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Supplementary methods 

Modelling fisheries stock biomass and maximum catch potential 

We used the Dynamic Bioclimate Envelope Model (DBEM) to simulate changes in distribution, 

abundance and catches of exploited marine fishes and invertebrates. The structure of the DBEM is 

described in (59) and we summarize pertinent aspects of the model here.  

a.     Current species distribution 

The current distributions of commercially exploited species, representing the average pattern of 

relative abundance in recent decades (i.e., 1970-2000), were produced using an algorithm described 

in (60). The algorithm predicts the relative abundance of a species on a 0.5o latitude x 0.5o longitude 

grid based on the species’ depth range, latitudinal range, known Food and Agriculture Organization 

statistical areas and polygons encompassing their known occurrence regions. The distributions were 

further refined by assigning habitat preferences to each species, such as affinity to shelf (inner, 

outer), estuaries, and coral reef habitats. The required habitat information was obtained from 

FishBase (www.fishbase.org) and SeaLifeBase (www.sealifebase.org), which contains key 

information on the distribution of the species in question, and on their known occurrence region. 

Catch data from the Sea Around Us project is not used in the algorithm to predict current species 

distribution.  

b.     Predicting future habitat suitability 

We calculated an index of habitat suitability for each species (P) in each spatial cell i from 

temperature (bottom and surface temperature for demersal and pelagic species, respectively), 

bathymetry, specific habitats (coral reef, continental shelf, slope and seamounts), salinity (bottom 

and surface temperature for demersal and pelagic species, respectively) and sea ice with 30-year 

averages of outputs from 1971-2000 from GFDL ESM2M model. The multiple of these five 

components resulted in the overall habitat suitability: 



𝑃" = 𝑃(𝑇", 𝑇𝑃𝑃) ∙ 𝑃(𝐵𝑎𝑡ℎ𝑦",𝑀𝑖𝑛𝐷,𝑀𝑎𝑥𝐷) ∙ 𝑃(𝐻𝑎𝑏𝑖𝑡𝑎𝑡",5, 𝐻𝐴𝑠𝑠𝑜𝑐) ∙ 𝑃(𝑆𝑎𝑙𝑖𝑛𝑖𝑡𝑦", 𝑆𝐴𝑠𝑠𝑜𝑐) ∙

𝑃(𝐼𝑐𝑒", 𝐼𝑐𝑒𝑃)     (eq. S1) 

where T is seawater temperature, Bathy is bathymetry, Habitat is the proportion of area of the 

habitat type j relative to the total seawater area of the cell i, Ice is sea ice extent, and Salinity is the 

salinity class of cell i according to the Thalassic series (hyperhaline, metahaline, mixoeuhaline, 

polyhaline, mesophaline and oligohaline). For each species, TPP is temperature preference profile, 

MinD and MaxD are minimum and maximum depth limits, HAssoc is habitat association index, and 

SAssoc has a value of 1 or 0 indicating whether the species is or is not associated to the specific 

salinity classes, respectively, and IceP is association to sea ice for polar species.  

Specifically, DBEM estimated the temperature preference profile (TPP) of each species by 

overlaying the estimated species distribution (59, 61) with annual seawater temperature and 

calculated the area-corrected distribution of relative abundance across temperature for each year 

from 1971 to 2000, subsequently averaging annual temperature preference profiles (TPP). The TPP 

was calculated from the predicted average relative abundance (Ri) from the estimated current 

species distribution in temperature class i over the entire range: 

𝑇𝑃𝑃" =
>?

∑ >?
     (eq. S2a) 

𝑅" =
B?
C?

   (eq. S2b)                   

where, Qi and Ai are the sum of relative abundance and range area from spatial cells within 

temperature class i, respectively.  

A species’ distribution was also limited indirectly by depth. Thus, there were lower and upper limits 

of water depth (minD and maxD, respectively) outside of which a species does not occur: 

P(Bathy,minD,maxD) = 1  if Bathy ≥ minD and Bathy ≤ maxD   (eq. S3a) 



P(Bathy,minD,maxD) = 0  if Bathy < minD or Bathy > maxD   (eq. S3b)  

However, marine species can survive in deeper waters than they currently occur to some extent. To  

reflect this, the model allows the species to move to areas where depth is twice the maximum depth  

limit. This assumption is to make sure that the species have sufficient scope to expand their depth  

range, while the extent of shift in depth range would be limited by other environmental variables  

that link to the species physiology and ecology (e.g., temperature, oxygen and food).  

