
Using pretrained graph neural networks with token mixers as geometric
featurizers for conformational dynamics

Zihan Pengmei,1 Chatipat Lorpaiboon,1 Spencer C. Guo,1 Jonathan Weare,2 and Aaron R. Dinner1, a)
1)Department of Chemistry and James Franck Institute, University of Chicago, Chicago, Illinois 60637,
United States
2)Courant Institute of Mathematical Sciences, New York University, New York, New York 10012,
United States

Identifying informative low-dimensional features that characterize dynamics in molecular simulations remains
a challenge, often requiring extensive manual tuning and system-specific knowledge. Here, we introduce
geom2vec, in which pretrained graph neural networks (GNNs) are used as universal geometric featurizers. By
pretraining equivariant GNNs on a large dataset of molecular conformations with a self-supervised denoising
objective, we obtain transferable structural representations that are useful for learning conformational dy-
namics without further fine-tuning. We show how the learned GNN representations can capture interpretable
relationships between structural units (tokens) by combining them with expressive token mixers. Importantly,
decoupling training the GNNs from training for downstream tasks enables analysis of larger molecular graphs
(such as small proteins at all-atom resolution) with limited computational resources. In these ways, geom2vec
eliminates the need for manual feature selection and increases the robustness of simulation analyses.

I. INTRODUCTION

Molecular dynamics simulations can provide atomistic
insight into complex reaction dynamics, but their high
dimensionality makes them hard to interpret. Analyz-
ing simulations thus relies on identifying low-dimensional
representations (features), but care is needed in choosing
them because they can strongly impact conclusions1–4.
Often features are selected manually, but doing so re-
lies on system-specific intuition. Because developing in-
tuition is often the goal of simulations, many researchers
instead have turned to machine-learning methods for con-
structing features that capture observed variance (e.g.,
principal component analysis)5–7 or decorrelate slowly
according to the simulation data (e.g., the variational ap-
proach for Markov processes, VAMP)8–12. While these
objectives are not always aligned with the reaction of
interest3,4,13,14, such features can serve as useful interme-
diaries for computing reaction-specific statistics14,15 that
provide a principled way for evaluating mechanisms16–18.

Generally the inputs to the machine-learning methods
above are internal coordinates such as distances between
selected atoms and dihedral angles because they are in-
variant to translations and rotations of the system. How-
ever, the nonlocal nature of these coordinates and/or
their effects (e.g., the rotation of a dihedral angle in a
polymer backbone) can make the resulting features both
ineffective and hard to interpret, and these issues become
more significant with system size16,17. Additionally, it is
not obvious how to represent permutationally invariant
species such as solvent molecules with internal coordi-
nates; recently introduced machine learning approaches
for treating such species do not scale well with system
size19.

a)Electronic mail: dinner@uchicago.edu

Because atoms and their interactions (through bond
or through space) can be viewed as the nodes and edges
of graphs, molecular information can be readily encoded
in graph representations (e.g., graph neural networks,
GNNs). Importantly, graph representations can be con-
structed in ways that respect the symmetries of molecu-
lar systems, with translational, rotational, and permuta-
tional invariance and equivariance. Equivariance allows,
for example, GNNs to output forces that rotate with the
system, and appears to improve learning20–22. Owing
to both their conceptual appeal and their performance,
GNNs now dominate machine learning for force fields
and molecular property prediction22–26. They also are
being successfully used to learn representations of larger
molecules for tasks such as protein structure prediction,
design, fold classification, and function prediction27–30.

The tasks above concern prediction of static properties,
including structures. Because molecular dynamics tra-
jectories consist of sequences of structures, GNNs should
be useful for identifying features for computing reaction
statistics, and several groups have combined GNNs with
VAMP8 to learn metastable states and relaxation time
scales of both materials and biomolecules31–35. These
groups report improved variational scores, convergence
for shorter lag times, and more interpretable learned rep-
resentations relative to VAMPnets based on fully con-
nected networks. However, existing GNNs for analyz-
ing dynamics do not readily scale to large numbers of
atoms, so the graphs in these studies are small, either be-
cause the molecules are small, or only a subset of atoms
(e.g., the Cα atoms of proteins) are used as inputs. Fur-
thermore, training these GNNs is computationally costly,
limiting the number of architectures that can be explored
and their use for other types of analyses.

The key idea of this paper is that GNNs can be pre-
trained using independent structural data prior to their
use to analyze dynamics, thus decoupling GNN train-
ing from training for downstream tasks. Pretraining

ar
X

iv
:2

40
9.

19
83

8v
2

 [
cs

.L
G

]
 3

1
D

ec
 2

02
4

mailto:dinner@uchicago.edu

2

has transformed other domains such as natural language
processing (NLP) and computer vision, enabling high-
dimensional latent representations of words (“tokens”)36
or images (“patches”)37 to be learned by self-supervised,
auto-regressive training. In NLP, word2vec pioneered the
idea of using learnable vector representations for words
by assigning them based on the word itself and its sur-
rounding context38; these representations could then be
used for diverse downstream tasks. Inspired by word2vec,
we propose geom2vec, an approach that leverages pre-
trained GNNs to learn transferable vector representations
for molecular geometries.

Various pretraining strategies have been tried in molec-
ular contexts27,28,30,39–41, but in contrast to complex pre-
training and encoding schemes devised for specific classes
of molecules27,30, we use a scheme that can be applied
generally. Building on the idea that corrupting data
with noise and training a model to reconstruct the orig-
inal data (denoising) can lead to learning meaningful
representations for generative models42,43, Zaidi et al. 40

showed that denoising atomic coordinates of structures
of organic molecules significantly improved GNN per-
formance on a number of molecular property prediction
benchmarks.

Here, we show that this simple pretraining scheme
also enables analysis of molecular dynamics simulations.
Specifically, we pretrain GNNs using the same denoising
objective and a dataset of structures of organic molecules
obtained with density functional theory44 and analyze
protein molecular dynamics simulations with the result-
ing representations. We consider two tasks: learning
slowly decorrelating modes with VAMP8 and identifying
metastable states with the state predictive information
bottleneck (SPIB) framework45,46. We show that neu-
ral networks trained using the GNN representations can
readily take all non-hydrogen atoms in a small protein
as inputs, enabling, for example, discovery of side chain
dynamics that are important for folding. By decoupling
learning molecular representations from training for spe-
cific tasks, our method naturally accommodates alterna-
tive pretraining schemes27,47 and datasets48 (e.g., ones
specific to particular classes of molecules), as well as other
possible tasks49–52.

II. METHODS

The basic idea of our method is to pretrain a GNN
using a suitable task (here, denoising molecular coordi-
nates) and then to use it with the resulting parameter
values fixed as a feature encoder for other (downstream)
tasks, as summarized in Figure 1. In this section, we
provide an overview of the network architecture that we
use and then describe its elaboration for the pretraining
and downstream tasks; further details are provided in
the Appendices. We refer to the workflow of transform-
ing the atomic coordinates to representation vectors (i.e.,
features) and the use of those vectors as “geom2vec.”

A. Network architecture

As noted above, our goal is learn a mapping from
Cartesian coordinates to representation vectors via a
GNN. There are many existing GNN architectures from
which to choose23. Here, we use the ViSNet53 architec-
ture, which is built on TorchMD-ET54. These are both
equivariant geometric graph transformers with modified
attention mechanisms that suppress interactions between
distant atoms; ViSNet goes beyond TorchMD-ET in us-
ing (standard and improper) dihedral angle information
in its internal representations. We take the activations
after the last message-passing layer as the representations
for downstream computations. These representations in-
clude three-dimensional vector features, which change
appropriately with molecular translation and rotation,
and one-dimensional scalar features, which are invariant
to molecular translation and rotation. That is,

fGNN : R3N → R(1+3)dN , (1)

where N is the number of atoms, and d is the number
of features associated with each atom (equal to the di-
mension of the last update layer). We represent the com-
bined vector (vi ∈ R3d) and scalar (xi ∈ Rd) features for
atom i by hi ∈ R(1+3)d. We choose ViSNet because it
was previously shown to give accurate molecular prop-
erty predictions and accurate conformational distribu-
tions when used to learn a potential for molecular dynam-
ics simulations.53 We briefly introduce the TorchMD-ET
and ViSNet architectures in Appendices A 2 and A 3, and
we refer interested readers to the original publications
and Ref. 55 for further details.

B. Pretraining by denoising

For the pretraining, we draw random displacements
from a multivariate Gaussian distribution and add them
to the Cartesian coordinates of the molecules in the train-
ing set; we then train the GNN to predict the displace-
ments. This process is designed to encourage the network
to learn representations that capture the geometry of the
molecular conformations, and it can be viewed as learn-
ing a force field with energy minima close to the training
set geometries40. We choose this objective because struc-
tural data are more readily available than energetic data,
especially for large molecules such as proteins.

Here, we use the OrbNet Denali dataset, which consists
of 215,000 molecules and complexes (with an average of
45 atoms) with 2.3 million conformations sampled from
molecular trajectories44. We randomly select 10,000 con-
formations for validation and use the remainder for train-
ing.

Following Zaidi et al. 40 , we pretrain the model by pass-
ing the (1 + 3)d features for each atom (graph node)
from the ViSNet architecture through a gated equivari-
ant block (Algorithm 1) that combines the d scalar and

3

X0 Xt

downstream
tasks

VAMPnet,
SPIB

frame features

dynamical information

tIC 1

tIC
2

molecular simulations

geometric features

frozen
GNN

encoder

valid structures

hi

denoising
objective

learned GNN encoder

(a) (b) (c)

fGNN

FIG. 1. The geom2vec workflow. (a) A GNN encoder is pretrained using a denoising objective on a dataset of structures of
diverse molecules. (b) Geometric representations for configurations from molecular simulations are obtained by performing
inference with the pretrained GNN encoder. (c) The representations are used as inputs to a downstream task head (here, a
VAMPnet or SPIB), which is trained separately.

vector features to obtain a three-dimensional vector that
represents the predictions for the displacement of that
atom. We train for a fixed number of epochs and save
the parameters resulting in the lowest mean squared er-
ror (MSE) between the predicted and added atom dis-
placements for the validation set; for this comparison,
we normalize the added atom displacements to have zero
mean and unit variance. Further details, including hy-
perparameters, are given in Appendix D. Depending on
the network architecture, choice of hyperparameters, and
graphics card available, the one-time pretraining can take
from several hours to a few days.

C. Use of the representations

In this section, we discuss the operational details of
using the pretrained GNN for downstream tasks in gen-
eral (summarized in Figure 1). The specific downstream
tasks that we use for our numerical demonstrations are
described in Section III.

1. Atom selection

We first select the atoms of interest. For example,
when analyzing simulations with explicit solvent, we may
select only the solute coordinates. Given the molecular
coordinates, the pretrained GNN yields a learned repre-
sentation hi for each selected atom i. One can choose
to base the calculations for the downstream tasks on the
atomic representation vectors and/or the sums over their
d scalar and vector elements, but in most cases we reduce
the size of the graph by coarse-graining it.

2. Coarse-graining

Let S = {S1, . . . , SM} be a partition of the atoms into
M disjoint subsets, where each subset Sm contains atoms
belonging to a structural unit, such as a functional group
or monomer in a polymer, depending on the system. We
pool the atomic representations for each Sm:

h̄Sm
=
∑
i∈Sm

hi. (2)

Each resulting coarse-grained representation vector h̄Sm

represents the geometric information of the atoms within
its structural unit in an average sense. Following the NLP
literature, we refer to the coarse-grained representations
as structural “tokens.”

How to partition the atoms is the user’s choice, but
many systems have a natural structure. For example,
here we study proteins and pool the representations for
the atoms in each amino acid. In this case, the number
of nodes in the graph is reduced by an order of mag-
nitude. Coarse-graining reduces the computational cost
and memory, and it facilitates both learning long-range
relationships and interpretation of the results (e.g., at-
tention maps).

3. Feature combination

To use the coarse-grained tokens in a learning task,
we must combine their information in a useful fashion.
How best to do so depends on the structural properties
of interest, but we can generally lump approaches into
two categories:

4

• Pooling: We sum (or average) the coarse-grained
tokens to obtain a single, global representation of
the molecular system h̄ ∈ R(1+3)d. Note that this
approach is equivalent to pooling the atomic repre-
sentation vectors hi.

• Token mixing: This approach applies a learnable
mixing operation to the coarse-grained tokens to
capture their interactions and dependencies56. To-
ken mixers allow for greater expressivity than di-
rect pooling and can capture complex interactions
between structural units.

