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1. Summary

Here we discuss two main topics. First, we give a detailed introduction of our epidemiological model as well as a derivation of
the estimator, (1) in the main text, and an important simplification of it. Second, we describe simulations of an outbreak and
show that selection coefficients can be accurately recovered from simulation data even with relatively poor sampling.

2. Epidemiological model

1. Introduction

In epidemiology, the spread of infection can be modeled as a branching process where each infected individual (also referred
to as a case) infects n additional individuals1. The distribution of n is often taken to be Poisson, but differences in the number
of contacts with susceptible individuals, disease course within an individual, and other factors mean that the Poisson rate ω is
not generally the same for all cases2. Below, we first follow ref.2 to explore families of distributions for the number of new
cases per infected individual. Next, we extend these models to consider multiple variants of the pathogen that differ in their
spreading efficiency. We seek to characterize how the distribution of pathogen variant frequencies is expected to change over
time, and how such data can be used to estimate the relative spreading efficiency of different variants.

2. Distributions for the number of infected individuals

As noted above, the basic distribution of the number of new cases n caused by one case in a susceptible population is Poisson,

PP(n|ω) = ωne→ω

n! .

Typically we might take the Poisson rate ω to be R, the effective reproduction number, which is the expected number of cases
directly caused by one case. In that case, the average number of cases following the Poisson distribution is

→n↑PP(n|R) =
↑∑

n=0
nPP(n|R) = R.

To account for variability in transmission dynamics, the basic Poisson distribution with a single rate R can be replaced with a
continuous mixture of Poisson distributions, where the rate parameter ω follows a gamma distribution,

P!(ω|ε,ϑ) = ϑε

!(ε)ωε→1e→ϑω ,

with shape parameter ε and rate parameter ϑ. The average value of ω is

→ω↑P!(ω|ε,ϑ) = ε

ϑ
,

and its variance is 〈(
ω↓

ε

ϑ

)2〉

P!(ω|ε,ϑ)
= ε

ϑ2 .

In this context, it is natural to take ε = k and ϑ = k/R. With these choices, the gamma distribution reads

P!(ω|k,R) = 1
!(k)

(
k

R

)k

ωk→1e→kω/R . (1)

The parameter k is a dispersion parameter that determines how long-tailed the distribution is. The mean value of ω is always R,
but when k is smaller its variance increases. In the limit that k ↔ ↗, we recover the pure Poisson distribution with rate ω = R.
When k = 1, the distribution of the number of cases n is geometric,

∫ ↑

0
dω P!(ω|k = 1,R)PP(n|ω) = Pg(n|p) = (1↓p)n p,

where p = 1/(1+R). For arbitrary values of k > 0, the number of cases follows a negative binomial distribution,

PNB(n|k,R) = !(k +n)
n!!(k)

(
k

k +R

)k (
R

k +R

)n

.

The standard parameters of the negative binomial distribution are r and p, which are set to k and k/(k + R) in our parameteri-
zation above.
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3. Dynamics for variant frequencies

Let us assume that there exist multiple variants of a pathogen, which are distinguished by an index a. The number of cases
infected with variant a is na. We assume that different variants have slightly different transmission probabilities, so that
Ra = R(1+wa), with |wa| ↘ 1. The term wa is analogous to a selection coefficient in population genetics.

3.1. Dynamics of multiple cases infected by a single variant

First, let us assume that n individuals, each labeled by an index i, are all infected by the same variant of a pathogen. How many
cases will be generated from these individuals? The number of new cases for all individuals is

n↓ =
n∑

i=1
n↓

i ,

where the numbers of cases n↓
i generated by individual i follows a negative binomial distribution. Because all individuals are

infected by the same variant, the negative binomial parameter p = k/(k +R) is the same for each of them. Then, assuming that
all of the infection events are independent, it can be shown that the probability distribution for the total number of new cases n↓

also follows a negative binomial distribution with the same value of p, and with r = nk (that is, the new r parameter value is
the sum of the individual r parameter values). Thus, the distribution of n↓ is

PNB+(n↓
|k,R,n) = !(nk +n↓)

n↓!!(nk)

(
k

k +R

)nk (
R

k +R

)n→

.

3.2. Dynamics for multiple cases infected by multiple variants

Let us extend the previous example to consider m variants of a pathogen. At the starting point, the number of individuals
infected by a given variant a is na, with a ≃ {1, . . . ,m}. The fraction of cases infected by variant a is

ya = na∑m
b=1 nb

.

Now, we would like to know how the fraction of individuals infected by each variant is expected to change with each round of
infections. In other words, for variant a, we would like to compute

〈
y↓

a

〉
=

〈
n↓

a∑m
b=1 n↓

b

〉
=

∑

n→

(
m∏

b=1
PNB+(n↓

b|k,R(1+wb),nb)
)

n↓
a∑m

c=1 n↓
c

where the outer sum is over all vectors n↓ with entries {n↓
1,n↓

2, . . .}, and with n↓
b ⇐ 0 for all b. Here, we have assumed that the

n↓
b’s are independent across b.
To proceed, it is convenient to write the negative binomial distributions as mixtures of Poisson distributions (as indicated

above), giving

〈
y↓

a

〉
=

∑

n→

(
m∏

b=1

∫ ↑

0
dωb P! (ωb|nbk,R(1+wb)) PP(n↓

b|ωb)
)

n↓
a∑m

c=1 n↓
c

=
(

m∏

b=1

∫ ↑

0
dωb P! (ωb|nbk,R(1+wb))

)
∑

n→

(
m∏

b=1
PP(n↓

b|ωb)
)

n↓
a∑m

c=1 n↓
c

.

Next, we use the fact that the sum of independent Poisson-distributed random variables is also Poisson with rate parameter
equal to the sum of the individual rates, and that the distribution of independent Poisson random variables conditioned on their
sum is multinomial, to write

〈
y↓

a

〉
=

(
m∏

b=1

∫ ↑

0
dωb P! (ωb|nbk,R(1+wb))

) ↑∑

n→=0
PP

(
n↓

|ω
 ∑

n→:
∑m

c=1 n→
c=n→

PM

(
n↓

n↓,
ω

ω

)
n↓

a

n↓

=
(

m∏

b=1

∫ ↑

0
dωb P! (ωb|nbk,R(1+wb))

) ↑∑

n→=0
PP

(
n↓

|ω
 ωa

ω

=
(

m∏

b=1

∫ ↑

0
dωb P! (ωb|nbk,R(1+wb))

)
ωa

ω
.
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Here ω is a vector with entries {ω1,ω2, . . .}, and we have also introduced
∑

a ωa = ω. Note also that the outer sum on the first
line is over all vectors n↓ whose (non-negative) entries sum to n↓.