Each species was assigned an index of association (HAssoc) to one or more of the four habitat types:  

coral reefs, estuaries, seamounts and habitats that are none of the above. The index, scaled between  

0 and 1, represents the relative density of a species in the particular habitat. It was assigned based  

on qualitative descriptions of the ecology of the species from FishBase or other publications and  

literature. Distribution of relative abundance was then adjusted based on the habitat-association  

index and the global distribution of each habitat:  

P(Habitat, HAssoc) = Habitat · HAssoc                                (eq. S4)  

Polar ecosystems, and the distributions of their associated species, are largely shaped by the  

dynamics of sea ice. In both the Arctic and around Antarctic, primary productivity close to sea ice  

is generally high (80). For instance, in the Antarctic, phytoplankton growth is enhanced by  

micronutrient delivery and stabilization of the water column associated with the influx of fresh and  

nutrient rich water from melting ice. This in turn forms the base of the foodweb, which supports  

fishes and mammals in polar ecosystems. Thus, polar fishes are generally distributed close to sea  

ice. It is therefore reasonable to assume that environmental preferences of polar species are partly  

dependent on distance from sea ice. To be consistent with the current species distributions, which  

represent annual averages, annual average sea ice extent was used. We calculated polar species’  

relative habitat suitability in relation to sea ice using similar algorithms as when calculating TPP.  

However, instead of seawater temperature, sea ice extent was used in eq. S2.   



  

c. Modelling dispersal and movement of larvae and juvenile/adult  

Movement and dispersal of adults and larvae were modelled through advection-diffusion-reaction  

equations for larvae and adult stages using equations 5a and 5b, respectively.   
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where A was abundance. Horizontal diffusion was characterized by a diffusion parameter D. The  

diffusion coefficient, expressed in m2 s-1, is assumed to be a function of the length scale of the  

spatial grid: D = (1.1 x 10-4)·GR·1.33 where GR is the minimum grid resolution. Pelagic larvae  

were assumed to be passively advected and diffused via ocean currents and associated mixing.   

Advection was characterized by two surface current velocity parameters (u, v) obtained from the  

GFDL Earth system model that described the east-west and north-south current movement across  

a distance between centers of neighboring cells in the east-west and north-south directions (x, y  

respectively). The duration of the pelagic larvae phase was predicted from an empirical equation as  

a function of sea surface temperature (81). The default larval mortality and larvae settlement rates  

are 0.85 day-1and 0.2 day-1, respectively. Sensitivity analysis suggests that the long-term (decadal)  

projection of DBEM is not sensitive to these two parameters. The instantaneous rate of larval  

mortality and settlement is represented by λ. Population growth (G) was modeled separately (see  

eq. S9). Colonization of new habitat (species invasion) is a result of either dispersal of larvae or  

movement of adults to the new habitat. Species turnover is partly dependent on species invasion.  



For juvenile-adult stages, diffusion rate was dependent on habitat suitability (P) and a density- 

dependent factor (ρ) that was a function of the carrying capacity (Ɵ), abundance (A) and mean  

weight (𝑊) in the spatial cell i:  

                    𝐷" =
QR∙S

TUV(W∙X?∙Y?)
                                                                                     (eq. S6)  

      𝜌" = 1 − C?
(\?/^?)

         (eq. S7)         

The coefficients m and τ determine the curvature of the functional relationship between D, P, and  

ρ, and D0 is the initial diffusion coefficient. Thus, the diffusion rate in the cell increased as  

environmental conditions (habitat suitability and carrying capacity) became less favorable to the  

species. Also, as abundance approached carrying capacity, the density dependent factor decreased  

in value and diffusion rate increased. A gradient of diffusion rate between neighboring cells resulted  

in net movement from less to more suitable habitats or from more crowded to less densely populated  

areas.   

  

d. Modelling changes in carrying capacity (θ)  

Carrying capacity in each cell is assumed to be a function of the unfished biomass (Bunfished) of the  

population, the habitat suitability (Pi) and net primary production (NPPi) in each cell.  The global  

unfished biomass of the population is estimated based on the average of the top-10 annual catches  

by weight of the modelled species in the world from 1950–2004 and their intrinsic population  

growth rate. Assuming logistic population growth, unfished biomass (Bunfished) of a population was  

estimated:  

Bunfished = 4·MSY/r    (eq. S8)  



We assumed that the average of the top-10 annual catches was roughly equal to the maximum  

sustainable yield (MSY) of the species. A previous study (82) has shown that the top-10 annual  

catches are strongly and significantly correlated with MSY estimated from survey-based stock  

assessment. In some cases, the top-10 annual catches may be higher than MSY, with species  

therefore being over-exploited, or the approach may under-estimate MSY if the species was under- 

exploited. However, this would not substantially alter the main results from DBEM, which focused  

largely on the relative changes across time instead of the absolute biomasses or catches. The initial  

carrying capacity (θ) in each cell is calculated by pro-rating the unfished biomass to each cell based  

on the predicted habitat suitability. Changes in carrying capacity in each year is proportional to  

changes predicted habitat suitability and net primary production.  

