TABLE S1.	Hyperparameters	for pretra	ined networks
-----------	-----------------	------------	---------------

TABLE S1. Hyperparameters for pretrained networks		TABLE S2. Hyperparameters for SPIB		
Hyperparameter	TorchMD-ET and ViSNet	Hyperparameter	Shared	
d	64, 128, 256, 384	Batch size	1000	
# of MP layers	6	Learning rate	0.0002	
# of attention heads	8	Optimizer	AdamAtan2	
Batch size	100	Training patience	5	
Epochs	10	MLP hidden dimension	64	
# of RBFs	64	MLP activation function	SiLU	
$r_{\rm cut}$ (Å)	5, 7.5	Embedding dimension (d)	64	
Learning rate	0.0005	Dropout	0.2	
Optimizer	AdamW (AMSGrad)	Batch normalization	False	
Noise level (Å)	0.2	Label refinement frequency	5	
		Architectures	SubForm	mer/SubMixer
		GVP		Yes
		# of GVP layers		3
		# of transformer/mixer layers		3
		Expansion factor		2
		Global token True		
			Villin	Trp-cage
		Trajectory stride	2	4
		Training lag time (ns)	20	10

TABLE S3. Hyperparameters for VAMPnets. For GVP variants tested on villin, the architecture is consistent with the ones used in SPIB tasks.

Hyperparameter	Chignolin	Villin	Trp-cage
Batch size	5000	5000/1000	5000/1000
Learning rate	0.0002	0.0002	0.0002
Optimizer	$AdamAtan2^{81}$	AdamAtan2	AdamAtan2
Maximum epochs	20	20	20
Training patience	5	500	500
Validation patience	2	10	10
Validation interval	5	50	50
MLP hidden dimension	256	128/64	128/64
MLP activation function	SiLU	SiLU	SiLU
Trajectory stride	1	2	4
Training lag time (ns)	4	20	10
Embedding dimension (d)	256	128/64	128/64
Dropout	0.2	0.2	0.2
Batch normalization	False	False	False
Output dimension (d_o)	2	3	4
Architectures	MLP/SubFormer/SubMixer	MLP/SubFormer/SubMixer	MLP/SubFormer/SubMixer
GVP	No	Yes	No
Expansion factor	2	2	2
Global token	False	True	False

Appendix E: Supplementary Figures

FIG. S1. Training curves for VAMPnets. Each curve represents the mean of three training runs. Shaded regions indicate standard error over three runs.

FIG. S2. Validation curves for VAMPnets. Each curve represents the mean of three training runs. Shaded regions indicate standard error over three runs.

FIG. S3. PMFs as a function of VAMP CVs for chignolin. From top to bottom, VAMPnets were trained with no token mixer (Sum), SubMixer, or SubFormer. Each column shows the result from a single training run. Contours are drawn every 1 kcal/mol.

FIG. S4. PMFs as a function of VAMP CVs for trp-cage. From top to bottom, VAMPnets were trained with no token mixer (Sum), SubMixer, or SubFormer. Each column shows the result from a single training run. Contours are drawn every 1 kcal/mol.

FIG. S5. PMFs as a function of VAMP CVs for villin. From top to bottom, VAMPnets were trained with no token mixer (Sum), SubMixer, SubMixer-GVP, SubFormer, or SubFormer-GVP. Each column shows the result from a single training run. Contours are drawn every 1 kcal/mol.

FIG. S6. Trp-cage VAMPnet (with SubMixer) CVs as a function of two physical coordinates: C_{α} RMSD of helix 1 (residues 2–9) and C_{α} RMSD of helix 2 (residues 11–14). The C_{α} RMSDs were computed with respect to the PDB structure 2JOF⁶⁴.

FIG. S7. Villin VAMPnet (with SubFormer) CVs as a function of two physical coordinates: C_{α} RMSD of helices 1 and 2 (residues 3–10 and 14–19), and C_{α} RMSD of helices 2 and 3 (residues 14–19 and 22–32). The C_{α} RMSDs were computed with respect to the PDB structure $2F4K^{67}$.

FIG. S8. Log-scaled attention weight heatmaps for trp-cage SPIB states 0 to 4 from three layers of SubFormer-GVP. Each subplot displays attention weights with color-coded tick labels based on normalized sums. Colorbars indicate log-scaled attention values.

FIG. S9. Log-scaled attention weight heatmaps for trp-cage SPIB states 5 to 9 from three layers of SubFormer-GVP. Each subplot displays attention weights with color-coded tick labels based on normalized sums. Colorbars indicate log-scaled attention values.

FIG. S10. Log-scaled attention weight heatmaps for trp-cage SPIB states 10 to 12 from three layers of SubFormer-GVP. Each subplot displays attention weights with color-coded tick labels based on normalized sums. Colorbars indicate log-scaled attention values.

FIG. S11. Log-scaled attention weight heatmaps for villin SPIB states 0 to 3 from three layers of SubFormer-GVP. Each subplot displays attention weights with color-coded tick labels based on normalized sums. Colorbars indicate log-scaled attention values.

FIG. S12. Log-scaled attention weight heatmaps for villin SPIB states 4 to 7 from three layers of SubFormer-GVP. Each subplot displays attention weights with color-coded tick labels based on normalized sums. Colorbars indicate log-scaled attention values.

FIG. S13. Log-scaled attention weight heatmaps for villin SPIB states 8 to 10 from three layers of SubFormer-GVP. Each subplot displays attention weights with color-coded tick labels based on normalized sums. Colorbars indicate log-scaled attention values.

FIG. S14. Comparison of time and GPU memory usage of TorchMD-ET in training and inference modes on the trp-cage (left) and villin (right) subsets, each consisting of 2000 frames with 100 frames per batch. The measurements are done without specific objective functions for usage benchmarking purposes. The model's performance is evaluated across varying numbers of hidden channels (64, 128, 256, 384) and layers (1–6). The heatmaps on the left show GPU memory allocated in gigabytes (GB), while the heatmaps on the right depict time usage in seconds. The time represents one forward pass for inference mode and one forward plus one backward pass for training mode. Measurements were performed on an NVIDIA A100 GPU with 40G of memory. Missing values are due to out-of-memory errors for certain configurations.