Computing the remaining integrals exactly is challenging, largely because the Gamma distributions have different rate pa-
rameters. To address this, next we will expand our expression to first order in the wa, since these are assumed to be small
parameters. Referring back to Eq. (1), the expansion gives

〈
y↓

a

〉
=

(
m∏

b=1

∫ ↑

0
dωb P! (ωb|nbk,R)


1↓kwb

(
nb ↓

ωb

R

))
ωa

ω
+O

(
w2

=
(

m∏

b=1

∫ ↑

0
dωb P! (ωb|nbk,R)

)
1↓

m∑

c=1
kwc

(
nc ↓

ωc

R

)
ωa

ω
+O

(
w2

.

Next we change variables to {ω, q1 = ω1/ω, q2 = ω2/ω, . . . , qm→1 = ωm→1/ω}, because the distribution of the sum of gamma-
distributed random variables, ω, with the same rate parameter and the ratios of the individual variables to the total (ωa/ω) follow
independent gamma and Dirichlet distributions3. The mth ratio qm = 1 ↓

∑m→1
a=1 qa by conservation. By convention we will

also set wm = 0, which can be thought of as normalizing the value of R relative to a reference genotype. The transformation
then gives

〈
y↓

a

〉
=

∫ ↑

0
dω P! (ω|nk,R)

(
m→1∏

b=1

∫
dqb

)
PD (q|nk)


1↓

m∑

c=1
kwc

(
nc ↓

ωqc

R

)
qa

=
(

m→1∏

b=1

∫
dqb

)
PD (q|nk)


1↓

m∑

c=1
kwc (nc ↓nqc)


qa

=
(

1↓k
m∑

c=1
ncwc

)
ya +

(
m→1∏

b=1

∫
dqb

)
PD (q|nk)nk




∑

c↔=a

wcqcqa +waq2
a





=
(

1↓nk
m∑

b=1
wbyb

)
ya + nk

nk +1



nk
∑

b ↔=a

wbyayb +wa
(
nky2

a +ya





= ya + nk

nk +1ya

(
wa ↓

m∑

b=1
wbyb

)
.

In the expressions above PD(q|ε) is the Dirichlet distribution, with concentration parameters ε given by nk in our case. Note
that if wm ⇒= 0, the last line should instead read

〈
y↓

a

〉
= ya + nk

nk +1ya

(
wa ↓wm ↓

m∑

b=1
wbyb

)
.

Thus, we obtain (with wm = 0)
〈
y↓

a ↓ya
〉

= →”ya↑ = nk

nk +1ya

(
wa ↓

m∑

b=1
wbyb

)
.

Following a similar approach, we can compute the second moments. First, we consider
(

y↓
a

2
=

〈(
n↓

a∑m
b=1 n↓

b

)2〉

=
(

m∏

b=1

∫ ↑

0
dωb P! (ωb|nbk,R(1+wb))

) ↑∑

n→=0
PP

(
n↓

|ω
 ∑

n→:
∑m

c=1 n→
c=n→

PM

(
n↓

n↓,
ω

ω

)(
n↓

a

n↓

)2

=
(

m∏

b=1

∫ ↑

0
dωb P! (ωb|nbk,R(1+wb))

) ↑∑

n→=0
PP

(
n↓

|ω


(
ωa

ω

)2
+ 1

n↓
ωa

ω

(
1↓

ωa

ω

)

⇑

(
m∏

b=1

∫ ↑

0
dωb P! (ωb|nbk,R)

)
1↓

m∑

c=1
kwc

(
nc ↓

ωc

R

)(
ωa

ω

)2
+ 1

ω

ωa

ω

(
1↓

ωa

ω

)

=
∫ ↑

0
dω P! (ω|nk,R)

(
m→1∏

b=1

∫
dqb

)
PD (q|nk)


1↓

m∑

c=1
kwc

(
nc ↓

ωqc

R

)
q2

a + qa(1↓ qa)
ω


.
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In going from the third to the fourth line above, we have made the approximation that
〈 1

n↓

〉

PP(n→|ω)
⇑

1
ω

,

which is valid for ω ↭ 1. Similarly,

〈
y↓

ay↓
b

〉
=

〈
n↓

an↓
b(∑m

c=1 n↓
c

2

〉

=
∫ ↑

0

(
m∏

c=1
dωc P! (ωc|nck,R(1+wc))

) ↑∑

n→=0
PP

(
n↓

|ω
(

1↓
1
n↓

)
ωaωb

ω2

⇑

∫ ↑

0

(
m∏

c=1
dωc P! (ωc|nck,R)

)
1↓

m∑

d=1
kwd

(
nd ↓

ωd

R

)(
1↓

1
ω

)
ωaωb

ω2

=
∫ ↑

0
dω P! (ω|nk,R)

(
m→1∏

c=1

∫
dqc

)
PD (q|nk)


1↓

m∑

d=1
kwd

(
nd ↓

ωqd

R

)(
1↓

1
ω

)
qaqb .

Simplifying the expressions above is tedious but straightforward. The following results are helpful:
∫ ↑

0
dω P! (ω|nk,R)ω = nR,

∫ ↑

0
dω P! (ω|nk,R) 1

ω
= k/R

nk ↓1 ,

(
m→1∏

c=1

∫
dqc

)
PD (q|nk)qaqb = nk

nk +1yayb ,

(
m→1∏

b=1

∫
dqb

)
PD (q|nk)q2

a = y2
a + ya(1↓ya)

nk +1 = nk

nk +1y2
a + 1

nk +1ya ,

(
m→1∏

c=1

∫
dqc

)
PD (q|nk)q2

aqb =
(

y2
a + ya(1↓ya)

nk +1

)
nk

nk +2yb ,

(
m→1∏

b=1

∫
dqb

)
PD (q|nk)q3

a =
(

y2
a + ya(1↓ya)

nk +1

)
nkya +2
nk +2 .