In this work, we employ two basic token mixers: (1) a
standard transformer architecture36, which we refer to
as “SubFormer,”57 and (2) an MLP-mixer architecture58,
which we refer to as “SubMixer.” Because the GNNs here
employ a message passing architecture (Appendix A), the
resulting features typically do not encode global geomet-
ric information. We show that this issue can be addressed
by combining SubFormer and SubMixer with a special
token that encodes global information59 such as pairwise
distances. Alternatively, they can be combined with geo-
metric vector perceptrons (GVPs), equivariant GNNs in-
troduced for biomolecular modeling60 to learn expressive
positional encodings (see Algorithms 2 and 3 in Appen-
dices B and C).

D. Output layers

Ultimately, we combine the features from the different
graph nodes and any graph-wide information (e.g., the
CLS token of the transformer) and use an MLP to out-
put quantities specific to a downstream task. Here, we
consider downstream tasks that require only scalar quan-
tities, so we input only the scalar features to the MLP,
but generally scalar (invariant) and vector (equivariant)
quantities can be input and output. We summarize the
overall scheme in Algorithm 3.

III. DOWNSTREAM TASKS

To assess whether the geom2vec representations are
useful for learning protein dynamics, we apply them to
learning slowly decorrelating modes with VAMP8 and
identifying metastable states with the state predictive in-
formation bottleneck (SPIB) framework45. As described
previously, we apply the pretrained GNN to the coor-
dinates from molecular dynamics trajectories and then
use the resulting features as inputs to the desired task
without further fine-tuning the GNN parameters. In this
section, we briefly describe the two downstream tasks
mathematically.

A. VAMPnets

Let Xt be a Markov process and define the correlation
functions

C00 = EX0∼µ[χ0(h̃(X0))χ
T
0 (h̃(X0))] (3)

C0τ = EX0∼µ[χ0(h̃(X0))χ
T
τ (h̃(Xτ))] (4)

Cττ = EX0∼µ[χτ (h̃(Xτ))χ
T
τ (h̃(Xτ))], (5)

where χ0 and χτ are vectors of functions and the expec-
tation is over trajectories initialized from an arbitrary
distribution µ. In our case, Xt represents the molecular
coordinates at time t and h̃(X) are the molecular fea-
tures from a pretrained GNN. The variational approach
for Markov processes (VAMP)8–12 states that χ0 and
χτ represent the slowest decorrelating modes (or collec-
tive variables; CVs) of the system when maximizing the
VAMP-2 score

VAMP-2 =
∥∥∥C−1/2

00 C0τC
−1/2
ττ

∥∥∥2
F
, (6)

where the subscript F denotes the Frobenius norm.
Operationally, the components of χ0 and χτ are

learned from data by representing them by parameter-
ized functions (e.g., neural networks in VAMPnets8,10;
the output of geom2vec in our case) and maximizing (6).
VAMPnets require one to specify the output dimension
do a priori. For the benchmark systems that we consider,
we choose do based on previous results in the literature.

As discussed below (Section IVD) we split each dataset
into training and validation sets, evaluating the valida-
tion score every 10 training steps. Each training step or
validation step, we randomly draw a batch of trajectory-
frame pairs spaced by τ to compute (6). We found that
a large batch size (at least 1000 and usually 5000 for the
examples here) was required to achieve a high validation
score. With smaller batch sizes, we encountered numeri-
cal instabilities when inverting the correlation matrices in
the VAMP-2 loss function (6). A large batch size is also
needed to minimize variance in the late phase of train-
ing because neural network outputs exhibit large changes
between metastable states, where fewer trajectory-frame
pairs contribute. To prevent overfitting, we apply an
early stopping criterion12: we stop training when the
training VAMP score does not increase for 500 batches
or the validation VAMP score does not increase for 10
batches. Further training details are given in Table S3.

B. State Predictive Information Bottleneck (SPIB)

In the information bottleneck (IB) framework, an
encoder-decoder setup is used to learn a low-dimensional
(latent) representation z that minimizes the information
from a high-dimensional input x while maximizing the
information about a target y. The associated loss func-

5

tion is

LIB = I(z,y)− βI(x, z), (7)

where I refers to the mutual information between two
random variables:

I(A,B) =

∫
p(A,B) ln

p(A,B)

p(A)p(B)
dAdB, (8)

and the parameter β controls the tradeoff between pre-
diction accuracy and the complexity of the latent repre-
sentation.

In the state predictive information bottleneck (SPIB)
extension of IB45, the inputs are molecular features at
time t, h̃(Xt), and the targets are state labels st that in-
dicate the state of the system at time t. The latent rep-
resentation and state labels are learned simultaneously
by predicting the state labels at time t + τ given the
molecular features at time t.

To learn the latent representation z, SPIB maximizes
the loss function

LSPIB = EX0∼µ,z∼pθ(z|h̃(X0))

[
ln qθ(sτ |z)

− β ln
pθ(z|h̃(X0))

rθ(z)

]
. (9)

The encoder generates the latent representation z
from the input with probability pθ(z|h̃(X)) =

N (z;µθ(h̃(X)),Σθ(h̃(X))), which is a multivariate nor-
mal distribution with learned mean µθ(h̃(X)) and
learned covariance Σθ(h̃(X)). The decoder takes the la-
tent representation z and returns the probability qθ(s|z)
of each state label s; qθ(s|z) is represented by a neural
network with output dimension equal to the number of
possible state labels. The quantity rθ(z) is a prior. The
state labels are updated during training as follows:

sτ = argmaxs qθ(s|µθ(h̃(Xτ))). (10)

It is important to note that (10) allows the number of dis-
tinct states that are populated to fluctuate (unpopulated
states are ignored).

We follow Wang and Tiwary 45 and use a variational
mixture of posteriors for the prior61:

rθ(z) =

∑
i ωipθ(z|ui)∑

i ωi
, (11)

where ω and u are learned parameters. In this work, we
prepared the initial state labels by performing k -means
clustering on the CVs learned from VAMPnets based
on distances between Cα atoms with k = 100 clusters.
Training reduces the number of distinct states that are
populated to the estimated number of metastable states.
Further training details are given in Table S2.

IV. SYSTEMS STUDIED

We examine the performance of geom2vec for analyz-
ing data from long molecular dynamics simulations of
three well-characterized fast-folding proteins (chignolin,
trp-cage, and villin)62. The data for each system is a sin-
gle, unbiased simulation, which we assume approximately
samples the equilibrium distribution. In this section, we
introduce each system and briefly describe its structure
and dynamics.

A. Chignolin

Chignolin is a 10-residue fast-folding protein with se-
quence YYDPETGTWY. The folded state consists of
three β-hairpin structures that are distinguished by hy-
drogen bonding between the threonine side chains and
their dihedral angles, which interconvert on the nanosec-
ond timescale63. The trajectory that we analyze is 106 µs
long at 340 K and saved every 0.2 ns62. For VAMPnet
fitting, we choose do = 3.

B. Trp-cage

Trp-cage is a 20-residue fast-folding protein64; here we
study the K8A mutant with sequence DAYAQWLADG-
GPSSGRPPPS. Its secondary structure consists of an α-
helix (residues 2–9), a short 310-helix (residues 11–14),
and a polyproline II helix (residues 17–19); the protein
takes its name from Trp6, which is in the core of the
folded state. The trajectory is 208 µs long at 290 K
and saved every 0.2 ns62. Previous studies of this trajec-
tory generally identified the folded and unfolded states,
with varying numbers of intermediates and misfolded
states46,65. For VAMPnet fitting, we choose do = 4.

C. Villin

The 35-residue villin headpiece subdomain (HP35)66
is a fast-folding protein with sequence LSDEDFKA-
VFGMTRSAFANLPLWnLQQHLnLKEKGLF where nL
refers to the unnatural amino acid norleucine. The
K65nL/N68H/K70nL mutant was engineered to fold
more rapidly67. The secondary structure of villin con-
sists of three α-helices at residues 3–10, 14–19, and 22–
32. Villin has a hydrophobic core centered on residues
Phe6, Phe10, and Phe17. The trajectory that we study
is 125 µs long at 360 K and saved every 0.2 ns62. Pre-
vious studies typically identified three states: a folded
state, an unfolded state, and a misfolded state12. Wang
et al. 68 proposed two primary folding pathways, where
either the C-terminus or the N-terminus folds first, ul-
timately leading to the native state. Additionally, a co-
operative hydrophobic interaction may facilitate a third

6

folding pathway. For VAMPnet fitting, we choose do = 3.

D. Training-validation split

Although previous studies used a random split8,33,50,
we observe that, due to the strong correlation between
successive structures sampled by molecular dynamics
simulations, a random split allows networks to achieve
high validation scores even when they have memorized
the training data rather than learned useful abstractions
from it; the models then perform poorly on independent
data. Consequently, for all our numerical experiments,
we split the data into training and validation sets by
time. That is, we select the first 50% of the long tra-
jectory for training and the remainder for validation. If
we had access to multiple independent trajectories, ran-
domly choosing trajectories for training and validation
would also be appropriate. Some studies split the tra-
jectory into equal segments and draw random segments
for training and validation46,65 (k -fold cross-validation).
When there are only two segments, this approach is iden-
tical to ours. When every structure is its own segment,
one recovers the random split. Intermediate numbers of
segments result in intermediate amounts of correlation
between the training and validation sets. In cases where
we vary the amount of training data, we first select the
first 50% of the trajectory and then divide only this half
of the trajectory into segments that we draw randomly
for training; the second half of trajectory is used as hold-
out validation set. This approach is fundamentally differ-
ent from cross-validation and minimizes the correlation
between the training and validation datasets.

V. RESULTS

A. VAMPNets

For each system and token mixer architecture pair that
we consider, we independently train three VAMPnets us-
ing different random number generator seeds (and the
training-validation split described in Section IVD). We
report the training and validation VAMP-2 scores for the
different token mixer architectures for each of the three
systems in Figures S1 and S2. For chignolin, GNNs with
pooling (summing), SubMixer, and SubFormer reach ap-
proximately the same maximum validation score. GNNs
with SubMixer and SubFormer require fewer epochs to
reach the convergence criteria, but they require more
computational time per epoch, as we discuss in Sec-
tion VI. For both villin and trp-cage, the token mixers
generally outperform pooling.

Figure 2 displays the VAMP-2 scores for VAMPNets
trained with different training dataset sizes, varying from
5% to 50% of the available data. For chignolin, the GNNs
clearly outperform a multilayer perceptron (MLP) that
takes distances between pairs of Cα atoms as inputs;

there is not a significant difference between pooling and
the mixers considered. For trp-cage and villin, the GNN
with pooling consistently achieves the lowest scores. The
distance-based MLP and GNN with SubMixer perform
comparably, presumably because the distances between
pairs of Cα atoms are sufficient to describe the folding (in
contrast to chignolin, as we discuss below). For villin,
we combined SubMixer and SubFormer with GVP and
augmented them with a global token; this enables the
GNNs to outperform the distance-based MLP. The im-
provement is particularly striking for SubFormer. The
models with GVP are more expressive because they use
the equivariant features at the token mixing stage and
directly mix them with global features after message-
passing. We note that the VAMP scores that we achieve
are lower than published ones owing to our choice of the
training-validation split (Section IVD) and output di-
mension do. While the amount of data does not signifi-
cantly impact the performance for chignolin, the trp-cage
and villin results suggest that additional data would per-
mit achieving higher scores.

To visualize the results, we build histograms of learned
CV-value pairs, which we convert to potentials of mean
force (PMFs) by taking the negative logarithm (Fig-
ures 3, S3, S4, and S5). We also show average values
of CVs as functions of physically-motivated coordinates
(Figures 4, S6, and S7).

The advantages of the GNN architecture are well illus-
trated by the results for chignolin. A previous machine-
learning study of chignolin identified two slow CVs, one
for the folding-unfolding transition and one distinguish-
ing competing folded states63. Our VAMPnets appear to
recover these two CVs (Figures 3 and S3; results shown
are with SubMixer), distinguishing folded and unfolded
states with CV 1 and four folded states with CV 2. To
understand the physical differences between the folded
states, we plot CVs 1 and 2 as functions of the fraction of
native contacts and the χ1 side chain dihedral of Thr6 or
Thr8 (Figure 4). The fraction of native contacts clearly
correlates with CV 1, consistent with earlier studies. CV
2 distinguishes the folded states by the configurations
of Thr6 and Thr8 side chains, which can each occupy
two rotamers, yielding four possible folded states. These
side chain dynamics could not be detected by VAMP-
nets that take backbone internal coordinates as inputs,
as is common, or even GNNs limited to backbone atoms
(Bonati, Piccini, and Parrinello 63 included distances to
side chain atoms and then manually curated the inputs).
This makes clear the usefulness of the pre-training ap-
proach that we take here, which enables treating all the
atoms with an architecture that supports both scalar and
vector features.