  

e. Modelling population growth  

The model simulated changes in relative abundance of a species by solving the advection-diffusion  

relationships in eq. (5) first, and then feeding the outputs into a logistic growth function:  

_C?
_E
= ∑`5aT 𝑟 ∙ 𝐴" ∙ G1 −

C?
(\?/^)

H − 𝐹 ∙ 𝐴"  (eq. S9)  

where Ai is the abundance in a 30’ x 30’ cell i, r is the intrinsic population growth, determined  

through eq. (10).  F is the fishing mortality rate, and carrying capacity in biomass is converted to  

numerical abundance by dividing it with the estimated mean weight . Also:  

∑EdEae 𝑒fg∙h ∙ 𝑙h ∙ 𝑚h = 1     (eq. S10)  

where t and t’ are the age-class and longevity of the population, respectively; la is the expected  

survivorship of females from age 0 to age a, and ma is the expected number of age-0 female  

offsprings per individual female or fecundity at age a.   



  

f. Modelling changes in population biomass  

In addition to the abundance (A), DBEM calculates a characteristic weight (W) representing the  

average mass of the population in cell i. The model simulated how changes in temperature and  

oxygen content (represented by O2 concentration) would affect growth of the individuals using a  

sub-model derived from a generalized von Bertalanffy growth function (VBGF).  

𝑊E = 𝑊j ⋅ [1 − 𝑒fm⋅(EfER)]
o

opq  (eq. S11)  

where 𝑊j is the asymptotic weight, and K is the von Bertalanffy growth parameter. For  

simplification, we assume that the scaling coefficient a = 0.7, with empirical studies showing that  

a generally varies from 0.50 to 0.95 across fish species, with 2/3 corresponding to the special or  

standard VBGF.  

The model predicts changes in VBGF parameters for each species according to changes in  

temperature, oxygen and pH in the ocean relative to initial conditions, as:  

𝑊j = Gr∙[st]⋅V
puo/v	

x∙[yz]⋅Vput/v
H

o
(opq)

    (eq. S12)  

𝐾 = 𝑘 · (1 − 𝑎)    (eq. S13)  

   

in which metabolism is temperature-dependent and aerobic scope is dependent on oxygen  

availability in the water and maintenance metabolism is affected by physiological stress (e.g.,  

increased acidity).  Also, j = Ea/R with Ea and R are the activation energy and Boltzmann constant,  

respectively, while T is temperature in Kelvin (see Table 1 for default values of j1 and j2). In  

addition, the aerobic scope of marine fishes and invertebrates decreases as temperature approaches  



their upper and lower temperature limits (Pörtner 2010). The coefficients g and h were derived from  

the average W∞, K and environmental temperature (To) of the species reported in literature:  

𝑔 = �̂
opq∙m

[st]⋅Vpuo/vR
    (eq. S14a)  

ℎ = m/(Tfh)
[yz]⋅Vput/vR

   (eq. S14b)  

   

Adult natural mortality rate (M) was estimated from an empirical equation (51):  

 (eq. S15) 

 where T is the average water temperature in cell i.  

The estimated growth parameters and natural mortality rate were used in calculating the average  

body weight of individuals in the population using the length-based life table, where:  

𝑊 =
∑� ∑� ^�∙���,�∙V

p�

∑� ∑� ���,�∙V
p�     (eq. S16)  

Xl,l’ is the probability of an individual growing from length class l to l’ in a time-step (y) as estimated  

from growth data and Wl is the mean weight of length class l.  

Thus, average body weight was dependent on temperature and oxygen level. Biomass (B) and catch  

(C) were then calculated from the population mean body weight and abundance:   

𝐵 = 𝐴 ∙ 𝑊    (eq. S17a)  

𝐶 = 𝐴 ∙ 𝐹 ∙ 𝑊   (eq. S17b)  

The model had a spin-up period of 100 years using the climatological average oceanographic  

conditions from 1971–2000, thereby allowing the population to reach equilibrium before it was  



perturbed with oceanographic changes. F is exploitation rate. To calculate maximum catch potential  

and assuming logistic population growth, F is set to be equal to natural mortality rate M to have  

maximum equilibrium surplus production.  

  

Illustrative examples  

 We illustrated the outputs from each step of the integrated models using examples from  

the west coast of USA and their California sardine (Engraulis mordax) stock (Fig. S6 – S8).  

  
  
Testing the effects of ‘marine cold spells’  
  
We examined the projected effects of extreme cold sea surface temperature anomalies that are the  

inverse of marine annual high temperature extremes (hereafter referred to as ‘marine cold spells’).  

