1	Comparison of diet and exercise on cardiometabolic factors in young adults
2	with overweight/obesity: multiomics analysis and gut microbiota prediction—a
3	randomized controlled trial
4	Zongyu Lin ^{1, #} , Tianze Li ^{1, #} , Fenglian Huang ^{1, #} , Miao Wu ¹ , Lewei Zhu ¹ , Yueqin
5	Zhou ¹ , Ying-an Ming ² , Zhijun Lu ¹ , Wei Peng ¹ , Fei Gao ³ , and Yanna Zhu ^{1,4,*}
6	¹ Department of Maternal and Child Health, School of Public Health, Sun Yat-sen
7	University, Guangzhou, 510080, China;
8	² Department of Physical Education, Sun Yat-sen University, Guangzhou, 510080,
9	China;
10	³ Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural
11	Sciences, Shenzhen, 518000, China;
12	⁴ Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou,
13	510080, China.
14	[#] These authors contributed equally: Zongyu Lin, Tianze Li, Fenglian Huang.
15	Corresponding Author: Yanna Zhu, PhD, Associate Professor. Department of
16	Maternal and Child Health, School of Public Health, Sun Yat-sen University, No.74
17	Zhongshan Second Rd, Guangzhou, Guangdong Province, 510080, China.

18 Telephone number: +86 020 87334627.

19 Email address: zhuyn3@mail.sysu.edu.cn

SUPPLEMENTARY MATERIAL

Comparison of diet and exercise on cardiometabolic factors in young adults with overweight/obesity: multiomics analysis and gut microbiota prediction — a randomized controlled trial

Supplementary Methods

Supplementary method 1. Campus nutrition window.

Supplementary method 2. Preparation of the Fiber-rich meal packages, and internet and on-site integrated dietary intervention.

Supplementary method 3. Internet and on-site integrated exercise intervention.

Supplementary method 4. Stool sampling, fecal microbial DNA extraction, amplification, and 16S rRNA gene sequencing.

Supplementary method 5. Blood specimen collection, biochemical measurements, and serum metabolomics profiling.

Supplementary Tables

Table S1. The dietary intake and physical activity intensity of the participants before and after 8-week intervention.

Table S2. The pairwise comparison of the 8-weeks effects among RS, FR, and FR-RS interventions on CMFs in youth.

Table S3. Top 10 most important features and their importance scores from the original random forest model in intervention groups.

Table S4. Importance scores of all features from the adjusted random forest model to

 mitigate overfitting in intervention groups.

Table S5. All features and their importance scores from the random forest model in the intervention groups after adjustments to prevent overfitting.

Table S6. The area under the curve of baseline gut microbiota predicting cardiometabolic factors across different intervention groups after sensitivities analysis.

1 / 38

Supplementary Figures

Fig. S1. Flowchart of participants through the study, following CONSORT guidelines.

Fig. S2. Individuals who received same intervention express different response according to the changes in CMFs.

Fig. S3. Fecal microbial α -diversity at OTU level within each group before and after 8-week intervention.

Fig. S4. Changes of relative abundance of gut microbiota at phylum level at baseline and 8-week.

Fig. S5. OPLS-DA score plot at negative ion mode of each group before and after 8week intervention.

Fig. S6. Effects of Fiber-rich diet and Rope-skipping interventions on serum metabolites at negative ion mode.

Fig. S7 The KEGG pathway enrichment analysis of differential metabolites between different intervention groups and the control group.

Fig. S8 KEGG pathway enrichment and impact analysis of differential metabolites between combined intervention and control groups.

Fig. S9 Baseline gut microbiota predict improvements in Cardiometabolic factors base on logistic regression models.

Fig. S10. The Campus Nutrition Window

Fig. S11. Packing boxes and packed meals prepared for the participants.

Fig. S12. The follow-up of participants involved in dietary intervention groups.

Fig. S13. The aerobic exercise intervention.

Supplementary Methods

Supplementary method 1. Campus nutrition window.

The "Healthy China Action 2019-2030" and "National Nutrition Plan 2017-2030," issued by the State Council of China, explicitly outline goals such as meeting the healthcare needs of the people, promoting balanced diets, and health education. Subsequently, the Ministry of Education, in collaboration with the National Health Commission and four other departments of China, released the "Guidelines for Nutrition and Health School Construction." In these guidelines, it is emphasized that the establishment of nutritionally balanced school cafeterias is necessary. In line with these documents, our project team, in collaboration with the catering group of Sun Yatsen University, set up the "Campus Nutrition Window" on the ground floor of the Songtao Garden Cafeteria at Sun Yat-sen University in Guangzhou city, which was equipped with a team of skilled chefs and experienced nutritionists, and aimed at offering a balanced, quantitative, low-sodium, and low-oil healthy diet.

The Campus Nutrition Window officially started its trial operation in October 2021, catering to all students in Sun Yat-Sen University. Its distinctive features include: 1) Strict portion control of food items (specified quantities for each meal and clear information on total calorie and macronutrient content); 2) Scientific combination of ingredients with a wide variety (no less than 5 different types of food items daily and no less than 25 different types weekly); 3) Cooking method of reduced salt and oil (daily salt intake limited to less than 5g and oil usage ranging from 25-30g); 4) Offering various types of healthy meal packages to all students in the South Campus (including

general health packages, muscle-building packages, and weight-loss packages, etc.).

Supplementary method 2. Preparation of the Fiber-rich meal packages, and internet and on-site integrated dietary intervention.

Quantitative Fiber-rich (FR) meal packages were designed by project staff and nutritionists in alignment with The Dietary Guidelines for Chinese Residents (2016), the China Food Composition (2nd Edition), CHINESE DIETARY REFERENCE INTAKES (2013 Edition), and prepared by skilled chefs at the Campus Nutrition Window. A daily dietary plan regimen comprised three meal packages, encompassing breakfast, lunch, and dinner, and guaranteed a minimum of 25g/day of dietary fiber. Two sets of dietary menus were alternated twice per week (one menu from Monday to Wednesday and another from Thursday to Friday) in order to reduce participants' aversion and fatigue, thus promoting adherence.