7

0.25 0.50 0.75 1.00

Fraction of training data

0.5

1.0

1.5

2.0

2.5

3.0
M
ax
.
va
lid
at
io
n
V
A
M
P
-2

sc
or
e

Chignolin

0.25 0.50 0.75 1.00

Fraction of training data

1

2

3

4

5
Trpcage

0.25 0.50 0.75 1.00

Fraction of training data

1.0

1.5

2.0

2.5

3.0

3.5

4.0
Villin

Cα MLP Sum SubFormer SubFormer-GVP SubMixer SubMixer-GVP

FIG. 2. VAMPnets with various geom2vec architectures. The amount of training data was varied by dividing the training data
into 20 trajectory segments of equal length and then randomly selecting the indicated fraction for training. The validation set
is held fixed as the second half of each trajectory. Error bars show standard errors over three independent runs.

−2 −1 0

CV 1

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

C
V

2

0 2 4 6
kcal mol−1

FIG. 3. Potential of mean force (PMF) of chignolin as a func-
tion of the first two CVs learned by a VAMPnet trained with
SubMixer. Contours are drawn every 1 kcal/mol. See Figure
S3, S4, and S5 for corresponding plots for other architectures
and proteins.

B. SPIB

1. Trp-cage

Figure 5 shows a Markov state model based on the
states learned for trp-cage with a lag time of 20 ns. There
are 13 metastable states. State S11 represents the folded
ensemble with a well-defined structure. In states S1 and
S2 the α-helix is folded, and the 310-helix and polyproline
II helix are unfolded. In contrast, in state S8 the 310-

helix is folded, and the α-helix and polyproline II helix
are unfolded. State S5 represents a fully unfolded state,
which acts as a hub that connects all intermediate states
and the folded state, S11. States S3, S4, S6, S7, S9, S10,
and S12 are also largely unfolded and differ with regard
to the specific conformations of the helices.

We show attention maps of the SubFormer blocks av-
eraged over all structures in Figure 6 and over the struc-
tures in each state in Figures S8, S9, and S10. The at-
tention maps are averaged over all heads of the trans-
former, yielding (M + 1) × (M + 1) matrices, where for
trp-cage M = 20 represents the number of sequence posi-
tions (tokens), and the additional row and column corre-
spond to a global token that encodes pairwise distances
between the Cα atoms57,59. The learned attention maps
can be interpreted in terms of the structure. The residues
that are most consistently activated across states and
layers are Trp6 (W6) and Asp9–Ser14 (D9–S14), which
roughly correspond to the 310-helix. Tyr3 (Y3), Gln5
(Q5), Gly15 (G15), and Arg16 (R16) are activated in se-
lected states. The attention thus appears to track the
packing of residues around Trp6. Across all three layers,
the global token remains highly active, consistent with
the fact that the metastable states of trp-cage are rea-
sonably well-characterized by the distances between the
Cα atoms14,65. The fact that tokens other than the global
token participate in the attention mechanism again un-
derscores the ability of GNNs to go beyond distances be-
tween Cα atoms.

2. Villin

Figure 7 shows a Markov state model based on the
states learned for villin HP35 with a lag time of 10 ns.
There are 11 metastable states. State S9 represents the

8

0.0 0.2 0.4 0.6

Q̄

−150

−100

−50

0

50

100

150

T
h

r6
χ

1
(◦

)

0.0 0.2 0.4 0.6

Q̄

−2.0 −1.5 −1.0 −0.5 0.0 0.5
CV 1

0 1 2
CV 2

0.1 0.2 0.3 0.4 0.5 0.6

Q̄

−150

−100

−50

0

50

100

150

T
hr
8
χ

1

0.1 0.2 0.3 0.4 0.5 0.6

Q̄

−2.0 −1.5 −1.0 −0.5 0.0 0.5
CV 1

0 1 2
CV 2

FIG. 4. Chignolin VAMPnet (with SubMixer) CVs as a function of two physical coordinates: the fraction of native contacts
and the χ1 side chain dihedral angle of Thr6 (left) or Thr8 (right). Q̄ is the fraction of native contacts smoothed with a 1-ns
moving window centered on each time point. We define native contacts as two residues that are three or more positions apart in
sequence and have at least one distance between non-hydrogen atoms that is less than 4.5 Å in the crystal structure (5AWL69).
See Figures S6 and S7 for analogous plots for trp-cage and villin.

fully folded structure, in which all three α-helices are
folded and packed compactly. States S1 and S3 corre-
spond to fully unfolded states. In states S0 and S2 helix
1 is folded, suggesting a pathway in which folding initi-
ates at the N-terminus, while in states S5 and S6 helix 3
is folded, suggesting a pathway in which folding initiates
at the C-terminus. Both of these pathways are discussed
in the literature (see Ref. 68 and references therein).

The attention maps (Figure S11, S12, and S13) ex-
hibit patterns that correspond to features of the folded
structure. Notably, the attention consistently focuses on
the tokens representing Val9 (V9), Gly11 (G11), Met12
(M12), Arg14 (R14), Pro21 (P21), and Trp23 (W23).
These residues correspond roughly to the turns between
helices. In the attention maps for states 0, 2, 5, and 6,
the tokens corresponding to helix 3 feature prominently;
the tokens corresponding to helix 1 are also activated in
state 0. The attention maps thus suggest that the net-
work tracks the folding and packing of the helices.

It is interesting to compare our attention maps with
those of Ghorbani et al. 33 and Huang et al. 35 . Those
studies leverage a graph attention network (GAT)70 to
enhance expressive power and interpretability of their
models. GAT computes representations of each node by
attending to its one-hop neighboring nodes, which cap-
tures local dependencies but fails to model long-range in-
teractions. In contrast, GNN-Transformer hybrids such
as SubFormer57 allocate short-range interactions to the
MP-GNN and use the self-attention mechanism for long-
range interactions. This approach not only supports mul-
timodal features (e.g., a global token) but also enables
distant nodes to attend to each other, regardless of graph
distance. This difference is evident in the attention map
patterns: GAT attention maps33,35 show predominantly
diagonal patterns, reflecting a focus on local neighbor-
hoods, while SubFormer-GVP attention maps reveal ver-
tical, blockwise, and global patterns, reflecting instead a
focus on specific amino acids and their long-range inter-

actions.

VI. COMPUTATIONAL REQUIREMENTS

Equivariant geometric GNNs use both invariant and
equivariant features to capture the three-dimensional
structure of molecules. For typical numbers of features,
the memory and time requirements are expensive even
for small graphs. To illustrate, we show the memory
and time requirements for inference using a TorchMD-
ET GNN with a small batch size with varying numbers
of hidden channels (numbers of features) for trp-cage
(144 non-hydrogen atoms) and villin (272 non-hydrogen
atoms) in Figure S14. Even this already requires tens of
gigabytes of memory and several seconds; a more complex
architecture like ViSNet is expected to increase the mem-
ory and time requirements by roughly 50%. The memory
and time scale linearly with both the number of atoms
in the graph and the batch size. We use a batch size of
5000 for VAMP (except for GVP variants, for which we
use 1000) and 1000 for SPIB, making training a GNN on
the fly prohibitive, as we discuss in further detail below.

Geom2vec decouples training the GNNs and the net-
works for the downstream tasks. This allows us to use
a small batch size for pretraining the GNNs (which need
be done only once), and the networks for the downstream
tasks take as inputs the tokens, which are fewer in num-
ber than the number of graph nodes. For example, here,
the number of graph nodes is the number of non-hydrogen
atoms, while the number of tokens is the number of amino
acids, which is an order of magnitude smaller.

The computational costs for training VAMPnets with
different token mixers are shown in Figure 8. The sim-
plest GNN using pooling is not much more computation-
ally costly than an MLP that takes distances between Cα

atoms as inputs. The GNNs with token mixers are about
an order of magnitude more computationally costly but

9

FIG. 5. SPIB for trp-cage. All results are obtained from a
GNN with SubFormer-GVP token mixer. (top left) PMF as
a function of the first two information bottleneck coordinates
(IBs). Contours are drawn every 1 kcal/mol. (top right) Same
contours colored by SPIB assigned labels. (bottom) Learned
Markov State Model. The highlighted structures are chosen
randomly from the trajectory. The N-terminus is violet and
the C-terminus is red.

still manageable (hundreds of seconds) even without ad-
vanced acceleration techniques such as flash-attention or
compilation. We expect the memory and computational
requirements to scale with token number quadratically
for SubFormer and subquadratically for SubMixer (de-
pending on the expansion dimension in the token-mixing
blocks); these requirements should scale linearly with re-
spect to embedding dimension and network depth.

To estimate the memory usage and training time for
a VAMPnet based on a GNN without pretraining, we
consider a TorchMD-ET model with specific settings: a
batch size of 1000, a hidden dimension of 64, and 6 lay-
ers; we assume 50 epochs are required to converge. For
trp-cage, a batch size of 100 required 10.64 GB of mem-
ory. Since memory usage and training time should scale
linearly with batch size, we estimate that increasing the
batch size to 1000 would raise the memory usage to ap-
proximately 10.64 GB × 10 = 106.4 GB. Similarly, we
estimate the training time at this larger batch size to
be around 1.8 hours (excluding validation). The corre-
sponding numbers for villin, which is about twice the

size, are proportionally larger (219.0 GB and 4.0 hours
for training). As noted above, employing a more com-
plex architecture like ViSNet would further increase both
time and memory requirements by roughly 50%. In the
present study, we employ a batch size of 5000 for VAMP
(except for GVP variants, as noted above); the batch
size for SPIB is 1000, but it generally requires more it-
erations to converge. While rough, these estimates show
that without pretraining equivariant GNNs for analyzing
molecular dynamics are beyond the resources available
to most researchers. By contrast, with pretraining, they
are well within reach (Figure 8).

VII. CONCLUSIONS

In this paper, we use pretrained GNNs to convert
molecular conformations into rich vector representations
that can then be used for diverse downstream tasks. De-
coupling the training of the GNNs and the networks for
the downstream tasks dramatically decreases the memory
and computational time requirements. Here, we focused
on downstream tasks concerned with analyzing dynamics
in molecular simulations, specifically VAMP and SPIB.
For these tasks, we were able to use equivariant GNNs
that take all non-hydrogen atoms of small proteins as
inputs for the first time. The results for folding and un-
folding of small proteins show that the GNNs use infor-
mation beyond distances between Cα atoms, which are
commonly used as input features.

For pretraining, we used a simple denoising task with a
dataset of structures of diverse molecules. Given that this
dataset was not specific to proteins and/or VAMP and
SPIB, we expect the present models to generalize to other
classes of molecules and tasks, but quantitative tests on a
wider variety of systems and tasks remain to be done. It
would be interesting to investigate whether more complex
pretraining strategies47,71 together with datasets specific
to the class of molecules of interest (e.g., those specific to
proteins48,72,73) can improve performance. We also ex-
plored a variety of token mixers and observed that more
complex architectures were able to yield better results,
which suggests there is scope for further engineering in
this regard; these should be informed by ablation studies.

In our tests, we took care to split the dataset in a way
that minimized the correlation between the training and
validation datasets, and we believe that this should be
standard practice. Because the data consisted of long,
unbiased trajectories62, there were relatively few events
of interest (here, folding and unfolding). Adapting our
approach to methods that take short trajectories51,74,
which allow for greater control of sampling74,75, is an
important area of study for the future.

10

FIG. 6. SPIB SubFormer-GVP attention. (left) A typical fully folded trp-cage structure (classified as S11) with the central
tryptophan residue (Trp6/W6) highlighted. (right three plots) Log-scaled averaged attention maps from three layers of the
SubFormer block in the SubFormer-GVP architecture. The sequence is indicated by one-letter amino acid codes, and ∗
represents a global token that encodes pairwise distances between the Cα atoms. Tokens from query and key projections are
colored according to the row-wise and column-wise sum of layer-wise attention weights. Results shown are for all structures in
the trajectory. Results for individual states are in Figures S8, S9, and S10.