The hypothesis is that marine cold spells are projected to have the same magnitude of effects as  

marine annual high temperature extremes, but opposite in direction, on potential catches of a  

stock. To test this hypothesis, we identified the occurrences of marine cold spells in each of the 10  

ensemble member projections from the GFDL Earth system model (see above). Marine cold  

spells were defined as the lower 5-percentile of the sea surface temperature anomalies in an  

Exclusive Economic Zone (EEZ). Sea surface temperature anomalies were calculated using the  

same algorithm as for marine annual high temperature extremes. We then calculated the  

anomalies of the potential catch for each stock in an EEZ when a marine cold snap occurred for  

all Earth system model ensemble members.   

  

We examined whether the magnitude of the impacts from marine annual high temperature  

extremes equals to that of marine cold spells on projected catch potential globally and for each  

EEZ. We analyzed the relationship between catch anomalies from marine annual high  

temperature extremes and marine cold spells projected from the dynamic bioclimate envelope for  



these stocks using a linear mixed effect model (lmer) (lmerTest package in R), treating each EEZ  

as a subject (random effect). As it is hypothesized that the effects of cold spells are reciprocal of  

that of high temperature extremes, we multiple the anomalies of marine cold spells by -1. The  

model is:  

  

CatchAnom ~lmer[factor(MAE)+(1|EEZ)]  

  

where CatchAnom and MAE are the catch anomalies from marine annual extremes and cold  

spells while MAE is a factor indicating whether the extremes are high temperature extremes or  

cold spells, respectively.   

  

Our analysis showed that the impacts from marine cold spells on projected catch potentials are not  

exactly the inverse of those from marine annual high temperature extremes. The magnitude of  

impacts of marine cold spells and that from marine annual high temperature extremes are  

significantly different from one another (p < 0.05) (Table S6). Also, there are substantial  

variabilities between fish stocks, with some stocks being more or less sensitive to marine cold  

spells relative to marine annual high temperature extremes. Moreover, some stocks were  

projected to be negatively impacted by both marine annual high temperature extremes and cold  

spells. Specifically, across all the studied EEZs, the number of stocks that are negatively impacted  

by annual high temperature extremes (with declines in biomass beyond the rate of decadal-scale  

mean decrease of 3.6% per decade) are higher than those that are positively impacted by marine  

cold-spell (biomass increase by more than 3.6%) in 64% of the EEZs. Some of the tropical EEZs  

have substantially larger number of stocks that are negatively impacted by high temperature  

extremes than the positive impacts of cold spells e.g., in Ecuador, the Philippines, Ghana.   

  



 

In summary, when we compare the effects of the inverse of marine annual high temperature  

extremes (‘marine cold spells’), the average impacts after considering both marine annual high  

temperature extremes and cold spells on projected catch potentials did not cancel each other out.  

Instead there are substantial variabilities across fish stocks and regions due to their asymmetries  

in biological sensitivities to ocean warming and cooling at stock and community levels.   

  

Changes in sea bottom temperature during marine annual high temperature extremes in  

EEZs   

  
We analyzed the relationship between projected sea surface and sea bottom warming during  

marine annual high temperature extremes. For the years when marine annual high temperature  

extremes were identified from the 10 ensemble members of the GFDL Earth system model (see  

Method), we calculated the annual Exclusive Economic Zone (EEZ) averaged sea bottom  

temperature anomalies relative to the ensemble mean. We tested the relationship between sea  

surface and sea bottom temperature anomalies, accounting for the variations between EEZ, using  

a linear mixed effect model (lmerTest package in R):  

  

SBTAnom~lmer[SSTAnom + (SSTAnom|EEZ)]  

  

Where SBTAnom and SSTAnom are sea bottom and sea surface temperature anomalies,  

respectively.  

  

Averaged over all EEZs, sea bottom temperature anomalies are significantly and positively  

correlated with sea surface temperature anomalies (Table S7). However, temperature anomalies at  

the surface are much bigger than the anomalies near the sea bottom.  

  



Comparison of the range of temperature preferences between pelagic and demersal species  

We compared the temperature preference ranges estimated from the dynamic bioclimate envelope  

model for the pelagic and demersal species included in this study. The dynamic bioclimate  

envelope model estimated the temperature preference profiles of each species by overlaying each  

species’ distribution and sea water temperature (average of 1971 - 2000, surface for pelagic  

species and bottom for demersal species). We then calculated the upper and lower temperature  

ranges above which 5% of the total species distribution were located. The difference between  

these upper and lower temperature ranges represents the temperature preference range of each  

species. In the dynamic bioclimate envelope model, the carrying capacity of a habitat is directly  

proportional to the temperature preference of the species; thus carrying capacity would be low  

when environmental temperature is close to the species’ upper and lower preferred temperature.   