In order to design personalized dietary intervention plans, participants in the FR and combined intervention groups were assigned to well-matched, diverse food sources, and quantified diet plans at different energy levels. The estimated ideal body weight (IBW) of each participant was calculated using the empirical Devine formula, which takes into account the height of each individual. Based on the IBW, the daily Estimated Energy Requirement (EER) for each participant was calculated, defined as 25 kcal/kg (IBW)/day, which has been validated in the practise of reducing body weight and improving metabolic parameters ¹. Subsequently, the 25th percentile (1160kcal/day) and the 75th percentile (1630kcal/day) of the rang of the EERs were selected as two representative levels to categorize the EERs for undergraduates in the FR and FR-RS

groups, thus personalizing the energy provided with the three daily meal packages to the greatest extent. When designing the FR diet, meal packages with different amounts of the same type of ingredients were paired to achieve these two different energy levels, ensuring the set energy needs, macronutrient ratios, and dietary fiber levels (25 g/day) were met. Finally, these meal packages were cooked, weighted quantitatively, packaged, and offered to participants at the Campus Nutrition Widow.

Those meal packages were distinguished based on packing boxes that were marked with various colours and features, allowing participants to select their corresponding meals. During the 8-week intervention period, participants received three meal packages each day following the dietary plan from the Campus Nutrition Window, Monday through Friday.

To maintain quality control, participants were required to submit daily dietary intake records using an internet-based methodology. Before each meal, participants were tasked with photographing the meal boxes and upload them online as a check-in form to record package collection. After dining, participants were instructed to indicate whether they fully consumed their meal packages. Furthermore, they were asked to document the type and amount of any food that were discarded after each meal and consumed between meals. Every evening, the project team staff reviews these reports and provided reminders to participants who showed inconsistent compliance.

During weekends, participants in the FR and the combined interventions groups were given autonomy to choose their meals and dining venues. However, they were encouraged to adhere to a healthy diet and required to document their food consumption for the sake of consistency and assessment. During the intervention period, participants in the FR and combined intervention groups were instructed to maintain their current exercise regimen, and those in the combined intervention and CON groups were required to adhere to their regular dietary habits.

Reference:

1. Nakajima Y, Sato K, Sudo M, et al. Practical dietary calorie management, body weight control and energy expenditure of diabetic patients in short-term hospitalization. *Journal of atherosclerosis and thrombosis*. Jun 30 2010;17(6):558-67. doi:10.5551/jat.3806

Supplementary method 3. Internet and on-site integrated AE exercise intervention.

Participants in both the rope skipping (RS) group and FR-RS group were instructed to follow an RS exercise regimen four times per week, with 1,000 jumps each session. Each session of RS was divided into sets of 100 jumps with a 20-second rest between bouts. The exercise program was divided into two phases: the professionalsupervised phase and the peer-supervised phase, both of which included on-site training and internet-based follow-up.

During the initial three weeks, participants in the professionally supervised phase received coaching on Monday, Wednesday, and Saturday evenings. The instructors not only delivered warm-up instruction but also offered comprehensive training supervision, aimed at aiding participants in mastering standardized RS techniques, thereby enhancing exercise efficiency and mitigating the risk of sports injuries. In tandem with the on-site instruction by physical education instructors, the project team, collaborating with the Department of Physical Education of Sun Yat-sen University, prepared online RS training videos, facilitating self-study for participants.

During to the peer-supervised phase, participants formed groups of three to six. They were given the flexibility to schedule their on-site jumping sessions at their preferred days and times, as a strategy to enhance compliance. Nevertheless, they were instructed to make sure that there was at least a full day (24 hours) between any two sessions. In line with the dietary intervention, participants were required to log their jumping sessions and to note the duration and number of jumps in the online documents. The project team staff reviewed the jumping records in the online document every Wednesday and Saturday, and sporadically examined the jumping videos from various groups throughout each week.

Each participant received a skipping rope for the RS training. Participants in the RS group were instructed to adhere to their regular dietary habits throughout the intervention. Dietary guidance was provided after completing the final assessment. Both the CON group and the FR group were asked to maintain their regular levels of physical activity during intervention period.

Supplementary method 4. Stool sampling, fecal microbial DNA extraction, amplification, and 16S rRNA gene sequencing.

Upon completion of the physical examination, all participants received a fecal sample collection kit, which included a fecal collection tube, a cotton swab, a label, and personal protective equipment. Within three days after the baseline and post-intervention examinations, all participants were required to collect a 3g sample of their own feces, which was to be delivered immediately to the refrigerator at -20 °C. The samples were then stored in a refrigerator at -80°C in preparation for future gut microbiota testing.

Due to fund capacity, only the top 20 individuals with the highest BMI at baseline in each group were selected for gut microbiota analysis at baseline and 8-week. In accordance with the instructions provided by the DNA extraction kits, genomic DNA was extracted and then evaluated for integrity and purity through 1% agarose gel electrophoresis. The DNA concentration and purity were further determined using the NanoDropone system. PCR amplification was carried out using genomic DNA as the template, followed by product electrophoresis. Primer selection was informed by the desired sequencing regions and incorporated barcodes and PremixTag (TaKaRa). After comparing PCR product concentrations using GeneTools Analysis Software (Version 4.03.05.0, SynGene), the requisite volumes for each sample were calculated based on the principle of equimolarity. Subsequently, the PCR products were mixed in accordance with these calculations. The E.Z.N.A. Gel Extraction Kit was used to recover these mixed PCR products, with target DNA fragments eluted using TE buffer. Library construction adhered to the standard protocol of the NEBNext® Ultra[™] DNA Library Prep Kit for Illumina. Sequencing was then executed on the HiSeq or MiSeq high-throughput platforms. Raw image data files obtained from the sequencing process were transformed into raw sequencing sequences (Raw Reads) via Base Calling analysis. The results were stored in the FASTQ file format, which encompasses both the sequencing sequence (Reads) information and the corresponding sequencing quality information.