Here we have frequently used na = nya to simplify expressions.
With the above results, simplifying expressions for the second moments, we finally find


(”ya)2


=

 1
nk +1 + nk

nk +1
k/R

nk ↓1


ya (1↓ya)+O

(
1/n2

,

and

→”ya”yb↑ = ↓

 1
nk +1 + nk

nk +1
k/R

nk ↓1


yayb +O

(
1/n2

,

where we have assumed that the wa are O (1/n), as in the Wright-Fisher model with weak selection. We have thus found
that the first and second moments of frequency changes in our multi-variant epidemiological model have the same frequency
dependence as those in the multispecies Wright-Fisher model, but with different scaling. The first moment (‘drift’) is multiplied
by a factor of nk/(nk +1), and the second moment (‘diffusion’) by

1
nk +1 + nk

nk +1
k/R

nk ↓1 .

These prefactors match with the Wright-Fisher model exactly when k ↔ ↗ (i.e., a pure Poisson distribution for the number of
new cases per infected individual) and R = 1.
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4. Derivation of the selection coefficient estimator

The derivation in this section closely follows that given in ref.4. It is well known that a WF process can be approximated by
a continuous-time continuous-frequency diffusion process in the large n limit. In the continuous-time limit the time variable t
has units of n generations, with one generation in discrete time taking ϖ = 1/n continuous time units. The selection coefficients
wa are assumed to scale with n such that wa = w̃a/n, where w̃a is a parameter independent of the population size n. In the
limit of large population size, our generalized super-spreading model can, like the WF process, be approximated by a diffusion
process, where the transition probability density ϱ is the solution to the Fokker-Planck equation

ςϱ

ςt
=


↓

M∑

a=1

ς

ςxa
d(y(t))+

M∑

a=1

M∑

b=1

ς

ςya

ς

ςyb
Cab(y(t))


ϱ ,

where M is the number of distinct genotypes, y is the genotype frequency vector, d is the drift vector, and C is the diffusion
matrix. Here we ignore recombination and mutation, since these are comparatively small and therefore unlikely to significantly
affect estimates of changes in viral transmission (though these can be included and the solution remains tractable). The drift
and diffusion have entries given by,

d̃a(y(t)) = lim
n↗↑

n→”ya↑

= lim
n↗↑

nk

nk +1ya(t)
(

wa ↓

M∑

b=1
wbyb(t)

)

= ya(t)
(

w̃a ↓

M∑

b=1
w̃byb(t)

)
,

C̃ab(y(t)) = 1
2 lim

n↗↑
n→”ya”yb↑

= 1
2

 1
k

+ 1
R


ya(t)(1↓ya(t)) a = b

↓ya(t)yb(t) a ⇒= b .

For genotype frequencies observed at times t and t + ϖ”t (i.e., over ”t generations), and for small ϖ”t, the Fokker-Planck
equation can be converted into a path integral approximation for the transition probability density (see ref.4 for a rigorous
derivation)

ϱ(y(t+ ϖ”t)|y(t))

⇑

exp


↓
4n
”t

∑M
a=1

∑M
b=1


ya(t+ ϖ”t)↓ya(t)↓ d̃a(y(t))ϖ”t

(
C̃→1(ya(t)


ab


yb(t+ ϖ”t)↓yb(t)↓ d̃b(y(t))ϖ”t

}

(4φϖ”t)M/2
√

det
(
C̃(y(t))

 .

From this result, and recalling ϖ = 1/n, the transition probability from time tm to tm+1 of the original branching process (for
large n/”t) can be approximated by

P (y(tm+1)|y(tm))

⇑ ϱ(y(tm+1)|y(tm))
M∏

a=1
dya(tm+1)

=
exp


↓

n
2

∑M
a=1

∑M
b=1

[
ya(tm+1)→ya(tm)

”tm
↓da(y(tm))

](
C→1(ya(tm)


ab

[
yb(tm+1)→yb(tm)

”tm
↓db(y(tm))

]}

(2φ”tm/n)M/2
√

det(C(y(tm)))

M∏

a=1
dya(tm+1) ,

where we write the re-scaled drift vector as da = d̃aϖ , the re-scaled diffusion matrix as Cab = 2C̃ab, and ”tm = tm+1 ↓ tm.
Since we aim to infer selection coefficients for the SNVs, it is more convenient to work with the allele frequencies xi instead
of the genotype frequencies ya. The allele frequency at site i is given by

xi(tm) =
M∑

a=1
ga

i ya(tm) ,
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where ga
i is a 1 if there there is a mutant allele at site i on genome a and zero if there is not. Similarly, if the selection coefficient

for the genotype a is wa and the allele level selection coefficient for allele j is sj , then they are related by:

wa =
L∑

j=1
ga

j sj ,

where L is the length of the genome.
The allele level drift and diffusion terms will be linear combinations of the genotype level drift and diffusion, just as with the

frequencies and the selection coefficients. The drift vector for the allele frequencies can be transformed by

di (x(tm)) =
M∑

a=1
ga

i da (y(tm))

=
M∑

a=1
ga

i ya(tm)
(

wa ↓

M∑

b=1
wbyb(tm)

)

= xi(tm)(1↓xi(tm))si +
L∑

j=1,j ↔=i

(xij(tm)↓xi(tm)xj(tm))sj .

This can be used, along with the transition probability density for genomes, in order to find an approximation for the mutant
allele transition probability density:

P (x(tm+1)|x(tm))

⇑

exp


↓
n
2

∑L
i=1

∑L
j=1

[
xi(tm+1)→xi(tm)

”tm
↓di(x(tm))

](
C→1(x(tm)


ij

[
xj(tm+1)→xj(tm)

”tm
↓dj(x(tm))

]}

(2φ”tm/n)L/2
√

det(C(x(tm)))

L∏

i=1
dxi(tm+1) ,

where here the diffusion C is derived similarly to the drift d and has entries

Cij(x(tm)) =
 1

k
+ 1

R


(xij(tm)↓xi(tm)xj(tm)) .

A path integral then gives the probability of observing a trajectory of allele frequencies (x(t1),x(t2), ...,x(tT →1)), and is given
by

P
(

(x(tm))T
m=1

x(t0)
)

=
T →1∏

m=0
P (x(tm+1)|x(tm)) .

Bayesian analysis can then be used to show that the posterior probability of the selection coefficients s = (s1,s2, ...,sL) given
an observed frequency path x(t0),x(t1), ...,x(tT →1) is

P
(

s
(x(tm))T

m=0

)
⇓ P

(
(x(tm))T

m=1
x(t0)

)
⇔PPrior(s) , (2)

where we use a Gaussian prior distribution with zero mean and adjustable covariance determined by the parameter ↼, which is
the precision.