  

We tested the difference in temperature preference ranges between pelagic and demersal species  

with ANOVA (lm function in R). The temperature preference ranges were predicted using the  

GFDL Earth system model. Since the temperature preference ranges were calculated from 30-year  

climatological average temperature, interannual variations between different ensemble members  

of the GFDL Earth system model would not affect the analysis. Thus, this analysis used only one  

of the 10 ensemble members of the GFDL Earth system model.    

  

Overall, pelagic species have significantly (p < 0.0001) narrower temperature preference ranges  

than demersal species (Table S8).  

  
Evaluating the projections of marine annual high temperature extreme impacts on fisheries  
with empirical data  
  
We analyzed historical time-series of observation-based sea surface temperature to identify the  

occurrences of annual marine annual high temperature extremes in each country’s Exclusive  



Economic Zone(s) (EEZs). We used the Hadley Centre Sea Surface Temperature (SST) gridded  

data version 1.1 (83) and calculated annual average sea surface temperature from 1950 to 2016  

for each EEZ. We then applied a decadal running mean filter (9-year average) to the time-series  

and calculated the annual SST anomalies relative to the filtered SST time-series. A 9-year running  

mean was applied to remove the decadal temperature trend from the SST time-series. We also  

tested the sensitivity of the results to alternative windows of running mean (7-year and 11-year).  

We identified annual marine annual high temperature extremes as the years with SST anomalies  

that were above the 95th percentile of all the SST anomalies in the time-series (following the same  

criteria as for identifying marine annual high temperature extremes for the modelled data) (Fig.  

S10).   

  

Secondly, we analyzed historical time-series of catch data to estimate the changes in annual catch  

from countries’ Exclusive Economic Zones (EEZs) when marine annual high temperature  

extremes were identified. We used the Sea Around Us global catch reconstruction data  

(www.seaaroundus.org) and extracted the total annual catch estimated to be caught from  

countries’ EEZs for the period 1950-2016. These catch data are herein referred to as “observed  

data”. We only included taxa that were reported at the species level. Similar to the analysis of  

SST, for each catch time-series, we applied a decadal running mean (9-year average, and tested  

alternative windows (7-year and 11-year) to remove the long-term decadal trend that may be  

driven by changes in mean ocean conditions and fishing effort. We then calculated the annual  

catch anomalies relative to the filtered catch time-series. We assume that the interannual  

variations in fishing effort over a decade relative to the long-term mean trend largely did not  

change within the EEZ. We used the entire time-series from 1950-2016 to ensure that we have  

sufficient samples of marine annual high temperature extremes for each EEZ. According to our  

definition of marine annual temperature extreme, an average of three high temperature extremes  



are identified in each EEZ between 1950 and 2016. The limited sample size increases the  

challenges to use the observed catch data to statistically evaluate the projected impacts of  

temperature extremes on catch potential.    

  

We further examined the effects of marine high temperature extremes at each EEZ using the  

DBEM projected catch potential and SAU catch data. For each EEZ, we tested the effects of high  

temperature extremes on fisheries as indicated by catch anomalies relative to the decadal-scale  

mean and used the different studied species as a random effect (allowing for variations in the  

effects between species). We mapped the effects of marine high temperature extremes based on  

the DBEM outputs and Sea Around Us catch anomalies, separately, as well as their agreement or  

disagreement in the direction of impacts. Overall, the effects of marine high temperature events  

are estimated to be negative in 134 EEZs in based on both DBEM outputs and the Sea Around Us  

catch anomalies while 20 EEZs are positively impacted (Fig. S11).   

  
  
   



Figs. S1 to S11  

  

Fig. S1. Exclusive Economic Zones (in white) - regions of the world’s ocean.  

   



  

  

Fig S2. The probability of occurrence and intensity of marine annual high temperature  

extremes across all Exclusive Economic Zones (EEZs) from 1981 to 2100 under the RCP8.5  

scenario. (A) The probability of occurrence of a marine annual high temperature extreme  

averaged over all EEZs; (B) the intensity of marine annual high temperature extremes averaged  

over all EEZs indicated by the annual sea surface temperature anomalies of each ensemble  



member relative to the ensemble mean. Dark dots represent mean values and the vertical lines  

represent standard deviation across EEZs. Marine annual high temperature extremes are identified  

from the projected changes in sea surface temperature (SST) from the 10 ensemble members of  

GFDL-ESM2M. The SST anomalies during a marine annual high temperature extreme decrease  

very slightly over time (-0.0002oC year-1, p<0.05, Table S3) because of the projected reduction in  

sea surface temperature variability in the tropical Pacific region as reported in previous studies  

(83). Such a trend in temperature variability is characteristic of a subset of Earth system models,  

including the GFDL-ESM2M employed in this study (84). Further studies with additional large  

ensemble simulations of different Earth system models are needed to examine the robustness of  

such trend.  