In terms of 16s rRNA sequencing, raw paired-end FASTQ files generated from the DNA extraction, PCR amplification, library construction, and sequencing stages were initially filtered using FASTP (version 0.14.1). The sliding window for quality trimming was set at -W 4 -M 20. Primers were removed using CUTADAPT (version 1.14), which is based on the sequence information from both ends, yielding qualitycontrolled paired-end clean reads. The clean reads were subsequently assembled based on their overlap using the -fastq mergepairs function in USEARCH (version 10), with default settings requiring a minimum overlap length of 16bp and a maximum mismatch of 5bp in the overlapping area. Assembled sequences meeting these criteria were retained and underwent a second round of sliding window quality trimming with FASTP (-W 4 -M 20), providing effective clean assembled sequences. Following this, a feature table was generated using the DADA2 denoise procedure following the QIIME 2 (version 2020.11.0) pipeline. The table was aligned to the SILVA database (V.123) using the -sintax function in USEARCH for taxonomy annotation, with a confidence threshold of 0.8. Features annotated as chloroplasts or mitochondria, or

those not annotated as bacteria at the kingdom level, were removed. The sequence feature table was rarefied to the minimum number of sequences within each sample to minimize the influence of sequencing depths on downstream analyses.

Supplementary method 5. Blood specimen collection, biochemical measurements, and serum metabolomics profiling.

All study participants were instructed to fast from 20:00 the evening before both the baseline and final examinations, with the allowance for minimal water intake. Examinations took place in the morning, during which trained clinical nurses collected a 5 ml fasting blood sample from each participant's antecubital vein. The collected blood samples were immediately stored in a refrigerator set at -20°C, followed by a centrifugal separation procedure (3000r/min, 10min). The separated serum samples were subsequently frozen and stored in a -80°C refrigerator, awaiting further biochemical analysis.

Stored venous blood samples from each participant, preserved at -80 °C, were subsequently analyzed for various health parameters. These included: 1) fasting plasma glucose (FPG), fasting insulin (FINS), homeostatic model assessment of insulin resistance (HOMA-IR), and homeostatic model assessment of β -cell function (HOMA- β); 2) serum lipid profiles, comprising triglyceride (TG), total cholesterol (TC), highdensity lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C); and 3) uric acid (UA) and high-sensitivity C-reactive protein (hs-CRP). These assessments were conducted by a biomedical analysis company, KingMed Diagnostics Group Co., Ltd., located in Guangzhou, China.

For serum metabolomics profiling, only the top 10 individuals with the highest BMI at baseline in each group were selected for serum metabolomics analysis, due to budget constraints. For the participants examined, 100 μ L of serum sample was

transferred into an Eppendorf tube. We then added 400 µL of an extract solution (acetonitrile: methanol = 1: 1, including an isotopically-labelled internal standard mixture). The samples were vortexed for 30 seconds, sonicated for 10 minutes in an ice-water bath, and incubated at -40 °C for an hour to precipitate proteins. Post incubation, the samples were centrifuged at 12,000 rpm (RCF=13800(\times g), R= 8.6cm) for 15 minutes at 4 °C. The resulting supernatant was transferred to a fresh glass vial for subsequent analysis. Quality control (QC) samples were prepared by mixing equal aliquots of the supernatants from all samples. LC-MS/MS analyses were conducted using an UHPLC system (Vanquish, Thermo Fisher Scientific) with a UPLC BEH Amide column (2.1 mm \times 100 mm, 1.7 μ m) coupled to an Orbitrap Exploris 120 mass spectrometer (Orbitrap MS, Thermo). The mobile phase consisted of 25 mmol/L ammonium acetate and 25 mmol/L ammonium hydroxide in water (pH = 9.75) (A), and acetonitrile (B). The auto-sampler temperature was set at 4 °C, and the injection volume was 2 µL. The Orbitrap Exploris 120 mass spectrometer was utilized for its capacity to acquire MS/MS spectra on an information-dependent acquisition (IDA) mode under the control of the acquisition software (Xcalibur, Thermo). In this mode, the acquisition software continually evaluates the full scan MS spectrum. The ESI source conditions were set as follows: sheath gas flow rate at 50 Arb, Aux gas flow rate at 15 Arb, capillary temperature at 320 °C, full MS resolution at 60000, MS/MS resolution at 15000, collision energy at 10/30/60 in NCE mode, and spray Voltage at 3.8 kV (positive) or -3.4 kV (negative). The raw data were transformed into the mzXML format using ProteoWizard and then processed with an in-house program developed in R, based on XCMS. This program facilitated peak detection, extraction, alignment, and integration. Following this, a metabolite annotation of each peak was carried out using an MS2 database, known as BiotreeDB. The threshold for annotation was set at 0.3.

Supplementary tables

Variables	RS (n = 29)	FR (n = 32)	FR-RS (n = 32)	Control (n = 30)	Р				
Physical activity inten	Physical activity intensity, METs/min/week								
Baseline	1693.0 (1035.0,	1639.0 (924.0,	1702.0 (1266.2,	1794.0 (1024.0,					
	1910.0)	2332.0)	2621.5)	2506.0)	0.560				
8-week	2031.0 (1635.0,	1586.0 (1124.0,	2280.0 (1790.0,	1736.0 (1188.0,	0 4 6 -				
8-week	3262.0)	2524.0)	2859.5)	3078.0)	0.167				
Within_P	0.002 ^r	0.731 ^t	0.028 ^r	0.328 ^r					
Sedentary time, hour									
Baseline	7.5 (6.0, 9.0)	7.0 (5.0, 9.0)	8.5 (6.5, 10.0)	8.0 (6.0, 10.0)	0.700				
8-week	7.3 ± 2.7	7.8 ± 2.0	8.1 ± 3.4	8.7 ± 2.3	0.564				
Within_P	0.099 ^t	0.754 ^r	0.699 ^t	0.626 ^t					
Protein intake, g/d									
Baseline	68.7 (55.6, 85.1)	67.8 (55.9, 93.4)	75.0 (56.6, 89.2)	58.8 (50.5, 79.5)	0.294				
8-week	58.1 (48.2, 76.2)	77.4 (65.5, 82.6)	74.4 (58.6, 75.0)	59.1 (42.0, 64.8)	<0.001				
Within_P	0.71 ^t	0.844 ^t	0.057 ^r	0.012 ^r					
Dietary fat intake, g/d	I								
Baseline	57.8 (44.4, 65.6)	68.1 (45.2, 78.9)	70.3 (54.5, 87.8)	63.5 (54.3, 70.2)	0.080				
8-week	69.3 ± 15.2	27.9 ± 8.9	21.6 ± 10.7	66.1 ± 12.3	<0.001				
Within_P	0.047 ^r	<0.001 ^t	<0.001 ^t	0.563 ^r					
Carbohydrates intake	e, g/d								
Baseline	205.7 (149.9, 246.6)	219.5 (189.6, 271.8)	205.0 (158.2, 269.3)	188.1 (160.5, 236.0)	0.370				
8-week	223.7 (181.5, 233.8)	279.2 (211.1, 298.6)	301.1 (211.7, 305.8)	185.7 (166.5, 219.9)	<0.001				
Within_P	0.609 ^t	0.314 ^t	0.311 ^r	0.055 ^t					
Energy intake, kcal/d									
Deceline	1601.5 (1293.0,	1704.5 (1391.0,	1755.0 (1536.0,	1648.5 (1385.0,	0 222				
Dasenne	1846.0)	2160.0)	2219.0)	1801.5)	0.232				
9 weak	1749.0 (1537.0,	1668.3 (1271.7,	1688.7 (1253.7,	1601.3 (1322.3,	0 272				
o-week	1829.0)	1782.3)	1734.2)	1708.0)	0.575				
Within_P	0.256 ^t	0.041 ^t	0.002 ^r	0.07 ^t					
Dietary fiber intake, g	g/d								
Baseline	8.4 (5.2, 13.6)	9.7 (6.0, 12.8)	7.6 (5.2, 10.0)	6.6 (5.3, 9.6)	0.450				
8-week	5.4 (4.5, 7.7)	25.4 (23.1, 26.0)	25.3 (25.3, 25.6)	6.1 (4.6, 9.5)	<0.001				
Within_P	0.155 ^r	< 0.001 ^r	<0.001 ^r	0.695 r					