For the inferred coefficients, we take those that maximize the posterior probability. They can be analytically found by a
simple application of the Euler-Lagrange equations to (2), or the equivalent expression at the genotype level, and are given by

ŝ =


↼I +
∑

m

n
k2R2

(R +k)2 C(tm)
→1 

∑

m

nkR

k +R
(”x(tm))


. (3)

5. Extension to multiple regions

In the SARS-CoV-2 pandemic, and in real disease outbreaks in general, there are frequently multiple different outbreaks in
different regions that develop largely or entirely independently of one another. In order to find the best estimate for the selection
coefficients using the data from multiple regions, the estimator can be generalized to find the maximum a posteriori estimate
for the selection coefficients given the time series of allele frequencies in each of the regions. If the probability for a specific
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path in a specific region r is given by P
(

(xr(tr,m))Tr
m=1

xr(tr,0)
)

, where xr is the allele frequency vector in region r, then
the joint probability of the specific paths in all of the regions is simply the product of the individual region probabilities:

P
(

(x1(t1,m))T1
m=1, ...,(xQ(tQ,m))TQ

m=1
{xr(tr,0)}Q

r=1

)
=

Q∏

r=1
P

(
(xr(tr,m))Tr

m=1
xr(tr,0)

)
,

where Q is the number of different regions. Since this is a product of exponential functions, the log posterior will be the sum
of the exponents and the regularization. This can be maximized with respect to the selection coefficient vector s as before and
leads to the estimator:

ŝ =



↼I +
∑

r

∑

tr,m

nrk2
rR2

r

(kr +Rr)2 Cr(tr,m)




→1 


∑

r

∑

tr,m

krnrRr

kr +Rr
”xr(tr,m)



 . (4)

6. Simplification of the estimator

In real outbreaks the parameters k, R, and n are in general time-varying. In our simulations as well, R and n are time-varying
(and k can be constant or time-varying). In order to accurately infer the selection coefficients according to Eq. (3) or Eq. (4),
it would seem that we need to accurately infer the values of k, R, and N at every point in the time series. In practice, this
would be extremely difficult. For general discussion about the effective reproduction number R and the basic reproduction
number Rt as well as some attempts to infer this, see refs.5–9. In order to get an accurate estimate for k it is necessary to have
pervasive contact tracing, so that the negative binomial distribution is well sampled, and there are other difficulties in inferring k
as well10–12. Lastly, it can be difficult to estimate the number of new infections due to multiple factors, including the difference
between the population that gets tested and the population that does not, test result inaccuracies, and delays between symptom
onset, testing, and reporting.

We propose an alternative that lets us avoid these complications. The prefactor nkR/(R +k), multiplies both the numerator
and the denominator. Therefore, the only effect of the prefactor is to weight time points more heavily if the population size,
the dispersion parameter, or the basic reproduction number, is larger. This makes sense in theory, because a larger n or k
implies that there is less noise and the trajectories are more deterministic, while a larger R means that there are more new
infections per generation and thus more data to use to infer the selection coefficients. This does hold with perfect information,
that is, if all infected individuals are sampled at every time point. However, in practice, finite sampling is the source of
significantly more noise than that due to a time-varying population size or dispersion, so weighting the time points based
upon n, k, or R in fact leads to worse inference than assuming the parameters are constant in time and thus weighting the
time points equally. However, in the special and unrealistic case of perfect sampling, using the actual parameters does lead to
better inference than using constant parameters (see Supplementary Fig. 11). If the time points are weighted equally, then,
provided that the regularization ↼ is scaled appropriately (and in general it must be determined by separate means, discussed
below), the prefactors in the numerator and denominator cancel, and the estimator is independent of n, k, and R. Defining
↼↓ = ↼nkR/(k +R) and C̄ by

C =


nkR

k +R


C̄ ,

so that

C̄ij =


xij(tm)↓xi(tm)xj(tm) i ⇒= j

xi(tm)(1↓xi(tm)) i = j
,

Eqs. (3) and (4) for the selection coefficients become, respectively

ŝ =


↼↓I +
∑

tm

C̄(tm)
→1 

∑

tm

”x(tm)


,

ŝ =



↼↓I +
∑

r

∑

tr,m

C̄r(tr,m)




→1 


∑

r

∑

tr,m

”xr(tr,m)



 ,

which are the same as the MPL estimators for the Wright-Fisher model except for the absence of a mutation term4.

7. Covariance of the inferred selection coefficients

Since the posterior given in (2) is a Gaussian distribution for the selection coefficients, the covariance matrix of the inferred
selection coefficients can be easily found. For any Gaussian distributed random vector z, the inverse of the covariance can be
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calculated as the second derivative with respect to z of the negative log of the probability density function. That is, if we define

J = ↓ ln
[
P

(
s
(x(tm))T

m=0

)]

= 1
2


↼s2 +

T →1∑

m=0
n [x(tm+1)↓x(tm)↓d(x(tm))]T C→1(x(tm)) [x(tm+1)↓x(tm)↓d(x(tm))]

+
T →1∑

m=0

(
L ln

(2φ

n

)
+ln(detC)

)
,

then the inverse of the covariance matrix of the parameters is given by the second derivative of J with respect to s. The first
derivative of J with respect to s gives

ςJ

ςs
= ↼s↓

T →1∑

m=0

nkR

k +R
CC→1 [x(tm+1)↓x(tm)↓d(x(tm))] .

The second derivative, which is the inverse of the covariance of the selection coefficients s, is

ς2J

ςsςsT
= ↼ +

T →1∑

m=0

nk2R2

(k +R)2 C(x(tm)) .

This implies that the covariance of the inferred coefficients is given by

# =


↼I +
T →1∑

m=0

nk2R2

(k +R)2 C(x(tm))
→1

.

Using the definitions of ↼↓ and C̄ given above, in the case where the parameters n, k, and R are constant, this reduces to

# = k +R

nkR


↼↓I +

T →1∑

m=0
C(x(tm))

→1

. (5)

Since (k + R)/nkR is a decreasing function of k, this implies that the theoretical covariance decreases as the dispersion
k becomes larger. Supplementary Fig. 14a shows the theoretical uncertainty in the selection coefficients with the largest
magnitudes that we infer from SARS-CoV-2 data. Because the theoretical uncertainties do not account for finite sampling,
these error bars tend to be fairly small. To obtain more realistic error bars, we also performed bootstrap resampling of the data,
where multiple regions were also omitted from the analysis at random (Supplementary Fig. 14b).

