mM), Tig + Met
or CCCP (10 uM). Experiments were performed with three biological replicates. Data were
displayed as mean + SEM, and statistical significance was determined by unpaired two-tailed

Student’s #-test. ns, not significant.
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Supplementary Fig. 13. Original data and sequencing sites of bisulfite-sequencing in the
promoter regions of ze#(X4) gene.

a Methylation rates in six CG sites were listed. Three biological replicates were performed. b
The detected CG sites of the promoter regions of fe#(X4) in E. coli B3-1 (tet(X4)) (marked
with yellow).
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Supplementary Fig. 14. Construction of knockout strain E. coli Adcm tet(X4) as well as
the replenishment of dcm.

a Reaction equation for SmC cytosine methylation modification. b The genome sequence of
dcm-related region. ¢ Agarose gel electrophoresis of amplifying the dem gene in E. coli 153
Adcm tet(X4). d Survival of E. coli I53 Adcm tet(X4) (pBAD-dcm) in the presence of Tig
with or without Met. e Growth curves of E. coli J53 and E. coli J53 tet(X4), E. coli 153 Adcm
and E. coli 153 Adcm tet(X4) (pBAD-dcm). Experiments were performed with biological
replicates. Data were displayed as mean = SEM, and statistical significance was determined

by unpaired two-tailed Student’s #-test.
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Supplementary Fig. 15. Deletion of dcm gene abolishes the potentiation of Met to Tig

against fef(X4)-carrying bacteria.

a Plate counting photograph of E. coli J53 tet(X4) and E. coli J53 Adcm tet(X4) in the
presence of Tig, Tig + Met, Tig + SAH. Tig, 16 pg/mL. Met, 20 mM. SAH, 10 mM. b The

total methylation rate of 6 CG sites in the promoter region of fe#(X4) gene. ¢ The methylation

rate of specific CG site in the promoter region of tet(X4) gene in E. coli J53 tet(X4) (purple)

and E. coli 153 Adcm tet(X4) (blue). Experiments were performed with three biological

replicates. Data were displayed as mean = SEM, and statistical significance was determined

by unpaired two-tailed Student’s ¢-test. ns, not significant.
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Supplementary Fig. 16. Bisulfite sequencing information in the promoter regions of
tet(X4) gene in E. coli.

a Representative methylation rates in six CG sites under different treatments were listed.
Three biological replicates were performed. b The detected CG sites of the promoter regions

of tet(X4) in E. coli J53 and E. coli J53 Adcm (marked with yellow).
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Supplementary Fig. 17. The fe#(X4) protein expression assay.

a Western blot assays of GroEL protein (served as an internal reference protein) in E. coli
after experimental treatment. b The integrated density statistics presented the Tet(X4) protein
expression in E. coli B3-1, coupled with a range of Tig (0, 16, 32 ng/mL) and Met (0, 20, 40

mM). Data were displayed as mean = SEM, and statistical significance was determined by

two-way ANOVA with Sidak’s multiple comparison test.
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Supplementary Fig. 18. Met supplementation reduces ATP and ROS production in E.
coli B3-1 (tet(X4)).

a ATP levels of E. coli B3-1 (tet(X4)) in the presence of increasing concentrations of Met. b
ATP levels of E. coli B3-1 (tet(X4)) in the presence of increasing concentrations of Tig with
or without Met (20 mM). ¢ ROS levels of E. coli B3-1 (tet(X4)) in the presence of increasing
concentrations of Met. d ROS levels of E. coli B3 -1 (tet(X4)) in the presence of increasing
concentrations of Tig with or without Met (20 mM). Experiments were performed with
biological replicates. Data were displayed as mean + SEM, and statistical significance in ¢
was determined by unpaired two-tailed Student’s 7-test. In d, two-way ANOVA with Sidak’s

multiple comparison test. ns, not significant.
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Supplementary Fig. 19. Combined treatment eliminates intracellular bacteria in
RAW264.7 cells.

a Bacterial loads of E. coli B3-1 (tet(X4)) at 12 h after co-incubation with RAW?264.7 cells in
the presence of Met, Tig, Tig + Met or Tig + SAH. SAH was used as a methyltransferase
inhibitor. Tig (16 pg/mL), Met (20 mM), SAH (10 mM). b The intracellular Met levels of
RAW264.7 cells at 12 h post infection. ¢ The intracellular Tig levels of RAW264.7 cells at 12
h post infection. Experiments were performed with biological replicates. Data were displayed

as mean + SEM, and statistical significance was determined by unpaired two-tailed Student's
t-test.
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Supplementary Fig. 20. Detection of inflammatory cytokines in mice lung samples.
ELISA analysis of inflammatory cytokines in lung samples of CON, +Tig, Tig+Met mice,
including pro-inflammatory cytokines (IL-1f3, IL-6, TNF-a, IFN-y) and anti-inflammatory
cytokines (IL-4, IL-10). Data were displayed as mean = SEM, and statistical significance was

determined by unpaired two-tailed Student’s #-test. ns, not significant.
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Supplementary Fig. 21. The major leukocyte populations and platelet changes in

infected mice.