Table S1. The dietary intake and physical activity intensity of the participants

before and after 8-week intervention.

Data are presented as mean±SD or median (IQR), P-values among groups were determined by analysis of covariance or Kruskal-Wallis test.

P-value for the intra-group comparison prior to and following 8-week intervention was derived through either the paired t-test or the paired Wilcoxon test: ^t for paired t-test and ^r for paired Wilcoxon test.

Abbreviation: FR: Fiber-rich diet group; FR-RS: Fiber-rich diet and rope-skipping group; IQR: Interquartile range; METs: Metabolic equivalents of task; RS: Rope-skipping group.

CMFs	RS (n = 29) vs. FR (n = 32)	FR (n = 32) vs. FR-RS (n = 32)	RS (n = 29) vs. FR-RS (n = 32)
Body weight, kg			
P value	1.000	1.000	1.000
WC, cm			
P value	1.000	0.639	1.000
BFM, kg			
P value	1.000	1.000	1.000
BFP, %			
P value	1.000	1.000	1.000
BMI, kg/m2			
P value	1.000	1.000	1.000
TC, mmol/L			
P value	0.410	0.172	1.000
TG, mmol/L			
P value	0.268	1.000	1.000
LDL-C, mmol/L			
P value	0.684	0.111	1.000
HDL-C, mmol/L			
P value	1.000	1.000	1.000
FPG, mmol/L			
P value	1.000	1.000	1.000
FINs, µU/mL			
P value	1.000	1.000	1.000
UA, μmol/L			
P value	0.545	1.000	1.000

Table S2. The pairwise comparison of the 8-weeks effects among RS, FR, and FR-

RS interventions on CMFs in you	ath
--	-----

Comparison of 8-week effects adjusting for baseline between intervention groups, assessed by Bonferroni corrected t-test:

Abbreviations: BFM: Body fat mass; BMI: Body mass index; CMFs: Cardiometabolic factors; FINS: Fasting insulin; FPG: Fasting plasma glucose; HDL-C: High-density lipoprotein cholesterol; FR: Fiber-rich diet group; FR-RS: Fiber-rich diet and rope-skipping group; LDL-C: Low-density lipoprotein cholesterol; BFP: Body fat percentage; RS: Rope-skipping group; TC: Total cholesterol; TG: Triglyceride; UA: Uric acid; WC: Waist circumference.

Table S3. Top 10 most important features and their importance scores from the

	FR group		RS group		FR-RS group	
Rank	Genus	Value	Genus	Value	Genus	Value
			Weight			
1	Escherichia-Shigella	1.2836	Unassigned	0.6932	Escherichia-Shigella	1.5231
2	Alistipes	0.965	Romboutsia	0.6581	Prevotella_9	1.4425
3	Romboutsia	0.8954	Agathobacter	0.6187	Bifidobacterium	0.7359
4	Tyzzerella_3	0.822	Alistipes	0.5607	Romboutsia	0.6159
5	Ruminococcaceae_UCG-013	0.5152	Tyzzerella_3	0.5293	Unassigned	0.6151
6	Bifidobacterium	0.514	Streptococcus	0.4816	Alistipes	0.5081
7	Agathobacter	0.5058	Escherichia-Shigella	0.4735	Streptococcus	0.465
8	Prevotella_9	0.4284	Blautia	0.4412	Blautia	0.4307
9	Megasphaera	0.3952	Dorea	0.4320	Haemophilus	0.4066
10	Subdoligranulum	0.3717	Bifidobacterium	0.3986	Clostridium_sensu_stricto_l	0.3800
			WC			
1	Escherichia-Shigella	0.7744	Subdoligranulum	0.8544	Streptococcus	1.1994
2	Subdoligranulum	0.6211	Alistipes	0.6842	Subdoligranulum	0.8073
3	Bacteroides	0.5143	Streptococcus	0.5822	Alistipes	0.7341
4	Streptococcus	0.5143	Dorea	0.5539	Escherichia-Shigella	0.7071
5	Intestinibacter	0.4824	Escherichia-Shigella	0.5062	Megamonas	0.6812
6	Fusicatenibacter	0.4334	Coprococcus_3	0.4707	Coprococcus_3	0.6098
7	Clostridium_sensu_stricto_l	0.4017	Ruminococcaceae_UCG-002	0.4696	Fusicatenibacter	0.5592
8	Megamonas	0.3884	Parabacteroides	0.4569	Romboutsia	0.5476
9	Roseburia	0.3842	Agathobacter	0.4488	Unassigned	0.4455
10	Romboutsia	0.4237	Alistipes	0.3808	Bacteroides	0.4048
			BFM			
1	Anaerostipes	0.7190	Prevotella_9	0.8161	Prevotella_9	0.799
2	Subdoligranulum	0.7161	Lachnoclostridium	0.7424	Subdoligranulum	0.781
3	Lachnoclostridium	0.6506	Subdoligranulum	0.7313	Agathobacter	0.6698
4	Prevotella_9	0.6151	Anaerostipes	0.7057	Alistipes	0.5634
5	Alistipes	0.5037	Alistipes	0.4855	Faecalibacterium	0.4864
6	Bacteroides	0.4781	Klebsiella	0.4473	Coprococcus_1	0.4629
7	Escherichia-Shigella	0.4581	Bacteroides	0.399	Bacteroides	0.4001
8	Parabacteroides	0.3965	Turicibacter	0.3909	Klebsiella	0.3879
9	Fusicatenibacter	0.3631	Coprococcus_1	0.3718	Akkermansia	0.3875
10	Butyricicoccus	0.3552	Romboutsia	0.3345	Escherichia-Shigella	0.3734

original random forest model in intervention groups.