   



  

  

Fig. S3. Distribution of the rate of change in annual mean sea surface temperature (SST)  

and the average intensity of marine annual high temperature extreme from 1981 to 2100  

across all Exclusive Economic Zones (EEZs). The mean rates of SST change across the 10 large  

ensemble members are estimated by linear regression of annual average SST against time (year).  

To make the rate of change in temperature comparable between the estimated mean changes and  

marine annual high temperature extreme, we express the rate of mean change as changes in SST  

per decade while the rate of marine annual high temperature extreme intensity changes is in SST  

per year. Assuming a linear change in temperature over this time period in each EEZ, the rate of  

warming is 0.021 ± 0.005oC year-1 (Table S3).   

  
  

 



   



  

  

Fig. S4. Illustration of the four main steps in developing and applying an Artificial Neural  

Network to project ex-vessel prices for the studied fisheries stocks.   

  



  

Fig. S5. Reported and predicted total marine employment by countries in the world. The black  

line represents a linear regression between the observed and predicted employment, which is not  

significantly different (p>0.05, R2=0.99) from a 1:1 relationship.   

  
   



  
  
  

  
Fig. S6. Projected annual average sea surface temperature in the Exclusive Economic Zone  

of USA (Pacific Ocean) from 1950 to 2100 from the 10 members of the large ensemble  

simulations of the GFDL Earth system model (triangles, each colour represents one  

ensemble member). The red crosses represent the annual average sea surface temperature of  

identified marine annual high temperature extremes. The black solid line represents the annual  

average sea surface temperature across ensemble members while the dashed red line represents  

the smoothed ensemble member-averaged sea surface temperature.  

  
  



  
Fig. S7. Changes in projected biomass of California sardine (Engraulis mordax) in the  

Exclusive Economic Zone of USA (Pacific Ocean) relative to the average of 1951 - 1970 as  

estimated by the DBEM model driven by the 10 members of the large ensemble simulations  

of the GFDL Earth system model (triangles, each colour represents one ensemble member).  

The red crosses represent the changes in biomass in years of identified marine annual high  

temperature extremes. The black solid line represents the annual average changes in biomass  

across ensemble members while the dashed red line represents the smoothed ensemble member- 

averaged changes in biomass.  

  
  



      

  
  
Fig. S8. Changes in projected revenue (project ex-vessel price x catch potential) of  

California sardine (Engraulis mordax) in the Exclusive Economic Zone of USA (Pacific  

Ocean) relative to the average of 1951 - 1970 by the DBEM model that is driven by the 10  

members of the large ensemble simulations of the GFDL Earth system model (triangles,  

each colour represents one ensemble member). The red crosses represent the changes in  

revenue in years of identified marine annual high temperature extremes. The black solid line  

represents the annual average changes in revenue across ensemble members while the dashed red  

line represents the smoothed ensemble member-averaged changes in revenue.  

  
  
  



  

  

Fig. S9. Distribution of projected total catch from the Exclusive Economic Zone of USA  

(Pacific Ocean) from 2081 to 2100. (A) Scenarios with harvest control rule fisheries  

management and (B) no fisheries management.   

   



  

  

Figure S10. Comparison between annual sea surface temperature anomalies relative to mean  

conditions by EEZs (A: median, B: maximum) estimated from observed data and model  

projections during the historical period (1951-2016). The relationships in both (A) and (B), as  

represented by the regression lines (linear regression) and the 95% confidence intervals (shaded  

area), are significant at 0.05 level.   



  

Figure S11. Comparison of estimated average catch anomalies across stocks between Sea Around  

Us catch reconstruction data (www.seaaroundus.org) and the simulated catch potential from the  

dynamic bioclimate envelope model (DBEM) in the past (1951 – 2016): average catch anomalies  

from (A) Sea Around Us data and (B) simulated potential catches (% relative to the decadal-scale  

mean)  by EEZ and (C) comparison of the direction of impacts (red: agreement in direction of  

impacts, blue: disagreement in direction of impacts, grey: ambiguous, meaning that the effects of  

marine annual temperature extremes estimated from both the model simulations and catch records  

agree in the direction of changes, but are not significantly different from zero (p>0.05).    



Table S1 – S8  
  
Table S1. Total catch, proportion of catch from pelagic fishes and the number of fisheries  
stocks by ocean basin as defined by the United Nations Food and Agriculture Organization  
(FAO) Statistical Area. For anadromous species, our model represents the marine phase of  
their life-cycle only.  