8. Covariance of inferred selection coefficients for a group of fully linked sites

The above analysis can be used to quantify the covariance between inferred coefficients for a group of SNVs that are fully
linked, meaning that all of the SNVs in the group appear together on every sequence on which one of the SNVs appear. This is
useful because it provides an estimate for the maximum covariance between linked SNVs. An analytical result is presented only
for the special case where all of the SNVs under consideration are fully linked, though simulations indicate that the maximum
value is not strongly dependent on other SNVs that are partially linked to the main group. The covariance matrix at any time
for a group of fully linked SNVs has (i, j)th element given by (C(tm))ij =

 1
k + 1

R


xi(tm)(1 ↓ xi(tm)) for any (i, j), since

the frequencies xi(tm) for all of the SNVs are identical. This implies that the second term in (5) is a matrix with every entry
identical. If we define the elements of the matrix

T →1∑

m=0

nk2R2

(k +R)2 Cij(x(tm)) ↖ ε ,

the vector u as the vector of all 1’s, and use the notation (·)T to denote transpose, then the covariance of the inferred coefficients
can be written as

#linked =
[
↼I +εuuT

]→1
.
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Because of the simplicity of this form of the matrix, the inversion can be carried out explicitly using the Sherman-Morrison
formula, which for an n⇔n matrix gives

#linked = 1
↼

I ↓

ε 1
ϖ2 IuuTI

1+εuTIu 1
ϖ

= 1
↼

I ↓
1

ϖ2
ε +↼n

uuT .

From this the correlation matrix can be easily calculated, and the off-diagonal elements represent the maximum correlation
between n SNVs that are fully linked to one another. The off diagonal elements of the correlation matrix are given by

↽i,j = 1
1↓n↓

ϖ
ε

.

We analyzed sets of strongly linked mutations in the Alpha, Delta, and Omicron variants to test our ability to distinguish the
independent selective effects of individual mutations. Supplementary Figure 15 shows that, while many inferred selection
coefficients are naturally correlated, this correlation is far from complete. Only in rare circumstances (e.g., the three nucleotide
mutations comprising N:D3L in Alpha) are SNVs so strongly linked that their effects cannot be at least partially disentangled.

3. Simulations

We tested the inference using simulations of disease spread. Specifically, we ran super-spreader simulations based on the
model described above, which is an analog of the Wright-Fisher model where the sampling distribution for the number of new
infections per infected individual is drawn from a negative binomial distribution instead of a pure Poisson distribution.

1. Description of simulations

We simulated disease spread as a branching process in which the number of individuals infected per currently infected indi-
vidual is drawn from a negative binomial distribution whose shape is determined by the basic reproduction number R0 (or the
reproduction number, R, in a population that is not totally susceptible) and the dispersion parameter k. Because we sample
in this way, the population size is not constant. However, if the population size is too small, then the population is extremely
likely to die off stochastically, and if the population size is too large, then sampling from the negative binomial becomes too
computationally expensive. In order to avoid both of these problems, once the population size is large enough R is adaptively
adjusted so that the average reproduction number for the entire population will remain near 1, and the population size will
oscillate around a fixed value. An explicit time-varying population size can also be used as input, and R will be adaptively
adjusted to remain near the given curve. Constant values can be used for the dispersion k or k can vary as a function of time,
perhaps representing different degrees of social distancing or lockdown measures at different times. Since different interven-
tions implemented to prevent the spread of disease would likely affect the shape of the distribution of the number of individuals
infected by a single infected individual, time-varying values for k and R can be used to reflect these effects.

2. Inference

The simulations are run for a number of generations and genomes are sampled from the population of infected individuals at
different times using a multinomial sampling distribution. This sampled time series is then used to infer the selection coefficients
using (3). Alternatively, multiple simulations can be run and the joint inference of the selection coefficients can be made using
(4). We find that, given good enough sampling, a long enough time series, and sampling that occurs at a sufficient number
of times, the selection coefficients can be inferred very accurately (Fig. 1). The quality of inference is significantly improved
if multiple simulations are combined and if mutated sites show up in more than one of the simulations, even under less than
ideal sampling conditions. Beneficial coefficients are typically inferred more accurately than deleterious ones, likely because
deleterious SNVs frequently die off and therefore there is less data to use for inference.

The inference is robust to shortening the time-series or lowering the number of samples taken per generation, though obvi-
ously if either of these conditions is too extreme (or worse, both), the inference starts to break down. The negative effects of
a short time-series or poor sampling can be somewhat made up for by using multiple simulations, which is analogous to using
data from outbreaks in multiple regions. In addition, the diffusion approximation is only valid in the large n limit. However,
we tested the inference for small population sizes and found that inference is accurate even if the population of newly infected
individuals per serial interval is as low as a few hundred (Supplementary Fig. 1).
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Supplementary Fig. 1. Accuracy of inference for different parameters. How the AUROC scores for both beneficial SNVs (in red)
and deleterious SNVs (in blue) depends upon the different model parameters. a, Inference accuracy for different values of newly-
infected population size. The parameters used are 10 simulations each with 50 sampled genomes per generation for 25 generations.
b, Inference accuracy for different numbers of generations (serial intervals). Data is from a single simulation with 25 samples per
generation and a newly-infected population size of 10,000. c, Inference accuracy for different numbers of independent outbreaks
(simulations). The parameters used are 50 samples per generation for 10 generations and a newly-infected population size of 10,000.
d, Inference accuracy for different values of samples per generation. Data is from a single simulation with 50 generations with a newly-
infected population size of 10,000. The initial population is a mixture of two variants with beneficial SNVs (s = 0.03), two with neutral
SNVs (s = 0), and two with deleterious SNVs (s = →0.03). Dispersion parameter k is fixed at 0.1. This is the same initial population
composition as described in Fig. 1. All AUROC scores are calculated by averaging over 1,000 replicate simulations.
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Supplementary Fig. 2. Inference is robust to variation of reproduction number, R, across regions. Our approach provides a
systematic way to combine data from outbreaks in multiple regions. Simulations show that the estimator (15) in Methods has good
performance whether the selection coefficients are inferred based on data from, a, a single region or, b, five regions. Simulation