Table S3-continue. Top 10 most important features and their importance scores

	FR group		RS group	RS group		FR-RS group	
Rank	Rank Genus Value		Genus	Genus Value		Value	
	BFP						
1	Dialister	0.8175	Dialister	0.6964	Subdoligranulum	0.5633	
2	Anaerostipes	0.5654	Romboutsia	0.6132	Coprococcus_1	0.43	
3	Klebsiella	0.4762	Anaerostipes	0.5236	Anaerostipes	0.4291	
4	Romboutsia	0.4506	Lachnospiraceae_ND3007_group	0.5083	Dialister	0.4039	
5	Bacteroides	0.4196	uncultured	0.431	Bacteroides	0.4019	
6	Lachnospiraceae_ND3007_group	0.3846	Alistipes	0.3702	Romboutsia	0.387	
7	Turicibacter	0.37	CAG-56	0.3566	Prevotella_9	0.3838	
8	CAG-56	0.3575	Agathobacter	0.3509	CAG-56	0.3375	
9	Haemophilus	0.3338	Faecalibacterium	0.3352	Butyricicoccus	0.3308	
10	Agathobacter	0.3299	Roseburia	0.3341	Akkermansia	0.316	
			BMI				
1	Alistipes	0.9681	Alistipes	0.7706	Alistipes	0.9482	
2	Butyricicoccus	0.9365	Romboutsia	0.7362	Agathobacter	0.6394	
3	Lachnospiraceae_ND3007_group	0.852	Faecalibacterium	0.7358	Anaerostipes	0.6118	
4	Haemophilus	0.7659	Subdoligranulum	0.6692	Butyricicoccus	0.5651	
5	Escherichia-Shigella	0.674	Butyricicoccus	0.6246	Unassigned	0.5549	
6	Fusicatenibacter	0.6427	Klebsiella	0.6199	Fusicatenibacter	0.5529	
7	Romboutsia	0.6264	Agathobacter	0.6096	Romboutsia	0.536	
8	Agathobacter	0.5748	Escherichia-Shigella	0.606	Bifidobacterium	0.5267	
9	Subdoligranulum	0.5521	CAG-56	0.5971	Terrisporobacter	0.5123	
10	Anaerostipes	0.5443	Bacteroides	0.5806	Erysipelotrichaceae_UCG-003	0.4971	
			UA				
1	Anaerostipes	1.1448	Coprococcus_3	1.2044	Roseburia	0.8729	
2	Coprococcus_3	1.1366	Erysipelotrichaceae_UCG-003	0.8484	Lachnospiraceae_ND3007_group	0.7775	
3	Erysipelotrichaceae_UCG-003	0.7115	Unassigned	0.7834	Anaerostipes	0.7436	
4	Lachnospiraceae_ND3007_group	0.6438	Lachnospiraceae_ND3007_group	0.7824	Coprococcus_3	0.7318	
5	Roseburia	0.6345	Roseburia	0.7708	Klebsiella	0.6686	
6	Dorea	0.5342	Anaerostipes	0.7516	Terrisporobacter	0.5002	
7	Turicibacter	0.5218	Romboutsia	0.5872	Dialister	0.4885	
8	Intestinibacter	0.5062	Lachnoclostridium	0.5086	Haemophilus	0.4549	
9	Faecalibacterium	0.5022	Clostridium_sensu_stricto_l	0.5008	Escherichia-Shigella	0.4259	
10	Haemophilus	0.4893	Dorea	0.4639	Unassigned	0.413	

from the original random forest model in intervention groups.

Table S3-continue. Top 10 most important features and their importance scores

	FR group		RS group		FR-RS group	
Rank	Genus	Value	Genus	Value	Genus	Value
			TG			
1	Lachnoclostridium	0.8743	Turicibacter	0.7852	Parabacteroides	1.0155
2	Parabacteroides	0.8447	Bacteroides	0.7246	Dialister	0.7887
3	Turicibacter	0.807	Erysipelotrichaceae_UCG-003	0.5755	Subdoligranulum	0.7666
4	Dialister	0.7916	Ruminococcaceae_UCG-013	0.5731	Bacteroides	0.7141
5	Alistipes	0.6284	Fusicatenibacter	0.5616	Alistipes	0.6401
6	Subdoligranulum	0.5678	Bifidobacterium	0.5296	Bifidobacterium	0.6286
7	Terrisporobacter	0.561	Haemophilus	0.5148	Roseburia	0.5514
8	Klebsiella	0.5555	Coprococcus_3	0.502	Turicibacter	0.5146
9	Agathobacter	0.5192	Blautia	0.4912	Ruminococcaceae_UCG-013	0.4947
10	Romboutsia	0.4834	Romboutsia	0.4872	Unassigned	0.4212

from the original random forest model in intervention groups.