FAO Area 
Total catch 
1 (million t) 

Proportion 
from pelagic 
fishes (%) 

Fish 
stocks2 
(number
) 

Invertebr
ate stocks2 
(number) 

All 
stocks2 
(number) 

Arctic 0.24 0.06 42 3 45 

Northwest Atlantic 2.59 25.36 320 42 362 

Northeast Atlantic 8.85 47.46 1844 376 2220 

Western Central 
Atlantic 3.12 33.88 1553 121 1674 

Eastern Central 
Atlantic 3.3 74.83 2328 188 2516 

Mediterranean and 
Black Sea 1.92 72.76 1983 309 2292 

Southwest Atlantic 3.67 34.23 377 49 426 

Southeast Atlantic 0.96 83.48 442 27 469 

Antarctic Atlantic 0.06 0.02 30 3 33 

Western Indian Ocean 1.89 73.45 987 59 1046 

Eastern Indian Ocean 3.50 74.84 665 95 760 

Antarctic, Southern 
Indian Ocean 0.01 5.24 25 0 25 

Northwest Pacific 15.24 23.75 556 126 682 

Northeast Pacific 7.39 12.41 170 27 197 



Western Central 
Pacific 7.56 46.39 1266 186 1452 

Eastern Central Pacific 1.52 64.21 503 45 548 

Southwest Pacific 0.41 9.55 461 22 483 

Southeast Pacific 8.61 70.36 243 48 291 

1. Total catches from species included in our analysis are based on the Sea Around Us catch  
database (www.seaaroundus.org) for year 2010.   
2. A fish stock is defined by a species occurring in an exclusive economic zone. A stock may  
occur in two or more FAO area, therefore, the total number stocks across FAO area is more than  
the total number of assessed stocks in this study.  
  
  
   



Table S2. Components of the integrated climate-biodiversity-fisheries-economics impact  
model and their main outputs, demonstrated performances and main gaps and  
uncertainties.  
Model 
components 

Main 
outputs* 

Demonstrated 
performance 

Main gaps References 

Earth system 
model GFDL 
ESM2M 

Marine 
heatwaves 
and other 
ocean 
conditions  

The model 
simulates well the 
spatial pattern of 
maximum daily 
intensity of 
marine heatwaves 
with high 
intensity in the 
high northern 
latitudes, the 
eastern equatorial 
Pacific and the 
northern Part of 
the Southern 
Ocean. Lower 
intensities are 
simulated in the 
in the subtropical 
gyres, similar as 
shown by 
observations 
based on the 
NOAA’s daily 
Optimum 
Interpolation SST 
(OISST) analysis 
product.   
 
The GFDL 
ESM2M model 
also captures very 
well the long-
term trend in 
global mean SST 
over the historical 
period. Global 
SST is simulated 
to increase by 
0.13°C decade-1 
from 1982 to 
2019. This is in 
very close 
agreement with 
the observed 

The coarse-
resolution 
models of  
GFDL ESM2M 
that do not 
represent well 
the meso-scale 
physical and 
biogeochemical 
processes that 
are important in 
driving large-
scale processes 
of some coastal 
ecosystems such 
as eastern 
boundary 
upwelling 
systems.   

(85, 86) 



increase of 
0.16°C decade-1.  
 
Also both the 
model and the 
satellite-based 
observation data 
indicate an 
increase of 
marine heatwave 
days per year over 
the 1982-2019 
period when 
defining marine 
heatwave relative 
to a fixed 1982-
2019 baseline 
period.  
 
In addition, the 
GFDL ESM2M 
projections of 
ocean 
biogeochemical 
conditions, such 
as pH or 
dissolved oxygen 
are in close 
agreement with 
other CMIP5-type 
models. 
 
In summary, the 
very good 
agreement 
between the 
simulated present-
day heatwave 
characteristics 
and the 
observational-
based 
characteristics, 
apart from the 
duration, in 
addition to the 
model’s fidelity 
in simulating 
recent trends in 
marine heatwave 



characteristics as 
well as future 
ocean 
biogeochemical 
conditions gives 
us great 
confidence in 
using this model 
for analyzing 
marine heatwave 
impacts at the 
global scale.  

Dynamic 
bioclimate 
envelope 
model 

Geographic 
range, 
biomass and 
catches 

Comparison of 
projected 
geographic range 
of species and 
occurrence has a 
median Area 
Under Curve 
(AUC) value of 
0.82 (target range 
= 0.5 – 1.0) and 
projected species 
number by 
geographic area is 
significantly 
correlated with 
observations.   
 
Projected spatial 
distribution of 
maximum catch 
potential is 
significantly 
correlated with 
reported catches 
(reported catches 
are not used in 
determining the 
spatial 
distribution of the 
catches). 
 
Projected changes 
in total biomass 
are consistent 
with projections 
from six other 
global marine 
ecosystem models 

Comparison 
between the 
model outputs 
and historical 
time-series of 
catch and 
biomass has not 
been tested 
because of the 
complexity in 
attributing the 
observed 
changes that is 
due to changes 
in climate 
induced changes 
in catch 
potential. 
 