parameters. The initial population in each region is a mixture of a neutral variant with no mutations and a variant with a beneficial
SNV (s = 0.05). The same beneficial SNV appears in all 5 regions. Each region has a different profile of the time-varying reproduction
number, R (rightmost panel). In the first simulation, the number of newly infected individuals per serial interval rises rapidly from 6,000
to around 10,000 and stays nearly constant thereafter. While in the second simulation it has a different profile for each region, all the
while staying between 100 and 100,000. Dispersion parameter k is fixed at 0.1 for both simulation scenarios.
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Supplementary Fig. 3. Inferred selection coefficients for Spike mutations mapped on the crystal structure. The majority
of the inferred strongly selected mutations are in the S1 subunit of Spike. For sites with multiple mutations, the mutation with the
largest magnitude of inferred selection coefficient was used for mapping. Structure of the Spike protein was obtained from http:
//rcsb.org/ (PDB ID: 7WG7) (ref. 13).
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Supplementary Fig. 4. Multiple SARS-CoV-2 variants strongly increase transmission rate. Frequencies of major variants and
their total inferred selection coefficients, shown as mean values ± one s.d. from bootstrap subsampling of regional data (Methods),
defined relative to the WIV04 reference sequence. Selection coefficients for variants with multiple SNVs are obtained by summing the
effects of all variant-defining SNVs. Because our method uses global data and accounts for competition between variants, we infer
large transmission advantages even for variants such as Gamma, Beta, Lambda, and Epsilon, which never achieved the same level of
global dominance as variants such as Alpha and Delta.
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Supplementary Fig. 5. For major variants, a minority of SNVs provide most of the total increase in transmission. Fraction of
the total increase in transmission for Alpha, Delta, and Omicron (BA.1) provided by each variant-defining mutation. For each variant,
a few strongly beneficial mutations provide most of the total increase in transmission. Most other mutations are inferred to be nearly
neutral. For some variants, a small number of mutations are inferred to be substantially deleterious.
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Supplementary Fig. 6. Variants with large inferred selection coefficients are overwhelmingly likely to belong to major variants,

even when selection is estimated as data becomes available. Fraction of variants classified as concerning with SNVs that belong
to major SARS-CoV-2 variants, plotted as a function of the selection coefficient threshold ω used for classification. We consider (groups
of) SNVs classified as concerning to be true positives if they belong to major variants and false positives otherwise. With this definition,
this fraction is equivalent to the precision for classification.
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Supplementary Fig. 7. Cumulative fraction of SARS-CoV-2 variant-defining mutations identified as HG across regions. Results
are shown for 10 major variants across 7 broad geographical regions. The vertical dashed line indicates the earliest sample date for
each variant. Data of variant-defining mutations and their earliest sample dates were obtained from https://covariants.org.
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Supplementary Fig. 8. Average value inferred for time-varying selection coefficients. We simulated five scenarios of time-varying
selection coefficients: a, step varying, b, linearly increasing, c, linearly decreasing, d, constant over time and, e, step varying where
the SNV appears in the population after the true selection coefficient has changed. In each case, the inferred selection coefficient is
close to the average of the time-varying selection coefficient over the time when the SNV was present in the population. Simulation

parameters. The initial population in the first four simulation scenarios is a mixture of a neutral variant with no mutations and a variant
with a beneficial SNV with a time-varying selection coefficient (center panels). In the fifth simulation scenario, the initial population
consists entirely of the neutral variant with the beneficial mutant appearing after 15 serial intervals. The number of newly infected
individuals per serial interval rises rapidly from 6,000 to around 10,000 and stays nearly constant thereafter. Dispersion parameter k is
fixed at 0.1 for all simulation scenarios.
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Supplementary Fig. 9. Accurate inference of variant fitness in the presence of epistasis. a, Both SNV selection coefficients
and variant selection coefficients are inferred accurately in the absence of epistasis. Inferred selection coefficients over 1,000 runs
are shown in box plots, with true values for the parameters shown with solid bars in red. The lower and upper edge of the box plot
correspond to the 25th to 75th percentiles, the bar inside the box plot corresponds to the median while the top and bottom whiskers
show the maximum and minimum value within 1.5 times the interquartile range. In scenarios with positive epistasis (b) or negative
epistasis (c), our method attributes the effect of epistasis to selection coefficients. Thus, while the inferred SNV selection coefficients
may be under- or over-estimated, the inferred variant selection coefficients are recovered. Simulation parameters. We simulate a
two-locus system where the initial population consists of a mixture of all four variants, i.e., a neutral variant with no mutations, a variant
with two beneficial SNVs (s1 = 0.04, s2 = 0.02), and both single SNV variants. The initial frequencies in the population of the neutral,
the two single mutant variants, and the double mutant variants are set to 67%, 10%, 10%, and 13%. We simulate three scenarios with
the epistasis term taking on values s12 = {0, 0.04, -0.04}. Here the selection coefficient for the double mutant is s1 + s2 + s12. The
number of newly infected individuals per serial interval rises rapidly from 6,000 to around 10,000 and stays nearly constant thereafter.
Dispersion parameter k is fixed at 0.1 for all simulation scenarios.
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Supplementary Fig. 10. Ability to estimate large variant selection coefficients, wa. While the estimate (15) in Methods is derived
assuming selection coefficients are small, simulations show that combining data from multiple regions allows for accurate estimation
of both large SNV selection coefficients, s, and variant selection coefficients, wa. a, A scenario with a variant containing a single
strongly beneficial SNV (s = 0.2) and, b, a scenario with a variant containing 10 mildly beneficial SNVs (s = 0.02). The true variant
selection coefficient wa has the same magnitude in both simulation scenarios (wa = 0.2). c, Simulating a scenario where 12 beneficial
SNVs (s = 0.1) appear and fixate successively (top right panel), such that wa ranges from 0.1 to 1.2, both the SNV (left panel) and
variant selection coefficient (bottom right panel) were estimated accurately. Results are obtained by combining data from 10 regions.
Histograms are obtained from 1,000 replicate simulations. Simulation parameters. In the simulation scenarios considered in a and
b, the initial population in each region consists of a mixture of a neutral variant with no mutations along with a variant with a single
strongly beneficial SNV (s = 0.2), or a variant with 10 beneficial SNVs (s = 0.02) respectively. In the simulation in c, each region’s
initial population consists of a mixture of a neutral variant with no mutations along with a variant with beneficial mutations. In this latter
variant, 12 beneficial mutations (s = 0.1) appear and fixate in succession such that the variant selection coefficient varies from wa = 0.1
to wa = 1.2. The same variant appears in 10 independent regions in all simulation scenarios. The number of newly infected individuals
per serial interval is nearly constant around 10,000. Dispersion parameter k is fixed at 0.1.
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Supplementary Fig. 11. Effects of finite sampling on inference using constant and time-varying parameters. The ability of
the model to distinguish beneficial and deleterious SNVs, as measured by the AUROC score, depending on whether the sampling is
perfect or finite and whether constant parameters or the true time-varying parameters are used for the number of new infections per
serial interval n in the inference. If parameters are considered to be constant, then these parameters are not required for inference
using (15) in Methods. Both simulations use constant values of k = 0.01 and R = 1. The results are similar but less dramatic if the
correct time-varying values are used for k or R as well. Results are shown for different trajectories of numbers of infections and are
consistent regardless of the trajectory. In the upper panel, the number of new infections per serial interval, n, starts at 5,000 and rises
linearly to 100,000. In the middle panel, n starts at 10,000, rises quadratically to a maximum of 200,000, and then falls back to the
original number. In the final panel, n rises from an initial size of 1,000 to a final size of 65,000. All simulations are run for 50 serial
intervals. Rows that yield better inference are marked by bold text. If sampling is finite, then it is better to use constant parameters;
if sampling is perfect, then it is better to use the real time-varying parameters. The initial population of individuals are infected with a
mixture of two variants with beneficial SNVs (s = 0.03), two with neutral SNVs (s = 0), and two with deleterious SNVs (s = →0.03), as
in Fig. 1. Simulations are run for 50 simulations with 25 samples in each serial interval, and AUROC scores are averaged over 1,000
replicate simulations.
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Supplementary Fig. 12. Sampling Distributions. The number of genomes per day in the regions that are used for inference.
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Supplementary Fig. 13. Inferred selection coefficients are robust to different values of the regularization ε↓
, different frequency