Table S4. Importance scores of all features from the adjusted random forest model

	FR group RS group		FR-RS group			
Rank	Genus	Value	Genus	Value	Genus	Value
			Weight			
1	Alistipes	1.4016	Romboutsia	1.1741	Unassigned	1.104
2	Romboutsia	1.1854	Unassigned	1.1197	Tyzzerella_3	1.101
3	Agathobacter	1.1552	Agathobacter	1.1192	Agathobacter	1.0972
4	Tyzzerella_3	1.0277	Streptococcus	0.8937	Romboutsia	1.0857
5	Streptococcus	1.0266	Tyzzerella_3	0.8078	Alistipes	1.0475
6	Lachnoclostridium	0.8278	Escherichia-Shigella	0.7711	Streptococcus	0.9444
7	Escherichia-Shigella	0.7385	Lachnoclostridium	0.7691	Escherichia-Shigella	0.8381
8	Dialister	0.6642	Bifidobacterium	0.695	Bifidobacterium	0.699
9	Prevotella_9	0.6412	Dorea	0.6594	Prevotella_9	0.6755
10	Bifidobacterium	0.6401	Coprococcus_3	0.6288	CAG-56	0.6492
11	Coprococcus_3	0.6085	CAG-56	0.6279	Dialister	0.6217
12	Butyricicoccus	0.577	Blautia	0.592	Dorea	0.6144
13	Ruminococcus_2	0.5744	Dialister	0.5866	Blautia	0.5355
14	Dorea	0.5742	Prevotella_9	0.5849	Lachnospiraceae_ND3007_group	0.4899
15	Intestinibacter	0.5038	Coprococcus_1	0.5838	Subdoligranulum	0.4321
16	Subdoligranulum	0.4643	Lachnospiraceae_ND3007_group	0.5661	Intestinibacter	0.4125
17	Haemophilus	0.3499	Faecalibacterium	0.5509	Haemophilus	0.409
18	Megasphaera	0.3448	Intestinibacter	0.4738	Roseburia	0.371
19	Ruminococcaceae_UCG-013	0.3107	Anaerostipes	0.3808	Clostridium_sensu_stricto_1	0.364
20	Phascolarctobacterium	0.1713	Klebsiella	0.2024	Erysipelotrichaceae_UCG-003	0.2954
			WC			
1	Escherichia-Shigella	0.7744	Subdoligranulum	1.3284	Subdoligranulum	1.8196
2	Subdoligranulum	0.6211	Alistipes	0.9842	Alistipes	1.397
3	Bacteroides	0.5143	Streptococcus	0.887	Coprococcus_3	1.2326
4	Streptococcus	0.5143	Coprococcus_3	0.8809	Parabacteroides	0.9104
5	Intestinibacter	0.4824	Dorea	0.8787	Dorea	0.9053
6	Fusicatenibacter	0.4334	Escherichia-Shigella	0.7755	Coprococcus_1	0.8701
7	Clostridium_sensu_stricto_l	0.4017	Ruminococcaceae_UCG-002	0.7443	Escherichia-Shigella	0.828
8	Megamonas	0.3884	Parabacteroides	0.7274	Romboutsia	0.6566
9	Roseburia	0.3842	Anaerostipes	0.6788	Anaerostipes	0.5977
10	Alistipes	0.3808	Agathobacter	0.6234	Lachnoclostridium	0.5965
11	Klebsiella	0.3785	Coprococcus_1	0.5971	Unassigned	0.5578
12	CAG-56	0.3703	Romboutsia	0.5889	Fusicatenibacter	0.5214
13	Blautia	0.37	Tyzzerella_3	0.5559	Tyzzerella_3	0.5121
14	Agathobacter	0.3595	CAG-56	0.5317	Clostridium_sensu_stricto_1	0.47
15	Coprococcus_3	0.3544	Bacteroides	0.52	Turicibacter	0.4608
16	Ruminococcaceae_UCG-002	0.354	Fusicatenibacter	0.5191	Roseburia	0.4171

to mitigate overfitting in intervention groups.

20 / 38

17	Lachnospiraceae_ND3007_group	0.3531	Subdoligranulum	1.3284	Blautia	0.3881
18	Faecalibacterium	0.3418	Alistipes	0.9842	Megamonas	0.3313
19	Prevotella_9	0.3199	Streptococcus	0.887	Bacteroides	0.2982
20	Romboutsia	0.3149	Coprococcus_3	0.8809	Terrisporobacter	0.2245
			BFM			
1	Subdoligranulum	1.3913	Subdoligranulum	1.3884	Subdoligranulum	1.2359
2	Lachnoclostridium	1.179	Lachnoclostridium	1.211	Prevotella_9	1.0931
3	Prevotella_9	0.8882	Prevotella_9	0.9384	Lachnoclostridium	1.0574
4	Anaerostipes	0.8427	Anaerostipes	0.9092	Anaerostipes	1.045
5	Klebsiella	0.8096	Alistipes	0.761	Alistipes	0.7247
6	Alistipes	0.7123	Klebsiella	0.7261	Klebsiella	0.6672
7	Coprococcus_1	0.5349	Coprococcus_1	0.5738	Escherichia-Shigella	0.6208
8	Escherichia-Shigella	0.5132	Bacteroides	0.5462	Faecalibacterium	0.5739
9	Parabacteroides	0.483	Parabacteroides	0.5415	Bacteroides	0.5522
10	Bacteroides	0.4806	Faecalibacterium	0.5323	Dialister	0.5145
11	Dorea	0.47	Bifidobacterium	0.5283	Coprococcus_1	0.4823
12	Faecalibacterium	0.4353	Escherichia-Shigella	0.5257	Butyricicoccus	0.4539
13	Turicibacter	0.4322	Agathobacter	0.5037	Bifidobacterium	0.4109
14	Butyricicoccus	0.394	Dorea	0.5003	Agathobacter	0.3853
15	Fusicatenibacter	0.355	Romboutsia	0.4885	Ruminococcus_2	0.3106
16	Streptococcus	0.3393	Turicibacter	0.4842	Veillonella	0.3058
17	Bifidobacterium	0.3361	Fusicatenibacter	0.4484	Lachnospiraceae_FCS020_group	0.2175
18	Roseburia	0.3262	Dialister	0.4434	Akkermansia	0.2117
19	Dialister	0.2837	CAG-56	0.4012	Tyzzerella_3	0.2091
20	Haemophilus	0.2706	Roseburia	0.3274	Phascolarctobacterium	0.2059
			BFP			
1	Dialister	1.465	Dialister	1.4032	Dialister	1.514
2	Romboutsia	1.0875	Romboutsia	1.0616	Romboutsia	0.9103
3	Anaerostipes	0.873	CAG-56	0.8243	CAG-56	0.6842
4	CAG-56	0.8321	Anaerostipes	0.8142	Alistipes	0.6027
5	Lachnospiraceae_ND3007_group	0.8133	Lachnospiraceae_ND3007_group	0.7779	Anaerostipes	0.5818
6	Alistipes	0.7407	Alistipes	0.6794	Faecalibacterium	0.5431
7	Subdoligranulum	0.5285	Faecalibacterium	0.5874	Akkermansia	0.5244
8	Akkermansia	0.522	Subdoligranulum	0.5245	Subdoligranulum	0.4659
9	uncultured	0.4977	Turicibacter	0.4949	Bacteroides	0.3577
10	Bacteroides	0.4939	uncultured	0.4517	Unassigned	0.3518
11	Agathobacter	0.4762	Unassigned	0.4478	Fusicatenibacter	0.24
12	Unassigned	0.4693	Akkermansia	0.4423	Coprococcus_1	0.2388
13	Turicibacter	0.3908	Roseburia	0.4422	Bifidobacterium	0.2219
14	Coprococcus_1	0.3882	Bacteroides	0.4281	Clostridium_sensu_stricto_l	0.2199
15	Lachnoclostridium	0.3733	Agathobacter	0.4026	Ruminococcus_2	0.219
16	Ruminococcaceae_UCG-013	0.3221	Fusicatenibacter	0.376	Parabacteroides	0.2108
17	Klebsiella	0.3204	Streptococcus	0.3554	Klebsiella	0.1954
18	Clostridium_sensu_stricto_l	0.2805	Intestinibacter	0.3377	Butyricicoccus	0.1692