 

(29, 87–89); 
Supplementary 
Materials here. 



that are 
structurally 
different and 
tested 
independently. 
 
Projected and 
observed catches 
under annual 
temperature 
extremes are 
significantly 
related. 
 

Price 
projection 
model 

Ex-vessel 
price  

Projection for the 
recent past 10 
years significantly 
related to reported 
prices.  

Ability of the 
model to project 
prices with 
inputs that are 
substantially out 
of the same 
range has not be 
carried out. 

Supplementary 
Materials here. 

Livelihood 
project model 

No. of 
fisheries-
related jobs 

Projections from 
model developed 
using 75% of 
reported data 
significantly 
related to the 
values of the 
remaining 25% of 
the data reserved 
for testing 

Abilities of the 
model to project 
jobs with inputs 
that are 
substantially out 
of the same 
range and 
through time 
have not been 
tested. 

(90) 

Effort 
dynamic 
model 
(EDM) 

Fishing effort 
and catches 

Simulated catches 
by countries from 
the EDM are 
fitted to observed 
annual catch 
records from 
1950 to 2014.  
 
Simulated 
nominal and 
effective fishing 
effort agree 
qualitatively with 
estimates based 
on observational 
data.    

Limited 
observational 
records on some 
model 
parameters such 
as fishing cost 
for specific 
fishing gear 
type, fishing 
effort 
investment/re-
investment, 
stock biomass 
time-series are 
available to 
constraint the 
model.  Also, 
the model 

(91) 



 

framework does 
not account for 
non-market data, 
seasonal non-
fishing 
employment and 
benefits that 
change fishing 
effort. 
Moreover, non-
economic 
factors affecting 
individual 
fisher’s decision 
has not been 
accounted for. 
For example, 
fishers may also 
make decision 
based on other 
factors such as 
safety issues 
linked to travel 
times and 
weather, 
traditional 
preferences, etc. 

* Outputs that are relevant to this study, see Materials and methods,  
  
   



Table S3. Test statistics of a generalized linear model with poisson distribution between the  

probability of occurrence of marine annual high temperature extreme in an Exclusive  

Economic Zone and year from 1981 to 2100.   

Factors Estimate Standard error t-value p-value 

Intercept 0.007 0.133 393.94 <0.01 

Year -0.02 <0.001 -20.94 <0.01 
  
  
Table S4. Test statistics of a linear model between annual average sea surface temperature  

anomalies during marine annual high temperature extremes in the EEZs and year from  

1981 to 2100.   

Factors Estimate Standard error t-value p-value 

Intercept 0.7326 0.0065 112.037 <0.01 

Year -0.0002 0.0001 -2.797 <0.01 
  
  
   



Table S5. Parameters of the generalized linear models used in predicting fisheries-related 

employment. Predictions from Model 1 and Model 2 were used and the outputs were averaged 

and weighted by their Akaike Information Criterion (AIC). 

  Estimated 
(Model 1) 

Estimated 
(Model 2) 

Intercept 1.825 4.436 

Rural population (ruralpopulation, log-transformed) 0.321 3.358 

Total catches (Y) 0.677 3.354 

GDP per capita (25th quartile to median) (gdppc2) -0.635 -0.986 

GDP per capita (median to 75th quartile) (gdppc2) 2.256 -2.026 

GDP per capita (75th quartile to maximum) (gdppc3) 2.067 -2.606 

GDP per capita (25th quartile to median)*log(Y) -0.035 NA 

GDP per capita (median to 75th quartile)*log(Y) -0.436 NA 

GDP per capita (75th quartile to maximum)*log(Y) -0.471 NA 

AIC 455 464 

 
  



Table S6. Test statistics of the linear mixed effect model for the relationship between catch 
anomalies from marine annual high temperature extremes (MAE) and marine cold spells. 

Variables Estimate Standard 
error 

Degree of 
freedom 

t-value p-value 

Intercept -1.215 0.233 281 -9.98 <0.0001 

Factor(MAE) -2.312 0.128 19893 -9.52 <0.0001 

 

 
Table S7. Test statistics of the linear mixed effect model for the relationship between sea 
surface and sea bottom temperature anomalies during marine annual high temperature 
extremes. 

Variables Estimate Standard error t-value p-value 

Intercept -0.0064 0.0032 -2.015 0.0439 

SSTAnom 0.1508 0.0179 8.417 <0.0001 

 
 
 
Table S8. Test statistics of comparison between the temperature preference ranges of 
pelagic and demersal species.  

Coefficients Estimate Standard error t-value p-value 

Intercept 17.46 0.26 66.98 <0.0001 

Pelagic -6.71 0.59 -11.40 <0.0001 
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