cutoffs, and different numbers of days used to calculate the frequency changes. a-b, Comparison of inferred coefficients when the
number of days at the beginning and end of the time-series are used in order to calculate the frequency changes. Inferred coefficients
are largely robust to these changes c-d, Comparison of inferred coefficients for different frequency cutoffs. Including more or less sites
does not alter the order of inferred coefficients. e-i, Comparison of inferred coefficients for different values of the regularization. Altering
the regularization value has little effect upon the distribution of inferred selection coefficients, and selection coefficients for different
values of the regularization are highly correlated.
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Supplementary Fig. 14. Selection coefficient estimates and uncertainty. Plots of all inferred selection coefficients with absolute
values greater than 1%. a, Selection coefficients with uncertainty estimates from bootstrapping the sequences in each region. 20 se-
quences were sampled per time point per region, with replacement. Error bars represent standard deviations of the inferred coefficients
computed over 100 bootstrap samples. b, Selection coefficients with uncertainty estimates from subsampling the regions used. For
each run, we inferred selection coefficients using a random subsample of 80% of the total number of regions. Error bars represent
standard deviations of the inferred coefficients computed over 100 samples.
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Supplementary Fig. 15. Example correlations between ŝ for strongly linked subsets of mutations defining major variants. As
discussed in Supplementary Information, the covariance of the inferred parameters is given by the matrix in (5). The correlation
matrix of the inferred parameters is easily calculated from this covariance. SNV labels are in the format of xxx-yyy-z-n, where xxx is
the protein, yyy is the codon in the protein, z is the index of the nucleotide in the codon, and n is the nucleotide. a, c, e, The correlation
matrix for SNVs that are strongly linked to one another in Alpha, Delta, and Omicron, respectively. The diagonal elements, all equal
to 1 in a correlation matrix, are set to zero for visualization purposes. b, d, f, Correlation matrices from a, c, and e, normalized by
the maximum possible correlation for a group of linked SNVs, as discussed in Supplementary Information, with the same number of
SNVs. The (i, j)th element of these matrices represents the percent of linkage between the selection coefficients for SNVs i and j.
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Rank Protein SNV(s) Mutation Selection Location Associated variant(s) Phenotypic effect
(nt) (aa) (%)

1 S T23018C/
T23019C

F486P 16.9 ± 0.8 RBM XBB.1.5, EG.5.1, BA.2.86, JN.1 Reduces recognition by neutralizing antibodies 14

2 NSP4 C10029T T492I 16.6 ± 0.9 Delta, Lambda, Mu, BA.1 (and subvariants) Increased viral replication capacity and infectivity, cleavage
efficiency of the viral protease, and antibody evasion 15

3 NSP6 ” 11288-
90

”106 16.5 ± 0.8 Alpha, Beta, Gamma, Eta, Iota, Lambda, BA.1
(and subvariants)

*Increased transmission by interferon antagonism 16

4 S A23055G Q498R 16.2 ± 1.7 RBM BA.1 (and subvariants) Increased ACE2 binding and resistance to nAbs 13,17

5 S A24424T Q954H 14.0 ± 1.0 HR1 BA.1 (and subvariants) Increased infectivity in vitro 18

6 S T22942A N460K 13.8 ± 0.9 RBM XBB, XBB.1.5, EG.5.1, HK.3, BA.2.86, JN.1 Enhanced neutralization resistance, enhanced spike process-
ing and cell-cell fusion, improves ACE2 binding 19

7 S C23604G P681R 13.6 ± 0.9 FCS Delta, Kappa, BA.2.86, JN.1 Enhanced cleavage, fusogenicity, and pathogenicity 20

8 S G22599C R346T 13.5 ± 0.5 RBD XBB, XBB.1.5, EG.5.1, HK.3 Evasion of antibody recognition 14

9 S T24469A N969K 13.2 ± 0.6 HR1 BA.1 (and subvariants) Improved structural stability 13

10 S T23599A N679K 12.6 ± 0.6 FCS BA.1 (and subvariants) *Increased proteolytic activation 13

11 S G22927C L455F 12.3 ± 0.4 RBM HK.3 (L455S in JN.1) Enhanced resistance to immune sera 21, increased ACE2
binding 22

12 S C23525T H655Y 11.7 ± 0.9 FCS Gamma, BA.1 (and subvariants) Increased viral replication, spike protein cleavage, and trans-
mission in vivo 23