Absolute numbers for major leukocyte populations (neutrophils, monocytes, leucocytes,

lymphocytes, basophils) as well as platelets in mice serum at 6 h post infection. n = 6 mice
per group. Data were displayed as mean + SEM, and statistical significance was determined

by unpaired two-tailed Student’s #-test. ns, not significant.
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Supplementary Fig. 22. Met plus Tig is effective against K. pneumoniae in an acute
mouse lung infection model.

a The experimental protocols for assessing the potentiation of Met to Tig in an acute lung
infection model. Tig, 20 mg/kg, Met, 100 mg/kg. Created with Biorender.com. b
Hematoxylin and Eosin (H&E) staining of lung from mice at 6 h post infection. (Scar bar,
200 pm & 50 pm). ¢ Bacterial loads of infected mice lung and serum at 3 and 6 h. The mice
were randomly divided into three groups (n = 10 per group), including K. pneumoniae 585-1
(tet(X4)), Tig, Tig + Met groups. Mice were given K. pneumoniae 585-1 (tet(X4)) via nasal
drip infection route (5.2*10° CFU/mL, 50 uL per mice). Data were displayed as mean +

SEM, and statistical significance was determined by unpaired two-tailed Student’s #-test.
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Supplementary Fig. 23. Detection of the inflammatory cytokines in rat skin.

a ELISA analysis of inflammatory cytokines in skin samples of CON, Tig, Tig + Met rat,
including pro-inflammatory cytokines (IL-1f3, IL-6, TNF-a, IFN-y) and anti-inflammatory
cytokines (IL-4, IL-10). b The original data of ELISA was transformed as a fold change by
setting the CON data as the baseline, then the data was normalized by log-transformation
(right heatmap). The dot bar plot (left) visually illustrates the changes of inflammatory
cytokines in the two groups (Tig + Met versus +Tig). Data were displayed as mean + SEM,
and statistical significance was determined by unpaired two-tailed Student’s ¢-test. ns, not

significant.



Supplementary Tables

Supplementary Table 1. Bacteria strains used in this study.

Strains Sources/ MIC of Tig MIC of Tig

References (without Met, (with Met,
pg/mL) pg/mL)

MRSA T144 ! 0.5 -

E. coli DH50, pUC19 2 0.25 0.25

E. coli DH5a pUC19-tet(X4) 2 16 16

E. coli DH50. pUC19-tet(X5) 2 16 -

E. coli DH5a. pUC19-£et(X10.2) 2 16 -

E. coli DH5a. pUC19-zet(X12.3) 2 16 -

E. coli DH50. pUC19-tet(X10.2 + 12.3) 2 16 -

E. coli DH5a pUC19-tet(X15) 2 16 -

E. coli DH5a pUC19-tet(X16) 2 16 -

E. coli B2 (blanpm-s + mcr-1) 3 16 -

E. coli B3-1 (tet(X4)) 4 32 32

E. coli IF-28 (tet(X4)) > 32 32

K. pneumoniae 585-1 (tet(X4)) 6 32 32

E. coli J53 In this study 0.25 -

E. coli J53 Adcm In this study 0.25 -

E. coli J53 tet(X4) In this study 16 16

E. coli J53 Adcm tet(X4) In this study 16 16

E. coli J53 Adcem tet(X4) pPBAD-dcem In this study 16 16

E. coli DH5a pUC19 2 0.125 0.125

E. coli DH50 pUC19-tet(X4) 2 16 16

E. coli 25922 In this study 0.25 0.25

E. coli G92 7 1 -

K. pneumoniae KPC C14 In this study 2 -

K. pneumoniae D120 7 2 -

E. coli Go6 In this study 1 -
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Supplementary Table 2. RT-qPCR primers used in this study.

Genes Sequences (5°—3”)

metK-F GGCATGGTTTTAGTTGGCGG
metK-R AGGAGTTAGCGTCAAAGCCC
dcm-F CCGATGGTCGAGGCGAAATA
dem-R GTGACGCTTTGCGGATTGTT
mtn-F ATAAACTGATCGCTGCCGCT
mtn-R CGGATTTTCGCCAGACCAAC
luxS-F GAACGTCTACCAGTGTGGCA
luxS-R GTGCCAGTTCTTCGTTGCTG
metE-F AATGAAATCGGTCCTGGCGT
metE-R ATGCGTTTTGCCGCTTTCTT
metH-F GGCAAAACCAACGGCAAGAT
metH-R CCATAACGCCGAGATCGACA
tet(X4)-F CAAAGGCTTGGCGCAATGG

tet(X4)-R TTATAGATTCAATAATTTT