ACKNOWLEDGMENTS

We thank D. E. Shaw Research for making the molec-
ular dynamics trajectories available to us. This work
was supported by National Institutes of Health award
R35 GM136381 and National Science Foundation award
DMS-2054306. S.C.G. acknowledges support from the
National Science Foundation Graduate Research Fellow-
ship under Grant No. 2140001. Z.P. was supported
with funding from the University of Chicago Data Sci-
ence Institute’s AI+Science Research Initiative. This
work was completed with computational resources ad-
ministered by the University of Chicago Research Com-
puting Center, including Beagle-3, a shared GPU cluster
for biomolecular sciences supported by the NIH under the
High-End Instrumentation (HEI) grant program award
1S10OD028655-0.

DATA AVAILABILITY

Data sharing is not applicable to this article as no new
data were created or analyzed in this study. Code for
our implementation and examples are available at https:
//github.com/dinner-group/geom2vec.

REFERENCES

1B. E. Husic, R. T. McGibbon, M. M. Sultan, and V. S. Pande,
“Optimized parameter selection reveals trends in Markov state
models for protein folding,” Journal of Chemical Physics 145,
194103 (2016).

2M. K. Scherer, B. E. Husic, M. Hoffmann, F. Paul, H. Wu, and
F. Noé, “Variational selection of features for molecular kinetics,”
Journal of Chemical Physics 150, 194108 (2019).

3D. Nagel, S. Sartore, and G. Stock, “Selecting features for Markov
modeling: A case study on HP35,” Journal of Physical Chemistry
Letters 14, 6956–6967 (2023).

4R. E. Arbon, Y. Zhu, and A. S. J. S. Mey, “Markov state models:
To optimize or not to optimize,” Journal of Chemical Theory and
Computation 20, 977–988 (2024).

5G. A. Tribello, M. Ceriotti, and M. Parrinello, “Using sketch-map
coordinates to analyze and bias molecular dynamics simulations,”
Proceedings of the National Academy of Sciences 109, 5196–5201
(2012).

6M. A. Rohrdanz, W. Zheng, M. Maggioni, and C. Clementi, “De-
termination of reaction coordinates via locally scaled diffusion
map,” Journal of Chemical Physics 134, 124116 (2011).

7L. Boninsegna, G. Gobbo, F. Noé, and C. Clementi, “Investigat-
ing molecular kinetics by variationally optimized diffusion maps,”
Journal of Chemical Theory and Computation 11, 5947–5960
(2015).

8A. Mardt, L. Pasquali, H. Wu, and F. Noé, “VAMPnets for
deep learning of molecular kinetics,” Nature Communications 9,
5 (2018).

9F. Noé and F. Nüske, “A variational approach to modeling slow
processes in stochastic dynamical systems,” Multiscale Modeling
& Simulation 11, 635–655 (2013).

10W. Chen, H. Sidky, and A. L. Ferguson, “Nonlinear discovery
of slow molecular modes using state-free reversible VAMPnets,”
Journal of Chemical Physics 150, 214114 (2019).

11H. Wu and F. Noé, “Variational approach for learning Markov
processes from time series data,” Journal of Nonlinear Science
30, 23–66 (2020).

12C. Lorpaiboon, E. H. Thiede, R. J. Webber, J. Weare, and A. R.
Dinner, “Integrated variational approach to conformational dy-
namics: A robust strategy for identifying eigenfunctions of dy-
namical operators,” Journal of Physical Chemistry B 124, 9354–
9364 (2020).

13Z. Trstanova, B. Leimkuhler, and T. Lelièvre, “Local and global
perspectives on diffusion maps in the analysis of molecular sys-
tems,” Proceedings of the Royal Society A 476, 20190036 (2020).

14J. Strahan, A. Antoszewski, C. Lorpaiboon, B. P. Vani, J. Weare,
and A. R. Dinner, “Long-time-scale predictions from short-
trajectory data: A benchmark analysis of the trp-cage minipro-
tein,” Journal of Chemical Theory and Computation 17, 2948–
2963 (2021).

15E. H. Thiede, D. Giannakis, A. R. Dinner, and J. Weare,
“Galerkin approximation of dynamical quantities using trajec-
tory data,” Journal of Chemical Physics 150, 244111 (2019).

16P. G. Bolhuis, C. Dellago, and D. Chandler, “Reaction coordi-
nates of biomolecular isomerization,” Proceedings of the National
Academy of Sciences 97, 5877–5882 (2000).

17A. Ma and A. R. Dinner, “Automatic method for identifying
reaction coordinates in complex systems,” Journal of Physical

https://github.com/dinner-group/geom2vec
https://github.com/dinner-group/geom2vec
https://doi.org/10.1063/1.4967809
https://doi.org/10.1063/1.4967809
https://doi.org/10.1063/1.5083040
https://doi.org/10.1073/pnas.1201152109
https://doi.org/10.1073/pnas.1201152109
https://doi.org/10.1063/1.3569857
https://doi.org/10.1021/acs.jctc.5b00749
https://doi.org/10.1021/acs.jctc.5b00749
https://doi.org/10.1038/s41467-017-02388-1
https://doi.org/10.1038/s41467-017-02388-1
https://doi.org/10.1137/110858616
https://doi.org/10.1137/110858616
https://doi.org/10.1063/1.5092521
https://doi.org/10.1007/s00332-019-09567-y
https://doi.org/10.1007/s00332-019-09567-y
https://doi.org/10.1021/acs.jpcb.0c06477
https://doi.org/10.1021/acs.jpcb.0c06477
https://doi.org/10.1021/acs.jctc.0c00933
https://doi.org/10.1021/acs.jctc.0c00933
https://doi.org/10.1073/pnas.100127697
https://doi.org/10.1073/pnas.100127697
https://doi.org/10.1021/jp045546c

11

FIG. 7. SPIB for villin. All results are obtained from a
GNN with SubFormer-GVP token mixer. (top left) PMF as
a function of the first two information bottleneck coordinates
(IBs). Contours are drawn every 1 kcal/mol. (top right) Same
contours colored by SPIB assigned labels. (bottom) Learned
Markov State Model. The highlighted structures are chosen
randomly from the trajectory. The N-terminus is violet and
the C-terminus is red.

Chemistry B 109, 6769–6779 (2005).
18S. C. Guo, R. Shen, B. Roux, and A. R. Dinner, “Dynamics

of activation in the voltage-sensing domain of Ciona intestinalis
phosphatase Ci-VSP,” Nature Communications 15, 1408 (2024).

19N. S. Herringer, S. Dasetty, D. Gandhi, J. Lee, and A. L. Fergu-
son, “Permutationally invariant networks for enhanced sampling
(PINES): Discovery of multimolecular and solvent-inclusive col-
lective variables,” Journal of Chemical Theory and Computation
20, 178–198 (2023).

20N. Thomas, T. Smidt, S. Kearnes, L. Yang, L. Li, K. Kohlhoff,
and P. Riley, “Tensor field networks: Rotation-and translation-
equivariant neural networks for 3D point clouds,” arXiv preprint
arXiv:1802.08219 (2018).

21B. Anderson, T.-S. Hy, and R. Kondor, “Cormorant: Covariant
molecular neural networks,” in Proceedings of the 33rd Inter-
national Conference on Neural Information Processing Systems
(Curran Associates Inc., Red Hook, NY, USA, 2019) pp. 14537–
14546.

22S. Batzner, A. Musaelian, L. Sun, M. Geiger, J. P. Mailoa,
M. Kornbluth, N. Molinari, T. E. Smidt, and B. Kozinsky, “E(3)-
equivariant graph neural networks for data-efficient and accu-
rate interatomic potentials,” Nature Communications 13, 2453
(2022).

23J. Han, J. Cen, L. Wu, Z. Li, X. Kong, R. Jiao, Z. Yu, T. Xu,
F. Wu, Z. Wang, et al., “A survey of geometric graph neural net-

works: Data structures, models and applications,” arXiv preprint
arXiv:2403.00485 (2024).

24J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E.
Dahl, “Neural message passing for quantum chemistry,” in In-
ternational Conference on Machine Learning (PMLR, 2017) pp.
1263–1272.

25P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez,
V. Zambaldi, M. Malinowski, A. Tacchetti, D. Raposo, A. San-
toro, R. Faulkner, C. Gulcehre, F. Song, A. Ballard, J. Gilmer,
G. Dahl, A. Vaswani, K. Allen, C. Nash, V. Langston, C. Dyer,
N. Heess, D. Wierstra, P. Kohli, M. Botvinick, O. Vinyals, Y. Li,
and R. Pascanu, “Relational inductive biases, deep learning, and
graph networks,” arXiv preprint arXiv:1806.01261 (2018).

26B. E. Husic, N. E. Charron, D. Lemm, J. Wang, A. Pérez,
M. Majewski, A. Krämer, Y. Chen, S. Olsson, G. de Fabritiis,
et al., “Coarse graining molecular dynamics with graph neural
networks,” Journal of Chemical Physics 153, 194101 (2020).

27A. R. Jamasb, A. Morehead, Z. Zhang, C. K. Joshi, K. Didi,
S. V. Mathis, C. Harris, J. Tang, J. Cheng, P. Lio, and T. L. Blun-
dell, “Evaluating representation learning on the protein structure
universe,” in The Twelfth International Conference on Learning
Representations (2023).

28P. Hermosilla and T. Ropinski, “Contrastive representation learn-
ing for 3D protein structures,” arXiv preprint arXiv:2205.15675
(2022).

29L. Wang, H. Liu, Y. Liu, J. Kurtin, and S. Ji, “Learning hierar-
chical protein representations via complete 3D graph networks,”
arXiv preprint arXiv:2207.12600 (2023).

30Z. Zhang, M. Xu, A. Jamasb, V. Chenthamarakshan, A. Lozano,
P. Das, and J. Tang, “Protein representation learning by geo-
metric structure pretraining,” arXiv preprint arXiv:2203.06125
(2023).

31T. Xie, A. France-Lanord, Y. Wang, Y. Shao-Horn, and J. C.
Grossman, “Graph dynamical networks for unsupervised learning
of atomic scale dynamics in materials,” Nature Communications
10, 2667 (2019).

32S. Soltani, C. W. Sinclair, and J. Rottler, “Exploring glassy dy-
namics with Markov state models from graph dynamical neural
networks,” Physical Review E 106, 025308 (2022).

33M. Ghorbani, S. Prasad, J. B. Klauda, and B. R. Brooks, “Graph-
VAMPNet, using graph neural networks and variational approach
to Markov processes for dynamical modeling of biomolecules,”
Journal of Chemical Physics 156, 184103 (2022).

34B. Liu, M. Xue, Y. Qiu, K. A. Konovalov, M. S. O’Connor, and
X. Huang, “GraphVAMPnets for uncovering slow collective vari-
ables of self-assembly dynamics,” Journal of Chemical Physics
159, 094901 (2023).

35Y. Huang, H. Zhang, Z. Lin, Y. Wei, and W. Xi, “RevGraph-
VAMP: A protein molecular simulation analysis model combining
graph convolutional neural networks and physical constraints,”
Methods 229, 163–174 (2024).

36A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,”
in Proceedings of the 31st International Conference on Neural In-
formation Processing Systems, NIPS’17 (Curran Associates Inc.,
Red Hook, NY, USA, 2017) pp. 6000–6010.

37A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn,
X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold,
S. Gelly, et al., “An image is worth 16x16 words: Transformers
for image recognition at scale,” arXiv preprint arXiv:2010.11929
(2020).

38T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, “Dis-
tributed representations of words and phrases and their compo-
sitionality,” in Proceedings of the 26th International Conference
on Neural Information Processing Systems - Volume 2, NIPS’13
(Curran Associates Inc., Red Hook, NY, USA, 2013) pp. 3111–
3119.

39Y. Guo, J. Wu, H. Ma, and J. Huang, “Self-supervised pre-
training for protein embeddings using tertiary structures,” in
Proceedings of the AAAI Conference on Artificial Intelligence,

https://doi.org/10.1021/jp045546c
https://doi.org/10.1038/s41467-024-45514-6

12

0.1 0.3 0.5 0.7 0.9
Fraction of training data

100

101

102

103
A
ve
ra
ge

to
ta
lt
ra
in
in
g
ti
m
e
(s
)

Chignolin

0.1 0.3 0.5 0.7 0.9
Fraction of training data

Trpcage

0.1 0.3 0.5 0.7 0.9
Fraction of training data

Villin

Cα MLP Sum SubFormer SubFormer-GVP SubMixer SubMixer-GVP

FIG. 8. Computational time for training a single VAMPNet. We employ early stopping and stop training when the training
VAMP score does not increase for 1000 batches or the validation VAMP score does not increase for 10 batches. Times reported
are averages over three training runs, with validation performed at each step using the second half of each trajectory, as depicted
in Figure S2. All times are for training on a single NVIDIA A40 GPU.

