
Appendix 2: Mixture Evolution Model and the Conditional Probabilities to Update

Motif Instances

Before we go into details, we restate all the notations in Table 2 and give an example of

some terms on the phylogenetic tree for three species in Fig. 5 below.

m       Number of current species; there are m – 1 ancestral species.

n        Number of genes in one species.

I        Species set. }22,,1,0{ −= mI L .

Θ       Motif model for species 0, the root species.

0Θ      Background model for species 0.

iM 0     Background substitution matrix at the ith branch of the tree, i = 0, 1, ..., 2m – 3.

iM1     Motif substitution matrix at the ith branch of the tree, i = 0, 1, ..., 2m – 3.

ip       Probability of a gene containing motif instances in the ith species, Ii∈ .

w        Motif width.
)(iA     Motif instance set in the ith species, Ii∈ .
)(i

jA     The motif instance in the jth gene of ith species, Ii∈ .

)(i
jkA     The kth nucleotide in the motif instance in the jth gene of ith species, Ii∈ .

S         The set of regulatory sequences from all the current species.
)(i

jS     The regulatory sequence of the jth gene in the ith species, Ii∈ .



Fig. 5. Current species 1, 2, and 3 are at the bottom of the tree, from the left to the right.

Note that the current species 1, 2, and 3 are the same as species 2, 3, and 4, respectively.

p2 is the probability that the genes in current species 1 will inherit the motif instances. p3

and p4 have similar meanings.

We assume that the sequences of coregulated genes in the ancestral species at the root of

the phylogenetic tree were generated from a mixture model, in which background

sequences were generated from the multinomial distribution with parameter 0Θ while

motif instances were generated from the product multinomial distribution with

parameter ),,( 1 wΘΘ=Θ L , where each iΘ is a multinomial distribution and w is the

motif width. The background sequences and motif instances evolved according to two

different continuous Markov chain models, i.e., at the ith branch of the tree, the

background sequences in the parent species evolved according to a background

substitution matrix iM 0  while the nucleotides in the motif instances evolved according to

a motif substitution matrix iM1 .



To understand this mixture model, we now describe the likelihood of observing the

sequences in the current species, for the case m = 2. Similar procedures can be performed

for other cases.

For two species, the likelihood, given all motif instances including the ancestral ones

given, for all parameters, is as follows

∏ ∑ ∏∏
= ==

ΘΘ=

=ΘΘ==
n

j S i
i

c
j

ci
j

c
j

i
iij

i
jj

iii
i

j

c
j

MSSSpMAAA

iMMwpnjiAS

1 )(

2

1
0

)0()(
0

)0(
2

1
1

)0()()0(

100
)(

)0()]},)(|)(Pr()|)[Pr((),,|Pr()|{Pr(

)2,1,,,,,,|,,1;2,1,0,,Pr(

)0(

L

where ci
jS )( )( means all other nucleotides except those in the motif instances in the jth

gene of the ith species. Note that the randomness of c
jS )( )0(  will not affect that of )(i

jA .

This is so because, according to the correspondences among sequences of the same gene

across different species, motif instances and background sequences in the current species

evolved independently from the motif instances and background sequence in the ancestral

species, respectively.

Assume there are 'n motif instances in )0(A  and all the 'n  motif instances are aligned,

there are kln  nucleotides l ( l  = A, C, G, or T) at the kth position in the alignment

( wk ,,1 L= ). Then we can integrate out Θ , in the above formula (0) by multiplying a

Dirichlet prior (with parameter 0.5) forΘ , with
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to obtain the formula for a marginal likelihood:
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Formula 1 gives the marginal likelihood, given all motif instances, for the remaining

parameters with Θ integrated out. From formula 1, it is easy to derive the conditional

distribution of )0(
1A given all other motif instances and all parameters (withoutΘ ) as

follows:
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Note that we can cancel the probabilities for the background evolution in the denominator

and nominator at the second step above. Thus, even though the definition of the

likelihood in the formula 0 depends on the ancestral background sequences, these

unobserved sequences are actually not needed in the Gibbs updating step.

According to the formula 2, we can sample )0(
1A in two steps. We calculate the weight

matrix by using all )0(
jA  except )0(

1A . Then we calculate the probability of )0(
1A based on

the weight matrix and )(
1

iA  for 2,1=i . More precisely, the second step can be

implemented position by position for all the positions in )0(
1A . An example is given for the



met10 orthologous gene in two yeast species, Saccharomyces cerevisiae and

Saccharomyces mikatae in the paper.

To calculate the conditional probability of )1(
1A given all other motif instances and all

parameters is straightforward from formula 1, which is ),|Pr( 1
)0(

1
)(

1 i
i MAA . See the

example in the section of the motif instance sampling step in the main paper.