19	Erysipelotrichaceae_UCG-003	0.2586	Ruminococcus_2	0.2727	Prevotella_9	0.166
20	Haemophilus	0.2462	Coprococcus_3	0.2554	Erysipelotrichaceae_UCG-003	0.1109
			BMI			
1	Alistipes	1.5166	Alistipes	1.5847	Alistipes	1.5684
2	Faecalibacterium	1.1305	Faecalibacterium	1.1354	Faecalibacterium	1.2889
3	Subdoligranulum	1.1251	Romboutsia	1.0696	Romboutsia	1.157
4	Romboutsia	1.112	Unassigned	1.0563	Escherichia-Shigella	1.0844
5	Unassigned	0.9585	Agathobacter	0.9847	Subdoligranulum	1.0399
6	Butyricicoccus	0.8598	Klebsiella	0.9769	Bacteroides	1.0119
7	Escherichia-Shigella	0.8568	Subdoligranulum	0.9679	Agathobacter	1.0046
8	Agathobacter	0.8493	Butyricicoccus	0.872	Anaerostipes	0.9548
9	Anaerostipes	0.8051	Bacteroides	0.85	Unassigned	0.8974
10	Lachnoclostridium	0.6901	Anaerostipes	0.8119	Butyricicoccus	0.8906
11	Haemophilus	0.5751	CAG-56	0.7872	Haemophilus	0.6997
12	Streptococcus	0.5477	Escherichia-Shigella	0.7852	Erysipelotrichaceae_UCG-003	0.6269
13	Bifidobacterium	0.4579	Streptococcus	0.5574	Coprococcus_3	0.6198
14	Erysipelotrichaceae_UCG-003	0.4097	Haemophilus	0.5556	Bifidobacterium	0.6019
15	Prevotella_9	0.3935	Bifidobacterium	0.5409	Prevotella_9	0.5184
16	Dorea	0.37	Coprococcus_1	0.5131	Collinsella	0.5011
17	Lachnospiraceae_ND3007_group	0.32	Clostridium_sensu_stricto_l	0.4803	Dorea	0.4169
18	Fusicatenibacter	0.2621	Dialister	0.4194	Fusicatenibacter	0.4086
19	Turicibacter	0.2568	Erysipelotrichaceae_UCG-003	0.4068	Blautia	0.2533
20	Parabacteroides	0.1922	Lachnospiraceae_ND3007_group	0.3914	Terrisporobacter	0.165
			UA			
1	Coprococcus_3	2.384	Coprococcus_3	1.5811	Coprococcus_3	3.09149
2	Lachnospiraceae_ND3007_group	1.3981	Erysipelotrichaceae_UCG-003	1.3209	Anaerostipes	1.62598
3	Roseburia	1.2238	Roseburia	1.2811	Roseburia	1.38842
4	Erysipelotrichaceae_UCG-003	1.1732	Lachnospiraceae_ND3007_group	1.181	Lachnospiraceae_ND3007_group	1.28032
5	Anaerostipes	1.1556	Anaerostipes	1.1277	Unassigned	1.05571
6	Unassigned	1.1139	Unassigned	0.92	Romboutsia	0.72403
7	Intestinibacter	0.7178	Dorea	0.808	Tyzzerella_3	0.7118
8	Dorea	0.6132	Romboutsia	0.7285	Agathobacter	0.54005
9	Tyzzerella_3	0.601	Intestinibacter	0.7229	Streptococcus	0.53412
10	Turicibacter	0.5463	Clostridium_sensu_stricto_1	0.6855	Haemophilus	0.53115
11	Haemophilus	0.5219	Tyzzerella_3	0.6576	Dialister	0.52121
12	Streptococcus	0.4699	Turicibacter	0.6457	Lachnoclostridium	0.50053
13	Agathobacter	0.4678	Lachnoclostridium	0.6157	Ruminococcaceae_UCG-013	0.47292
14	Collinsella	0.3999	Streptococcus	0.5924	Fusicatenibacter	0.44285
15	Dialister	0.3881	Haemophilus	0.5688	Klebsiella	0.39012
16	Klebsiella	0.379	Megamonas	0.544	Ruminococcus_2	0.38941
17	Bacteroides	0.3722	Escherichia-Shigella	0.5288	Escherichia-Shigella	0.37265
18	Ruminococcus_2	0.3468	Agathobacter	0.5196	Terrisporobacter	0.24074
19	Faecalibacterium	0.3439	Ruminococcaceae_UCG-013	0.4971	Faecalibacterium	0.21987
20	Blautia	0.2602	Dialister	0.4884	Blautia	0.09807