Vol. 36 (2022) pp. 6801–6809.
40S. Zaidi, M. Schaarschmidt, J. Martens, H. Kim, Y. W. Teh,

A. Sanchez-Gonzalez, P. Battaglia, R. Pascanu, and J. Godwin,
“Pre-training via denoising for molecular property prediction,”
arXiv preprint arXiv:2206.00133 (2022).

41C. Chen, J. Zhou, F. Wang, X. Liu, and D. Dou, “Structure-aware
protein self-supervised learning,” Bioinformatics 39, btad189
(2023).

42J. Sohl-Dickstein, E. A. Weiss, N. Maheswaranathan, and S. Gan-
guli, “Deep unsupervised learning using nonequilibrium thermo-
dynamics,” in Proceedings of the 32nd International Conference
on International Conference on Machine Learning - Volume 37,
ICML’15 (JMLR.org, Lille, France, 2015) pp. 2256–2265.

43J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic
models,” in Advances in Neural Information Processing Systems,
Vol. 33 (Curran Associates, Inc., 2020) pp. 6840–6851.

44A. S. Christensen, S. K. Sirumalla, Z. Qiao, M. B. O’Connor,
D. G. Smith, F. Ding, P. J. Bygrave, A. Anandkumar, M. Wel-
born, F. R. Manby, et al., “OrbNet Denali: A machine learn-
ing potential for biological and organic chemistry with semi-
empirical cost and DFT accuracy,” Journal of Chemical Physics
155, 204103 (2021).

45D. Wang and P. Tiwary, “State predictive information bottle-
neck,” Journal of Chemical Physics 154, 134111 (2021).

46D. Wang, Y. Qiu, E. R. Beyerle, X. Huang, and P. Tiwary, “In-
formation bottleneck approach for Markov model construction,”
Journal of Chemical Theory and Computation 20, 5352–5367
(2024).

47Y. Ni, S. Feng, X. Hong, Y. Sun, W.-Y. Ma, Z.-M. Ma, Q. Ye,
and Y. Lan, “Pre-training with fractional denoising to enhance
molecular property prediction,” Nature Machine Intelligence 6,
1169–1178 (2024).

48Y. Vander Meersche, G. Cretin, A. Gheeraert, J.-C. Gelly,
and T. Galochkina, “ATLAS: protein flexibility description from
atomistic molecular dynamics simulations,” Nucleic Acids Re-
search 52, D384–D392 (2024).

49C. X. Hernández, H. K. Wayment-Steele, M. M. Sultan, B. E.
Husic, and V. S. Pande, “Variational encoding of complex dy-
namics,” Physical Review E 97, 062412 (2018).

50H. Chen, B. Roux, and C. Chipot, “Discovering reaction path-
ways, slow variables, and committor probabilities with machine
learning,” Journal of Chemical Theory and Computation 19,

4414–4426 (2023).
51J. Strahan, S. C. Guo, C. Lorpaiboon, A. R. Dinner, and

J. Weare, “Inexact iterative numerical linear algebra for neu-
ral network-based spectral estimation and rare-event prediction,”
Journal of Chemical Physics 159, 014110 (2023).

52H. Jung, R. Covino, A. Arjun, C. Leitold, C. Dellago, P. G. Bol-
huis, and G. Hummer, “Machine-guided path sampling to dis-
cover mechanisms of molecular self-organization,” Nature Com-
putational Science 3, 334–345 (2023).

53Y. Wang, T. Wang, S. Li, X. He, M. Li, Z. Wang, N. Zheng,
B. Shao, and T.-Y. Liu, “Enhancing geometric representations
for molecules with equivariant vector-scalar interactive message
passing,” Nature Communications 15, 313 (2024).

54P. Thölke and G. De Fabritiis, “TorchMD-NET: Equivariant
transformers for neural network based molecular potentials,”
arXiv preprint arXiv:2202.02541 (2022).

55Z. Pengmei, Z. Shen, Z. Wang, M. Collins, and H. Rang-
wala, “Pushing the limits of all-atom geometric graph neural
networks: Pre-training, scaling and zero-shot transfer,” arXiv
preprint arXiv:2410.21683 (2024).

56N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and
S. Zagoruyko, “End-to-end object detection with transformers,”
in Computer Vision – ECCV 2020: 16th European Confer-
ence, Glasgow, UK, August 23–28, 2020, Proceedings, Part I
(Springer-Verlag, Berlin, Heidelberg, 2020) pp. 213–229.

57Z. Pengmei, Z. Li, C. chan Tien, R. Kondor, and A. R. Dinner,
“Transformers are efficient hierarchical chemical graph learners,”
arXiv preprint arXiv:2310.01704 (2023).

58I. O. Tolstikhin, N. Houlsby, A. Kolesnikov, L. Beyer, X. Zhai,
T. Unterthiner, J. Yung, A. Steiner, D. Keysers, J. Uszkoreit,
M. Lucic, and A. Dosovitskiy, “MLP-Mixer: An all-MLP archi-
tecture for vision,” in Advances in Neural Information Process-
ing Systems, Vol. 34 (Curran Associates, Inc., 2021) pp. 24261–
24272.

59Z. Pengmei and Z. Li, “Technical report: The graph spectral
token – enhancing graph transformers with spectral information,”
arXiv preprint arXiv:2404.05604 (2024).

60B. Jing, S. Eismann, P. Suriana, R. J. L. Townshend, and
R. Dror, “Learning from protein structure with geometric vec-
tor perceptrons,” in International Conference on Learning Rep-
resentations (2020).

https://doi.org/10.1038/s42256-024-00900-z
https://doi.org/10.1038/s42256-024-00900-z
https://doi.org/10.1093/nar/gkad1084
https://doi.org/10.1093/nar/gkad1084
https://doi.org/10.1103/PhysRevE.97.062412
https://doi.org/10.1021/acs.jctc.3c00028
https://doi.org/10.1021/acs.jctc.3c00028
https://doi.org/10.1063/5.0151309
https://doi.org/10.1038/s43588-023-00428-z
https://doi.org/10.1038/s43588-023-00428-z

13

61J. Tomczak and M. Welling, “VAE with a VampPrior,” in Pro-
ceedings of the Twenty-First International Conference on Arti-
ficial Intelligence and Statistics (PMLR, 2018) pp. 1214–1223.

62K. Lindorff-Larsen, S. Piana, R. O. Dror, and D. E. Shaw, “How
fast-folding proteins fold,” Science 334, 517–520 (2011).

63L. Bonati, G. Piccini, and M. Parrinello, “Deep learning the slow
modes for rare events sampling,” Proceedings of the National
Academy of Sciences 118, e2113533118 (2021).

64B. Barua, J. C. Lin, V. D. Williams, P. Kummler, J. W. Neidigh,
and N. H. Andersen, “The Trp-cage: optimizing the stability of a
globular miniprotein,” Protein Engineering, Design and Selection
21, 171–185 (2008).

65H. Sidky, W. Chen, and A. L. Ferguson, “High-resolution Markov
state models for the dynamics of trp-cage miniprotein con-
structed over slow folding modes identified by state-free reversible
VAMPnets,” Journal of Physical Chemistry B 123, 7999–8009
(2019).

66J. C. McKnight, D. S. Doering, P. T. Matsudaira, and P. S. Kim,
“A thermostable 35-residue subdomain within villin headpiece,”
Journal of Molecular Biology 260, 126–134 (1996).

67J. Kubelka, T. K. Chiu, D. R. Davies, W. A. Eaton, and
J. Hofrichter, “Sub-microsecond protein folding,” Journal of
Molecular Biology 359, 546–553 (2006).

68E. Wang, P. Tao, J. Wang, and Y. Xiao, “A novel folding pathway
of the villin headpiece subdomain HP35,” Physical Chemistry
Chemical Physics 21, 18219–18226 (2019).

69S. Honda, T. Akiba, Y. S. Kato, Y. Sawada, M. Sekijima,
M. Ishimura, A. Ooishi, H. Watanabe, T. Odahara, and
K. Harata, “Crystal structure of a ten-amino acid protein,” Jour-
nal of the American Chemical Society 130, 15327–15331 (2008).

70P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio,
and Y. Bengio, “Graph attention networks,” arXiv preprint
arXiv:1710.10903 (2017).

71Y.-L. Liao, T. Smidt, M. Shuaibi, and A. Das, “Generalizing de-
noising to non-equilibrium structures improves equivariant force
fields,” arXiv preprint arXiv:2403.09549 (2024).

72I. Sillitoe, N. Bordin, N. Dawson, V. P. Waman, P. Ashford,
H. M. Scholes, C. S. M. Pang, L. Woodridge, C. Rauer, N. Sen,
M. Abbasian, S. Le Cornu, S. D. Lam, K. Berka, I. Varekova,
R. Svobodova, J. Lees, and C. A. Orengo, “CATH: increased
structural coverage of functional space,” Nucleic Acids Research
49, D266–D273 (2021).

73I. Barrio-Hernandez, J. Yeo, J. Jänes, M. Mirdita, C. L. M.
Gilchrist, T. Wein, M. Varadi, S. Velankar, P. Beltrao, and
M. Steinegger, “Clustering predicted structures at the scale of
the known protein universe,” Nature 622, 637–645 (2023).

74J. Strahan, J. Finkel, A. R. Dinner, and J. Weare, “Predict-
ing rare events using neural networks and short-trajectory data,”
Journal of computational physics 488, 112152 (2023).

75J. Strahan, C. Lorpaiboon, J. Weare, and A. R. Dinner, “BAD-
NEUS: Rapidly converging trajectory stratification,” Journal of
Chemical Physics 161, 084109 (2024).

76K. T. Schütt, H. E. Sauceda, P.-J. Kindermans, A. Tkatchenko,
and K.-R. Müller, “SchNet–a deep learning architecture for
molecules and materials,” Journal of Chemical Physics 148,
241722 (2018).

77J. Gasteiger, J. Groß, and S. Günnemann, “Directional message
passing for molecular graphs,” arXiv preprint arXiv:2003.03123
(2020).

78S. Villar, D. W. Hogg, K. Storey-Fisher, W. Yao, and B. Blum-
Smith, “Scalars are universal: Equivariant machine learning,
structured like classical physics,” Advances in Neural Informa-
tion Processing Systems 34, 28848–28863 (2021).

79M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. S. Co-
hen, “3D steerable CNNs: Learning rotationally equivariant fea-
tures in volumetric data,” in Advances in Neural Information
Processing Systems, Vol. 31 (Curran Associates, Inc., 2018).

80K. T. Schütt, O. T. Unke, and M. Gastegger, “Equivariant mes-
sage passing for the prediction of tensorial properties and molec-
ular spectra,” arXiv preprint arXiv:2102.03150 (2021).

81K. Everett, L. Xiao, M. Wortsman, A. A. Alemi, R. Novak, P. J.
Liu, I. Gur, J. Sohl-Dickstein, L. P. Kaelbling, J. Lee, and J. Pen-
nington, “Scaling exponents across parameterizations and opti-
mizers,” arXiv preprint arXiv:2407.05872 (2024).

https://doi.org/10.1126/science.1208351
https://doi.org/10.1093/protein/gzm082
https://doi.org/10.1093/protein/gzm082
https://doi.org/10.1006/jmbi.1996.0387
https://doi.org/10.1016/j.jmb.2006.03.034
https://doi.org/10.1016/j.jmb.2006.03.034
https://doi.org/10.1039/C9CP01703H
https://doi.org/10.1039/C9CP01703H
https://doi.org/10.1093/nar/gkaa1079
https://doi.org/10.1093/nar/gkaa1079
https://doi.org/10.1038/s41586-023-06510-w

14

Appendix A: GNN architectures

1. Equivariant GNNs

Assuming R = (r1, r2, . . . , rN) ∈ R3N defines the molecular conformation, where ri ∈ R3 represents the three-
dimensional (3D) coordinates of the i-th atom, two of the most important symmetries for a GNN to obey are translation
and rigid-body rotation invariances. These invariances require that the output of the GNN, f(R), remains unchanged
when the molecule is translated by a vector t ∈ R3, i.e., f(R) = f(R + t), or when the molecule undergoes a rigid
body rotation represented by a rotation matrix P ∈ SO(3), i.e., f(R) = f(PR). Translation invariance can be easily
realized by using the relative displacements or internal coordinates of atoms. On the other hand, rotational invariance
and equivariance can be realized in two ways:

1. representing the relative atom positions by internal coordinates (e.g., bond distances, bond angles, and dihedral
angles) as in conventional classical force fields (“scalar-based network”)53,54,76,77;

2. encoding the relative displacement vectors with spherical harmonics, which are then propagated with tensor
products (“group-equivariant network”)20–22.