13 N G28881T R203M 11.4 ± 1.2 Delta, Kappa Enhanced replication, RNA delivery and packaging 24

14 S G22599A R346K 10.3 ± 0.5 RBD Mu, BA.1, XBB, XBB.1.5, EG.5.1, HK.3 Reduced neutralization 25

15 S A23063T N501Y 10.1 ± 1.1 RBM Alpha, Beta, Gamma, Mu, BA.1 (and subvariants) Increased infection, transmission, ACE2 binding, and resis-
tance to nAbs 13

16 S C21618G T19R 9.2 ± 0.7 NTD Delta *Increased resistance to NTD-specific nAbs 26,27

17 NSP12 G15451A G671S 9.1 ± 0.6 Delta, XBB, XBB.1.5, EG.5.1, HK.3
18 S T22928C F456L 8.9 ± 0.9 RBM HK.3 Enhanced resistance to immune sera 21, increased ACE2

binding 22

19 S C21618T T19I 8.7 ± 1.3 NTD BA.2 (and subvariants) *Increased resistance to NTD-specific nAbs 26,27

20 S A22910G N450D 8.3 ± 0.6 RBM BA.2.86, JN.1 Increased ACE2 binding 28

21 S C22995G T478K 8.2 ± 0.8 RBM BA.1 (and subvariants) T478K enhances ACE2 binding 29, and enhances neutraliza-
tion resistance 30

22 S C22916A L452M 8.2 ± 0.6 RBM BA.2 subvariants; L452W in BA.2.86 and JN.1,
L452R in BA.4, BA.5

Increased RBD expression (stability) 31, increased resistance
to nAbs 32,33, and increased cell entry 34

23 NSP6 T11296G F108L 7.6 ± 1.0 *Increased transmission by interferon antagonism 16

24 S ”21986-88 ”142 7.6 ± 1.0 NTD BA.1 (G142D in BA.2 and subvariants) *Increased resistance to NTD-specific nAbs 35

25 S C22033A F157L 7.4 ± 0.3 NTD BA.2.75 (F157S in BA.2.86 and JN.1) In epitope recognized by neutralizing antibodies 36

26 S A22893G K444R 7.3 ± 0.5 RBM Increased resistance to immune sera 21, evasion of antibody
recognition 14

27 N G28881A R203K 7.2 ± 1.0 Alpha, Gamma, Lambda, BA.1 (and subvariants) Enhanced replication, RNA delivery and packaging 24

28 S ” 22031 ”157 7.2 ± 0.5 NTD Delta In epitope recognized by neutralizing antibodies 36

29 S G22577C G339H 7.2 ± 0.7 RBD XBB.1.5, BA.2.75, EG.5.1, HK.3, BA.2.86, JN.1 G339D Interferes with T-cell response 37

30 S T23018G F486V 7.2 ± 0.5 RBM BA.4, BA.5 Increased ACE2 binding and resistance to nAbs 38,39

31 S T22917A L452Q 7.1 ± 0.4 RBM Lambda, BA.2.12.1 Increased RBD expression (stability) 31, increased resistance
to nAbs 32,33, and increased cell entry 34

32 S T22896A V445H 7.0 ± 0.7 RBM BA.2.86, JN.1 Enhanced resistance to immune sera 21, increased ACE2
binding 22

33 S A22629C K356T 7.0 ± 0.4 RBD BA.2.86, JN.1 Neutralization of immune sera 40

34 S C23854A N764K 6.9 ± 1.5 BA.1 (and subvariants) Improved structural stability 41,42

35 N ”28367-69 ”32 6.9 ± 1.4 BA.1 (and subvariants)
36 S C23604A P681H 6.7 ± 0.9 FCS Alpha, Mu, BA.1 (and subvariants, BA.2.66 and

JN.1 have P681R)
Enhanced cleavage 43 and increased resistance to interferon-
induced immunity 44, leading to increased replication and/or
transmission

37 S G22898A G446S 6.6 ± 0.9 RBM XBB, XBB.1.5, EG.5.1, HK.3, BA.2.86, JN.1 enhanced resistance to neutralizing antibodies 19

38 NSP6 T11288A S106T 6.6 ± 0.6 *Increased transmission by interferon antagonism 16

39 N C28311T P13L 6.5 ± 1.4 Lambda, BA.1 (and subvariants) Escape from a HLA-B*27:05 CD8+ T cell epitope 45

40 S G23948T D796Y 6.4 ± 1.0 BA.1 (and subvariants) Improved structural stability 13 and antibody evasion 46

41 N C28367T R32C 6.4 ± 1.7 Alters frustration state of virus and may affect stability, func-
tion, and pathogenicity 47

42 S C22674T S371F 6.2 ± 0.6 RBD BA.2 (and subvariants) Increased resistance to nAbs 33,48

43 S T22917G L452R 6.1 ± 0.6 RBM Delta, Kappa, Epsilon, BA.4, BA.5 Increased RBD expression (stability) 31, increased resistance
to nAbs 32, and increased cell entry 33

44 S A22893C K444T 6.1 ± 0.7 RBM BQ.1 Increased resistance to immune sera 21, evasion of antibody
recognition 14

45 S G23222A E554K 6.1 ± 0.5 RBM BA.2.86, JN.1 Escape from monoclonal antibodies 49

46 S C22295A H245N 6.0 ± 1.4 NTD BA.2.86, JN.1 Significantly increases ACE2 binding 28

47 S G22775A D405N 5.5 ± 1.3 RBD BA.2 (and subvariants) Escapes many neutralizing antibodies 50

48 S C22353A A264D 5.3 ± 1.6 NTD BA.2.86, JN.1 Increases ACE2 binding 28

49 S G21987A G142D 5.3 ± 0.5 NTD BA.2 (and subvariants), BA.4, BA.5 Increased resistance to NTD-specific nAbs 13,35

50 S G24368T D936Y 5.2 ± 1.3 Increased infectivity 32

Supplementary Table 1. Highly selected amino acid substitutions across the SARS-CoV-2 genome. Error are standard deviations
of inferred selection coefficients across 100 replicate sub-samples of 80% of the original regions. * represents cases where the
phenotypic effect of an amino acid variant has not been reported explicitly in the literature. Instead, it is either based on the function of
the encompassing gene for a mutation to a different amino acid or deletion at the same position. # all three mutations appear together;
RBM = receptor binding motif; RBD = receptor binding domain; NTD= N-terminal domain; FCS = S1/S2 furin cleavage site; HR1 =
heptad repeat 1; nAbs = neutralizing antibodies.
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