The two approaches are theoretically and practically equivalent53,54,78, but group-equivariant networks need to store
the features for each irreducible representation and are more computationally costly owing to the tensor products.
Therefore, we chose to employ scalar-based GNNs.

2. TorchMD-ET architecture

The TorchMD-ET architecture54 is structured around three components that process and encode molecular geo-
metric information effectively.

1. Embedding layer: encodes atomic types and interatomic distances using exponential radial basis functions
(eRBFs). Each distance dij within a cutoff rcut is transformed by

eRBFk(dij) = ϕ(dij) exp
(
−βk(exp(−dij)− µk)

2
)
, (A1)

where ϕ(dij) is a cosine cutoff function ensuring smooth transitions to zero beyond rcut.

2. Modified attention mechanism: incorporates edge information through an extended dot-product attention
mechanism that integrates interatomic distances with distance kernels DK derived from eRBFs (⊙ denotes
element-wise multiplication):

A = SiLU

(
F∑

k=1

Qk ⊙Kk ⊙DKk

)
· ϕ(dij). (A2)

The attention mechanism weights are then used to compute scalar features and filters qαi, sαij ∈ RF (α = 1, 2, 3)
for the update layer:

s1ij , s2ij , s3ij = Vj ⊙DV (A3)

q1i, q2i, q3i = W

 ∑
j∈N (i)\i

Aij · s3ij

 (A4)

where Vj and DV are attention value and distance projections analogous to Q, K, and DK.

3. Update layer: updates both scalar (∆xi) and vector (∆vi) features using qαi and sαij :

∆xi = q1i + q2i ⊙ (U1vi · U2vi) (A5)

∆vi = q3i · U3vi +
∑
j

(
s1ij ⊙ vj + s2ij ⊙

ri − rj
∥ri − rj∥

)
. (A6)

This combines scalar and directional vector information describing the local atomic environment.

15

3. ViSNet

ViSNet53 builds on TorchMD-ET by incorporating additional scalar features into its architecture. These addi-
tional features include information about angles, dihedral angles, and improper dihedral angles. This information is
computed in an efficient fashion by first associating with each atom information about its neighbors:

uij = rij/∥rij∥, (A7)

vi =
∑

j∈N (i)\i

uij , (A8)

wij = vi − (vi · uij)uij , (A9)

where uij is the unit vector pointing from atom i to neighboring atom j, and vi is the sum of all such unit vectors
around atom i. Then the inner product

wij ·wji =
∑

m∈N (i)\i

∑
n∈N (j)\j

cos(φmijn) (A10)

represents the dihedral angle (φmijn) information around inner atoms i and j, with neighbors indexed by m and n,
respectively.

4. Gated equivariant block

The output layer of the networks consists of gated equivariant blocks79,80, each of which combines the scalar (xi)
and vector (vi) features from graph node i of the previous layer (Algorithm 1).

Algorithm 1 Gated equivariant block (GEB)
Require: xi ∈ Rdi , vi ∈ R3di

1: v1i ,v
2
i ← ∥Wvi∥,Wvi ▷ v1i ∈ Rdi , v2

i ∈ R3do

2: xi ← Concat(xi, v
1
i) ▷ xi ∈ R2di

3: xi ←W (SiLU((Wxi + b))) + b ▷ xi ∈ R2do

4: [xi, gi]← xi ▷ split xi into xi, gi ∈ Rdo

5: xi ← SiLU(xi)

6: vi ← gi ⊙ v2
i ▷ scales vector features, maintains equivariance

7: return xi, vi ▷ xi ∈ Rdo , vi ∈ R3do

16

Appendix B: Geometric vector perceptron

Geometric vector perceptron (GVP) was one of the first architectures to incorporate vector features for protein
modeling60. Here, we use the GVP architecture as an equivariant token mixer to combine scalar and vector features
(Algorithm 2).

Algorithm 2 Geometric vector perceptron (GVP)
Require: xi ∈ Rdi , vi ∈ R3di

1: vh ←Whvi ▷ project vector features, vi ∈ R3dh

2: xh ← ∥vh∥2 ▷ compute the (row-wise) norm of projected vectors, xh ∈ Rdh

3: xh+di ← Concat(xh, xi) ▷ xh+di ∈ Rdh+di

4: xm ←Wmxh+di
+ bm ▷ xm ∈ Rdo

5: x′
i ← σ(xm) ▷ x′

i ∈ Rdo

6: vo ←Wovh ▷ project vector features to R3do

7: v′
i ← σ(∥vo∥2)⊙ vo ▷ column-wise multiplication with vector gate (on row-wise norm), v′

i ∈ R3do

8: return x′
i,v

′
i

17

Appendix C: Pseudo-code of overall architecture

Algorithm 3 geom2vec
Require: Atomic numbers zi, positions ri ∈ R3 (i = 1, . . . , N), coarse-grained mapping S = {S1, . . . , SM}, mixer

method {None, SubFormer, SubMixer, SubGVP}, global features G ∈ Rdg

1: xMP
i ,vMP

i ← GNN(zi, ri) ▷ atomistic featurization, xMP
i ∈ Rdk , vMP

i ∈ R3dk

2: xMP
m ,vMP

m ←
∑

i∈Sm
xMP
i ,

∑
i∈Sm

vMP
i ▷ coarse-graining with mapping S, xMP

m ∈ Rdk ,vMP
m ∈ R3dk

3: if None then
4: xMP,vMP ←

∑
m xMP

m ,
∑

m vMP
m ▷ sum over indices m for direct pooling, xMP ∈ Rdk ,vMP ∈ R3dk

5: x,v← GEB(xMP,vMP) ▷ Algorithm 1
6: else if SubFormer then
7: xm,vm ← GEB(xMP

m ,vMP
m) ▷ apply GEB to input features

8: if global token then
9: g ← MLP(G) ▷ project global features G to Rdk

10: x← TransformerEncoder([xm, g]) ▷ pass regular and global tokens through the transformer encoder
11: else
12: x← TransformerEncoder(xm) ▷ pass only the regular tokens through the transformer encoder
13: end if
14: else if SubMixer then
15: xm,vm ← GEB(xMP

m ,vMP
m) ▷ apply GEB to input features

16: if global token then
17: g ← MLP(G) ▷ project global features G to Rdk

18: x← MLPMixer([xm, g]) ▷ pass regular and global tokens through the MLP-Mixer
19: else
20: x← MLPMixer(xm) ▷ pass only the regular tokens through the MLP-Mixer
21: end if
22: else if SubGVP then
23: xGVP

m ,vGVP
m ← GVP(xMP

m ,vMP
m) ▷ Algorithm 2

24: if subformer or submixer then
25: x← subformer or submixer(xGVP

m) ▷ apply subformer or submixer block to GVP features
26: end if
27: end if
28: x← MLP(x)

29: return x ▷ x ∈ Rdo

18

Appendix D: Training details and hyperparameters

For pre-training, we use the Orbnet Denali dataset from Ref. 44, which consists of 2.3 million conformations
of small to medium size molecules. These conformations are obtained with semi-empirical methods and contain
nonequilibrium geometries, alternative tautomers, and non-bonded interactions. For pretraining, we randomly take
10,000 configurations as the validation set and the remainder as the training set.

TABLE S1. Hyperparameters for pretrained networks
Hyperparameter TorchMD-ET and ViSNet

d 64, 128, 256, 384
of MP layers 6

of attention heads 8
Batch size 100
Epochs 10

of RBFs 64
rcut (Å) 5, 7.5

Learning rate 0.0005
Optimizer AdamW (AMSGrad)

Noise level (Å) 0.2

TABLE S2. Hyperparameters for SPIB
Hyperparameter Shared

Batch size 1000
Learning rate 0.0002

Optimizer AdamAtan2
Training patience 5

MLP hidden dimension 64
MLP activation function SiLU
Embedding dimension (d) 64

Dropout 0.2
Batch normalization False

Label refinement frequency 5
Architectures SubFormer/SubMixer

GVP Yes
of GVP layers 3

of transformer/mixer layers 3
Expansion factor 2

Global token True
Villin Trp-cage

Trajectory stride 2 4
Training lag time (ns) 20 10

TABLE S3. Hyperparameters for VAMPnets. For GVP variants tested on villin, the architecture is consistent with the ones
used in SPIB tasks.

Hyperparameter Chignolin Villin Trp-cage
Batch size 5000 5000/1000 5000/1000

Learning rate 0.0002 0.0002 0.0002
Optimizer AdamAtan281 AdamAtan2 AdamAtan2

Maximum epochs 20 20 20
Training patience 5 500 500

Validation patience 2 10 10
Validation interval 5 50 50

MLP hidden dimension 256 128/64 128/64
MLP activation function SiLU SiLU SiLU

Trajectory stride 1 2 4
Training lag time (ns) 4 20 10

Embedding dimension (d) 256 128/64 128/64
Dropout 0.2 0.2 0.2

Batch normalization False False False
Output dimension (do) 2 3 4

Architectures MLP/SubFormer/SubMixer MLP/SubFormer/SubMixer MLP/SubFormer/SubMixer
GVP No Yes No

Expansion factor 2 2 2
Global token False True False

19

Appendix E: Supplementary Figures

100 101 102

Step

0.5

1.0

1.5

2.0

2.5

3.0

T
ra
in
in
g
V
A
M
P
-2

sc
or
e

Chignolin

100 101 102 103

Step

1

2

3

4

5
Trpcage

100 101 102 103

Step

1.0

1.5

2.0

2.5

3.0

3.5

4.0
Villin

Cα MLP Sum SubFormer SubFormer-GVP SubMixer SubMixer-GVP

FIG. S1. Training curves for VAMPnets. Each curve represents the mean of three training runs. Shaded regions indicate
standard error over three runs.

100 101 102

Step

0.5

1.0

1.5

2.0

2.5

3.0

V
al
id
at
io
n
V
A
M
P
-2

sc
or
e

Chignolin

100 101 102 103

Step

1

2

3

4

5
Trpcage

100 101 102 103

Step

1.0

1.5

2.0

2.5

3.0

3.5

4.0
Villin

Cα MLP Sum SubFormer SubFormer-GVP SubMixer SubMixer-GVP

FIG. S2. Validation curves for VAMPnets. Each curve represents the mean of three training runs. Shaded regions indicate
standard error over three runs.

20

C
V

2
C

V
2

CV 1

C
V

2

CV 1 CV 1

0 2 4 6
kcal mol−1

0 2 4 6
kcal mol−1

0 2 4 6
kcal mol−1

0 2 4 6
kcal mol−1

0 2 4 6
kcal mol−1

0 2 4 6
kcal mol−1

0 2 4 6
kcal mol−1

0 2 4 6
kcal mol−1

0 2 4 6
kcal mol−1

FIG. S3. PMFs as a function of VAMP CVs for chignolin. From top to bottom, VAMPnets were trained with no token mixer
(Sum), SubMixer, or SubFormer. Each column shows the result from a single training run. Contours are drawn every 1
kcal/mol.

21

C
V
2

C
V
2

CV 1

C
V
2

CV 1 CV 1

0 2 4 6
kcal mol−1

0 2 4 6
kcal mol−1

0 2 4 6
kcal mol−1

0 2 4 6
kcal mol−1

0 2 4 6
kcal mol−1

0 2 4 6
kcal mol−1

0 2 4 6
kcal mol−1

0 2 4 6
kcal mol−1

0 2 4 6
kcal mol−1

FIG. S4. PMFs as a function of VAMP CVs for trp-cage. From top to bottom, VAMPnets were trained with no token mixer
(Sum), SubMixer, or SubFormer. Each column shows the result from a single training run. Contours are drawn every 1
kcal/mol.

22

C
V
2

C
V
2

C
V
2

C
V
2

CV 1

C
V
2

CV 1 CV 1

0.0 2.5 5.0
kcal mol−1

0.0 2.5 5.0
kcal mol−1

0.0 2.5 5.0
kcal mol−1

0.0 2.5 5.0
kcal mol−1

0.0 2.5 5.0
kcal mol−1

0.0 2.5 5.0
kcal mol−1

0.0 2.5 5.0
kcal mol−1

0.0 2.5 5.0
kcal mol−1

0.0 2.5 5.0
kcal mol−1

0.0 2.5 5.0
kcal mol−1

0.0 2.5 5.0
kcal mol−1

0.0 2.5 5.0
kcal mol−1

0.0 2.5 5.0
kcal mol−1

0.0 2.5 5.0
kcal mol−1

0.0 2.5 5.0
kcal mol−1

FIG. S5. PMFs as a function of VAMP CVs for villin. From top to bottom, VAMPnets were trained with no token mixer
(Sum), SubMixer, SubMixer-GVP, SubFormer, or SubFormer-GVP. Each column shows the result from a single training run.
Contours are drawn every 1 kcal/mol.

23

0.1 0.2 0.3 0.4 0.5

Helix 1 Cα RMSD

0.05

0.10

0.15

0.20

0.25

H
el
ix
2
C
α
R
M
S
D

0.1 0.2 0.3 0.4 0.5

Helix 1 Cα RMSD

−0.5 0.0 0.5 1.0 1.5 2.0
CV 1

−2 0 2 4
CV 2

FIG. S6. Trp-cage VAMPnet (with SubMixer) CVs as a function of two physical coordinates: Cα RMSD of helix 1 (residues
2–9) and Cα RMSD of helix 2 (residues 11–14). The Cα RMSDs were computed with respect to the PDB structure 2JOF64.

0.2 0.4 0.6 0.8 1.0

Helix 1,2 Cα RMSD

0.2

0.4

0.6

0.8

1.0

H
el
ix
2,
3
C
α
R
M
S
D

0.2 0.4 0.6 0.8 1.0

Helix 1,2 Cα RMSD

−0.5 0.0 0.5 1.0 1.5 2.0
CV 1

0 2 4 6 8
CV 2

FIG. S7. Villin VAMPnet (with SubFormer) CVs as a function of two physical coordinates: Cα RMSD of helices 1 and 2
(residues 3–10 and 14–19), and Cα RMSD of helices 2 and 3 (residues 14–19 and 22–32). The Cα RMSDs were computed with
respect to the PDB structure 2F4K67.

24

D A Y A Q W L A D G G P S S G R P P P S *

D
A
Y
A
Q
W
L
A
D
G
G
P
S
S
G
R
P
P
P
S
*

State 0, Layer 1

D A Y A Q W L A D G G P S S G R P P P S *

D
A
Y
A
Q
W
L
A
D
G
G
P
S
S
G
R
P
P
P
S
*

State 0, Layer 2

D A Y A Q W L A D G G P S S G R P P P S *

D
A
Y
A
Q
W
L
A
D
G
G
P
S
S
G
R
P
P
P
S
*

State 0, Layer 3

D A Y A Q W L A D G G P S S G R P P P S *

D
A
Y
A
Q
W
L
A
D
G
G
P
S
S
G
R
P
P
P
S
*

State 1, Layer 1

D A Y A Q W L A D G G P S S G R P P P S *

D
A
Y
A
Q
W
L
A
D
G
G
P
S
S
G
R
P
P
P
S
*

State 1, Layer 2

D A Y A Q W L A D G G P S S G R P P P S *

D
A
Y
A
Q
W
L
A
D
G
G
P
S
S
G
R
P
P
P
S
*

State 1, Layer 3

D A Y A Q W L A D G G P S S G R P P P S *

D
A
Y
A
Q
W
L
A
D
G
G
P
S
S
G
R
P
P
P
S
*

State 2, Layer 1

D A Y A Q W L A D G G P S S G R P P P S *

D
A
Y
A
Q
W
L
A
D
G
G
P
S
S
G
R
P
P
P
S
*

State 2, Layer 2

D A Y A Q W L A D G G P S S G R P P P S *

D
A
Y
A
Q
W
L
A
D
G
G
P
S
S
G
R
P
P
P
S
*

State 2, Layer 3

D A Y A Q W L A D G G P S S G R P P P S *

D
A
Y
A
Q
W
L
A
D
G
G
P
S
S
G
R
P
P
P
S
*

State 3, Layer 1

D A Y A Q W L A D G G P S S G R P P P S *

D
A
Y
A
Q
W
L
A
D
G
G
P
S
S
G
R
P
P
P
S
*

State 3, Layer 2

D A Y A Q W L A D G G P S S G R P P P S *

D
A
Y
A
Q
W
L
A
D
G
G
P
S
S
G
R
P
P
P
S
*

State 3, Layer 3

D A Y A Q W L A D G G P S S G R P P P S *

D
A
Y
A
Q
W
L
A
D
G
G
P
S
S
G
R
P
P
P
S
*

State 4, Layer 1

D A Y A Q W L A D G G P S S G R P P P S *

D
A
Y
A
Q
W
L
A
D
G
G
P
S
S
G
R
P
P
P
S
*

State 4, Layer 2

D A Y A Q W L A D G G P S S G R P P P S *

D
A
Y
A
Q
W
L
A
D
G
G
P
S
S
G
R
P
P
P
S
*

State 4, Layer 3

-2.50

-2.00

-1.50

-1.00

-0.50

-2.25

-2.00

-1.75

-1.50

-1.25

-1.00

-0.75

-1.80

-1.60

-1.40

-1.20

-1.00

-0.80

-0.60

-2.25

-2.00

-1.75

-1.50

-1.25

-1.00

-0.75

-0.50

-2.00

-1.80

-1.60

-1.40

-1.20

-1.00

-0.80

-0.60

-1.60

-1.50

-1.40

-1.30

-1.20

-1.10

-1.00

-2.25

-2.00

-1.75

-1.50

-1.25

-1.00

-0.75

-2.20

-2.00

-1.80

-1.60

-1.40

-1.20

-1.00

-0.80

-0.60

-1.50

-1.40

-1.30

-1.20

-1.10

-1.00

-2.50

-2.00

-1.50

-1.00

-0.50

-2.25

-2.00

-1.75

-1.50

-1.25

-1.00

-0.75

-0.50

-1.60

-1.40

-1.20

-1.00

-0.80

-0.60

-2.50

-2.00

-1.50

-1.00

-2.25

-2.00

-1.75

-1.50

-1.25

-1.00

-0.75

-0.50

-1.60

-1.40

-1.20

-1.00

-0.80

FIG. S8. Log-scaled attention weight heatmaps for trp-cage SPIB states 0 to 4 from three layers of SubFormer-GVP. Each
subplot displays attention weights with color-coded tick labels based on normalized sums. Colorbars indicate log-scaled attention
values.

25

D A Y A Q W L A D G G P S S G R P P P S *

D
A
Y
A
Q
W
L
A
D
G
G
P
S
S
G
R
P
P
P
S
*

State 5, Layer 1

D A Y A Q W L A D G G P S S G R P P P S *

D
A
Y
A
Q
W
L
A
D
G
G
P
S
S
G
R
P
P
P
S
*

State 5, Layer 2

D A Y A Q W L A D G G P S S G R P P P S *

D
A
Y
A
Q
W
L
A
D
G
G
P
S
S
G
R
P
P
P
S
*

State 5, Layer 3

D A Y A Q W L A D G G P S S G R P P P S *

D
A
Y
A
Q
W
L
A
D
G
G
P
S
S
G
R
P
P
P
S
*

State 6, Layer 1

D A Y A Q W L A D G G P S S G R P P P S *

D
A
Y
A
Q
W
L
A
D
G
G
P
S
S
G
R
P
P
P
S
*

State 6, Layer 2

D A Y A Q W L A D G G P S S G R P P P S *

D
A
Y
A
Q
W
L
A
D
G
G
P
S
S
G
R
P
P
P
S
*

State 6, Layer 3

D A Y A Q W L A D G G P S S G R P P P S *

D
A
Y
A
Q
W
L
A
D
G
G
P
S
S
G
R
P
P
P
S
*

State 7, Layer 1

D A Y A Q W L A D G G P S S G R P P P S *

D
A
Y
A
Q
W
L
A
D
G
G
P
S
S
G
R
P
P
P
S
*

State 7, Layer 2

D A Y A Q W L A D G G P S S G R P P P S *

D
A
Y
A
Q
W
L
A
D
G
G
P
S
S
G
R
P
P
P
S
*

State 7, Layer 3

D A Y A Q W L A D G G P S S G R P P P S *

D
A
Y
A
Q
W
L
A
D
G
G
P
S
S
G
R
P
P
P
S
*

State 8, Layer 1

D A Y A Q W L A D G G P S S G R P P P S *

D
A
Y
A
Q
W
L
A
D
G
G
P
S
S
G
R
P
P
P
S
*

State 8, Layer 2

D A Y A Q W L A D G G P S S G R P P P S *

D
A
Y
A
Q
W
L
A
D
G
G
P
S
S
G
R
P
P
P
S
*

State 8, Layer 3

D A Y A Q W L A D G G P S S G R P P P S *

D
A
Y
A
Q
W
L
A
D
G
G
P
S
S
G
R
P
P
P
S
*

State 9, Layer 1

D A Y A Q W L A D G G P S S G R P P P S *

D
A
Y
A
Q
W
L
A
D
G
G
P
S
S
G
R
P
P
P
S
*

State 9, Layer 2

D A Y A Q W L A D G G P S S G R P P P S *

D
A
Y
A
Q
W
L
A
D
G
G
P
S
S
G
R
P
P
P
S
*

State 9, Layer 3

-2.50

-2.00

-1.50

-1.00

-0.50

-2.00

-1.80

-1.60

-1.40

-1.20

-1.00

-0.80

-0.60

-1.50

-1.40

-1.30

-1.20

-1.10

-1.00

-3.00

-2.50

-2.00

-1.50

-1.00

-0.50

-2.50

-2.00

-1.50

-1.00

-0.50

-1.80

-1.60

-1.40

-1.20

-1.00

-0.80

-0.60

-2.75

-2.50

-2.25

-2.00

-1.75

-1.50

-1.25

-1.00

-0.75

-2.50

-2.25

-2.00

-1.75

-1.50

-1.25

-1.00

-0.75

-0.50

-1.80

-1.60

-1.40

-1.20

-1.00

-0.80

-0.60

-2.20

-2.00

-1.80

-1.60

-1.40

-1.20

-1.00

-0.80

-0.60

-2.00

-1.80

-1.60

-1.40

-1.20

-1.00

-0.80

-0.60

-1.50

-1.40

-1.30

-1.20

-1.10

-1.00

-2.50

-2.00

-1.50

-1.00

-0.50

-2.25

-2.00

-1.75

-1.50

-1.25

-1.00

-0.75

-0.50

-1.60

-1.40

-1.20

-1.00

-0.80

-0.60

FIG. S9. Log-scaled attention weight heatmaps for trp-cage SPIB states 5 to 9 from three layers of SubFormer-GVP. Each
subplot displays attention weights with color-coded tick labels based on normalized sums. Colorbars indicate log-scaled attention
values.

26

D A Y A Q W L A D G G P S S G R P P P S *

D
A
Y
A
Q
W
L
A
D
G
G
P
S
S
G
R
P
P
P
S
*

State 10, Layer 1

D A Y A Q W L A D G G P S S G R P P P S *

D
A
Y
A
Q
W
L
A
D
G
G
P
S
S
G
R
P
P
P
S
*

State 10, Layer 2

D A Y A Q W L A D G G P S S G R P P P S *

D
A
Y
A
Q
W
L
A
D
G
G
P
S
S
G
R
P
P
P
S
*

State 10, Layer 3

D A Y A Q W L A D G G P S S G R P P P S *

D
A
Y
A
Q
W
L
A
D
G
G
P
S
S
G
R
P
P
P
S
*

State 11, Layer 1

D A Y A Q W L A D G G P S S G R P P P S *

D
A
Y
A
Q
W
L
A
D
G
G
P
S
S
G
R
P
P
P
S
*

State 11, Layer 2

D A Y A Q W L A D G G P S S G R P P P S *

D
A
Y
A
Q
W
L
A
D
G
G
P
S
S
G
R
P
P
P
S
*

State 11, Layer 3

D A Y A Q W L A D G G P S S G R P P P S *

D
A
Y
A
Q
W
L
A
D
G
G
P
S
S
G
R
P
P
P
S
*

State 12, Layer 1

D A Y A Q W L A D G G P S S G R P P P S *

D
A
Y
A
Q
W
L
A
D
G
G
P
S
S
G
R
P
P
P
S
*

State 12, Layer 2

D A Y A Q W L A D G G P S S G R P P P S *

D
A
Y
A
Q
W
L
A
D
G
G
P
S
S
G
R
P
P
P
S
*

State 12, Layer 3

-2.50

-2.00

-1.50

-1.00

-0.50

-2.00

-1.80

-1.60

-1.40

-1.20

-1.00

-0.80

-0.60

-1.60

-1.50

-1.40

-1.30

-1.20

-1.10

-2.00

-1.80

-1.60

-1.40

-1.20

-1.00

-0.80

-1.80

-1.60

-1.40

-1.20

-1.00

-0.80

-0.60

-1.40

-1.30

-1.20

-1.10

-1.00

-0.90

-0.80

-3.00

-2.50

-2.00

-1.50

-1.00

-2.25

-2.00

-1.75

-1.50

-1.25

-1.00

-0.75

-0.50

-1.60

-1.50

-1.40

-1.30

-1.20

-1.10

-1.00

-0.90

FIG. S10. Log-scaled attention weight heatmaps for trp-cage SPIB states 10 to 12 from three layers of SubFormer-GVP.
Each subplot displays attention weights with color-coded tick labels based on normalized sums. Colorbars indicate log-scaled
attention values.

27

L SDEDF KAVFGMTRSAFANL P LWnQQh L nKEKGL F *

LSDEDFKAVFGMTRSAFANLPLWnQQhLnKEKGLF*

State 0, Layer 1

L SDEDF KAVFGMTRSAFANL P LWnQQh L nKEKGL F *

LSDEDFKAVFGMTRSAFANLPLWnQQhLnKEKGLF*

State 0, Layer 2

L SDEDF KAVFGMTRSAFANL P LWnQQh L nKEKGL F *

LSDEDFKAVFGMTRSAFANLPLWnQQhLnKEKGLF*

State 0, Layer 3

L SDEDF KAVFGMTRSAFANL P LWnQQh L nKEKGL F *

LSDEDFKAVFGMTRSAFANLPLWnQQhLnKEKGLF*

State 1, Layer 1

L SDEDF KAVFGMTRSAFANL P LWnQQh L nKEKGL F *

LSDEDFKAVFGMTRSAFANLPLWnQQhLnKEKGLF*

State 1, Layer 2

L SDEDF KAVFGMTRSAFANL P LWnQQh L nKEKGL F *

LSDEDFKAVFGMTRSAFANLPLWnQQhLnKEKGLF*

State 1, Layer 3

L SDEDF KAVFGMTRSAFANL P LWnQQh L nKEKGL F *

LSDEDFKAVFGMTRSAFANLPLWnQQhLnKEKGLF*

State 2, Layer 1

L SDEDF KAVFGMTRSAFANL P LWnQQh L nKEKGL F *

LSDEDFKAVFGMTRSAFANLPLWnQQhLnKEKGLF*

State 2, Layer 2

L SDEDF KAVFGMTRSAFANL P LWnQQh L nKEKGL F *

LSDEDFKAVFGMTRSAFANLPLWnQQhLnKEKGLF*

State 2, Layer 3

L SDEDF KAVFGMTRSAFANL P LWnQQh L nKEKGL F *

LSDEDFKAVFGMTRSAFANLPLWnQQhLnKEKGLF*

State 3, Layer 1

L SDEDF KAVFGMTRSAFANL P LWnQQh L nKEKGL F *

LSDEDFKAVFGMTRSAFANLPLWnQQhLnKEKGLF*

State 3, Layer 2

L SDEDF KAVFGMTRSAFANL P LWnQQh L nKEKGL F *

LSDEDFKAVFGMTRSAFANLPLWnQQhLnKEKGLF*

State 3, Layer 3

-2.50

-2.00

-1.50

-1.00

-0.50

-1.80

-1.60

-1.40

-1.20

-1.00

-0.80

-2.00

-1.80

-1.60

-1.40

-1.20

-1.00

-0.80

-0.60

-2.25

-2.00

-1.75

-1.50

-1.25

-1.00

-0.75

-0.50

-1.80

-1.60

-1.40

-1.20

-1.00

-0.80

-2.00

-1.80

-1.60

-1.40

-1.20

-1.00

-0.80

-0.60

-0.40

-2.40

-2.20

-2.00

-1.80

-1.60

-1.40

-1.20

-1.00

-2.20

-2.00

-1.80

-1.60

-1.40

-1.20

-1.00

-0.80

-2.20

-2.00

-1.80

-1.60

-1.40

-1.20

-1.00

-2.00

-1.75

-1.50

-1.25

-1.00

-0.75

-0.50

-1.80

-1.60

-1.40

-1.20

-1.00

-0.80

-1.70

-1.60

-1.50

-1.40

-1.30

-1.20

-1.10

FIG. S11. Log-scaled attention weight heatmaps for villin SPIB states 0 to 3 from three layers of SubFormer-GVP. Each subplot
displays attention weights with color-coded tick labels based on normalized sums. Colorbars indicate log-scaled attention values.

28

L SDEDF KAVFGMTRSAFANL P LWnQQh L nKEKGL F *

LSDEDFKAVFGMTRSAFANLPLWnQQhLnKEKGLF*

State 4, Layer 1

L SDEDF KAVFGMTRSAFANL P LWnQQh L nKEKGL F *

LSDEDFKAVFGMTRSAFANLPLWnQQhLnKEKGLF*

State 4, Layer 2

L SDEDF KAVFGMTRSAFANL P LWnQQh L nKEKGL F *

LSDEDFKAVFGMTRSAFANLPLWnQQhLnKEKGLF*

State 4, Layer 3

L SDEDF KAVFGMTRSAFANL P LWnQQh L nKEKGL F *

LSDEDFKAVFGMTRSAFANLPLWnQQhLnKEKGLF*

State 5, Layer 1

L SDEDF KAVFGMTRSAFANL P LWnQQh L nKEKGL F *

LSDEDFKAVFGMTRSAFANLPLWnQQhLnKEKGLF*

State 5, Layer 2

L SDEDF KAVFGMTRSAFANL P LWnQQh L nKEKGL F *

LSDEDFKAVFGMTRSAFANLPLWnQQhLnKEKGLF*

State 5, Layer 3

L SDEDF KAVFGMTRSAFANL P LWnQQh L nKEKGL F *

LSDEDFKAVFGMTRSAFANLPLWnQQhLnKEKGLF*

State 6, Layer 1

L SDEDF KAVFGMTRSAFANL P LWnQQh L nKEKGL F *

LSDEDFKAVFGMTRSAFANLPLWnQQhLnKEKGLF*

State 6, Layer 2

L SDEDF KAVFGMTRSAFANL P LWnQQh L nKEKGL F *

LSDEDFKAVFGMTRSAFANLPLWnQQhLnKEKGLF*

State 6, Layer 3

L SDEDF KAVFGMTRSAFANL P LWnQQh L nKEKGL F *

LSDEDFKAVFGMTRSAFANLPLWnQQhLnKEKGLF*

State 7, Layer 1

L SDEDF KAVFGMTRSAFANL P LWnQQh L nKEKGL F *

LSDEDFKAVFGMTRSAFANLPLWnQQhLnKEKGLF*

State 7, Layer 2

L SDEDF KAVFGMTRSAFANL P LWnQQh L nKEKGL F *

LSDEDFKAVFGMTRSAFANLPLWnQQhLnKEKGLF*

State 7, Layer 3

-2.25

-2.00

-1.75

-1.50

-1.25

-1.00

-0.75

-0.50

-1.80

-1.60

-1.40

-1.20

-1.00

-0.80

-2.00

-1.75

-1.50

-1.25

-1.00

-0.75

-0.50

-2.25

-2.00

-1.75

-1.50

-1.25

-1.00

-0.75

-0.50

-2.20

-2.00

-1.80

-1.60

-1.40

-1.20

-1.00

-2.20

-2.00

-1.80

-1.60

-1.40

-1.20

-1.00

-2.25

-2.00

-1.75

-1.50

-1.25

-1.00

-0.75

-0.50

-2.00

-1.80

-1.60

-1.40

-1.20

-1.00

-2.40

-2.20

-2.00

-1.80

-1.60

-1.40

-1.20

-1.00

-2.50

-2.25

-2.00

-1.75

-1.50

-1.25

-1.00

-0.75

-0.50

-2.00

-1.80

-1.60

-1.40

-1.20

-1.00

-0.80

-0.60

-0.40

-2.00

-1.75

-1.50

-1.25

-1.00

-0.75

-0.50

-0.25

FIG. S12. Log-scaled attention weight heatmaps for villin SPIB states 4 to 7 from three layers of SubFormer-GVP. Each subplot
displays attention weights with color-coded tick labels based on normalized sums. Colorbars indicate log-scaled attention values.

29

L SDEDF KAVFGMTRSAFANL P LWnQQh L nKEKGL F *

LSDEDFKAVFGMTRSAFANLPLWnQQhLnKEKGLF*

State 8, Layer 1

L SDEDF KAVFGMTRSAFANL P LWnQQh L nKEKGL F *

LSDEDFKAVFGMTRSAFANLPLWnQQhLnKEKGLF*

State 8, Layer 2

L SDEDF KAVFGMTRSAFANL P LWnQQh L nKEKGL F *

LSDEDFKAVFGMTRSAFANLPLWnQQhLnKEKGLF*

State 8, Layer 3

L SDEDF KAVFGMTRSAFANL P LWnQQh L nKEKGL F *

LSDEDFKAVFGMTRSAFANLPLWnQQhLnKEKGLF*

State 9, Layer 1

L SDEDF KAVFGMTRSAFANL P LWnQQh L nKEKGL F *

LSDEDFKAVFGMTRSAFANLPLWnQQhLnKEKGLF*

State 9, Layer 2

L SDEDF KAVFGMTRSAFANL P LWnQQh L nKEKGL F *

LSDEDFKAVFGMTRSAFANLPLWnQQhLnKEKGLF*

State 9, Layer 3

L SDEDF KAVFGMTRSAFANL P LWnQQh L nKEKGL F *

LSDEDFKAVFGMTRSAFANLPLWnQQhLnKEKGLF*

State 10, Layer 1

L SDEDF KAVFGMTRSAFANL P LWnQQh L nKEKGL F *

LSDEDFKAVFGMTRSAFANLPLWnQQhLnKEKGLF*

State 10, Layer 2

L SDEDF KAVFGMTRSAFANL P LWnQQh L nKEKGL F *

LSDEDFKAVFGMTRSAFANLPLWnQQhLnKEKGLF*

State 10, Layer 3

-2.50

-2.25

-2.00

-1.75

-1.50

-1.25

-1.00

-0.75

-0.50

-1.80

-1.60

-1.40

-1.20

-1.00

-0.80

-2.00

-1.75

-1.50

-1.25

-1.00

-0.75

-0.50

-0.25

-2.20

-2.00

-1.80

-1.60

-1.40

-1.20

-1.00

-2.00

-1.80

-1.60

-1.40

-1.20

-1.00

-2.00

-1.80

-1.60

-1.40

-1.20

-1.00

-2.50

-2.25

-2.00

-1.75

-1.50

-1.25

-1.00

-0.75

-0.50

-2.00

-1.80

-1.60

-1.40

-1.20

-1.00

-0.80

-0.60

-2.00

-1.75

-1.50

-1.25

-1.00

-0.75

-0.50

FIG. S13. Log-scaled attention weight heatmaps for villin SPIB states 8 to 10 from three layers of SubFormer-GVP. Each subplot
displays attention weights with color-coded tick labels based on normalized sums. Colorbars indicate log-scaled attention values.

30

FIG. S14. Comparison of time and GPU memory usage of TorchMD-ET in training and inference modes on the trp-cage (left)
and villin (right) subsets, each consisting of 2000 frames with 100 frames per batch. The measurements are done without
specific objective functions for usage benchmarking purposes. The model’s performance is evaluated across varying numbers
of hidden channels (64, 128, 256, 384) and layers (1–6). The heatmaps on the left show GPU memory allocated in gigabytes
(GB), while the heatmaps on the right depict time usage in seconds. The time represents one forward pass for inference mode
and one forward plus one backward pass for training mode. Measurements were performed on an NVIDIA A100 GPU with
40G of memory. Missing values are due to out-of-memory errors for certain configurations.

	Using pretrained graph neural networks with token mixers as geometric featurizers for conformational dynamics
	Abstract
	Introduction
	Methods
	Network architecture
	Pretraining by denoising
	Use of the representations
	Atom selection
	Coarse-graining
	Feature combination

	Output layers

	Downstream tasks
	VAMPnets
	State Predictive Information Bottleneck (SPIB)

	Systems studied
	Chignolin
	Trp-cage
	Villin
	Training-validation split

	Results
	VAMPNets
	SPIB
	Trp-cage
	Villin

	Computational requirements
	Conclusions
	Acknowledgments
	Data availability
	References
	GNN architectures
	Equivariant GNNs
	TorchMD-ET architecture
	ViSNet
	Gated equivariant block

	Geometric vector perceptron
	Pseudo-code of overall architecture
	Training details and hyperparameters
	Supplementary Figures