			TG			
1	Turicibacter	1.5216	Turicibacter	1.0555	Turicibacter	1.3509
2	Streptococcus	1.0833	Bacteroides	0.9397	Bacteroides	1.0195
3	Bacteroides	1.0817	Parabacteroides	0.9269	Streptococcus	1.0077
4	Romboutsia	0.9815	Romboutsia	0.7355	Ruminococcaceae_UCG-013	1.0017
5	Dialister	0.9541	Erysipelotrichaceae_UCG-003	0.7345	Parabacteroides	0.9827
6	Fusicatenibacter	0.9293	Coprococcus_3	0.729	Fusicatenibacter	0.9705
7	Ruminococcaceae_UCG-013	0.834	Fusicatenibacter	0.6401	Dialister	0.957
8	Parabacteroides	0.8133	Dialister	0.6342	Romboutsia	0.9451
9	Ruminococcus_2	0.767	Blautia	0.6318	Blautia	0.8834
10	Subdoligranulum	0.6979	Streptococcus	0.588	Bifidobacterium	0.8488
11	Agathobacter	0.636	Agathobacter	0.5828	Roseburia	0.7962
12	Alistipes	0.6201	Haemophilus	0.5657	Lachnoclostridium	0.7954
13	Lachnoclostridium	0.6072	Bifidobacterium	0.565	Faecalibacterium	0.7756
14	Klebsiella	0.6034	Ruminococcus_2	0.5531	Subdoligranulum	0.7707
15	Terrisporobacter	0.568	Faecalibacterium	0.5135	Klebsiella	0.745
16	Dorea	0.5633	CAG-56	0.4842	CAG-56	0.7414
17	Unassigned	0.5451	Anaerostipes	0.4223	Anaerostipes	0.6819
18	Butyricicoccus	0.5179	Klebsiella	0.4175	Alistipes	0.6132
19	Megamonas	0.4668	Ruminococcaceae_UCG-013	0.3965	Ruminococcus_2	0.5934
20	Intestinibacter	0.4457	Ruminococcaceae_UCG-002	0.2667	Unassigned	0.5712

CMFs	RS (n = 20)	FR (n = 20)	FR-RS (n = 20)
Body weight, kg			
AUC (95%CI)	0.74 (0.40-1.00)	0.90 (0.75-0.100)	0.82 (0.62-1.00)
WC, cm			
AUC (95%CI)	0.71 (0.44-0.98)	0.77 (0.50-1.00)	0.67 (0.36-0.98)
BFM, kg			
AUC (95%CI)	0.74 (0.50-0.98)	0.71 (0.47-0.96)	0.81 (0.59-1.00)
BFP, %			
AUC (95%CI)	0.53 (0.10-0.96)	0.82 (0.56-1.00)	0.78 (0.50-1.00)
BMI, kg/m ²			
AUC (95%CI)	0.72 (0.45-0.98)	0.80 (0.58-1.00)	0.78 (0.55-1.00)
UA, μmol/L			
AUC (95%CI)	0.62 (0.33-0.90)	0.67 (0.41-0.94)	0.69 (0.35-1.00)
TG, mmol/L			
AUC (95%CI)	0.50 (0.15-0.85)	0.68 (0.36-1.00)	0.64 (0.36-0.93)

Table S5. All features and their importance scores from the random forest model

Abbreviations: AUC: Area under the curve; BFM: Body fat mass; BMI: Body mass index; CI: Confidence interval; CMFs: Cardiometabolic factors; FR: Fiber-rich diet group; FR-RS: Fiber-rich diet and rope-skipping group; hs-CRP: Highsensitivity C-reactive protein; LDL-CH: Low-density lipoprotein cholesterol; BFP: Body fat percentage; RS: Ropeskipping group; TC: Total cholesterol; TG: Triglyceride; UA: Uric acid; WC: Waist circumference.

in the intervention groups after adjustments to prevent overfitting.

Table S6. The area under the curve of baseline gut microbiota predicting cardiometabolic factors across different intervention groups after sensitivities analysis.

CMFs	RS (n = 20)	FR (n = 20)	FR-RS (n = 20)
Body weight, kg			
AUC (95%CI)	0.74 (0.40-1.00)	0.90 (0.75-0.100)	0.82 (0.62-1.00)
WC, cm			
AUC (95%CI)	0.71 (0.44-0.98)	0.77 (0.50-1.00)	0.67 (0.36-0.98)
BFM, kg			
AUC (95%CI)	0.74 (0.50-0.98)	0.71 (0.47-0.96)	0.81 (0.59-1.00)
BFP, %			
AUC (95%CI)	0.53 (0.10-0.96)	0.82 (0.56-1.00)	0.78 (0.50-1.00)
BMI, kg/m ²			
AUC (95%CI)	0.72 (0.45-0.98)	0.80 (0.58-1.00)	0.78 (0.55-1.00)
UA, μmol/L			
AUC (95%CI)	0.62 (0.33-0.90)	0.67 (0.41-0.94)	0.69 (0.35-1.00)
TG, mmol/L			
AUC (95%CI)	0.50 (0.15-0.85)	0.68 (0.36-1.00)	0.64 (0.36-0.93)

Abbreviations: AUC: Area under the curve; BFM: Body fat mass; BMI: Body mass index; CI: Confidence interval; CMFs: Cardiometabolic factors; FR: Fiber-rich diet group; FR-RS: Fiber-rich diet and rope-skipping group; hs-CRP: Highsensitivity C-reactive protein; LDL-CH: Low-density lipoprotein cholesterol; BFP: Body fat percentage; RS: Ropeskipping group; TC: Total cholesterol; TG: Triglyceride; UA: Uric acid; WC: Waist circumference.

Supplementary Figures

Fig. S1 Flowchart of participants through the study, following CONSORT guidelines.

Abbreviations: FR, the Fiber-rich diet group; RS, the rope-skipping group. FR-RS: Fiber-rich diet combined with exercise intervention group.

Fig. S2 Individuals who received same intervention express different response according to the changes in CMFs.

Abbreviations: BFM: Body fat mass; BMI: Body mass index; BFP: Body fat percentage; CMFs: Cardiometabolic factors; LDL-CH: Low-density lipoprotein cholesterol; TC: Total cholesterol; TG: Triglyceride; UA: Uric acid; WC: Waist circumference.

Fig. S3. Fecal microbial a-diversity at OTU level within each group before and

after 8-week intervention.

Abbreviations: CON: control group; FR: Fiber-rich diet group; FR-RS: Fiber-rich diet and rope-kipping group. RS: rope-kipping group.

Fig. S4 Changes of relative abundance of gut microbiota at phylum level at baseline

Fig. S4 Changes of relative abundance of gut microbiota at phylum level at baseline (A) and 8-week (B). Within group differences (baseline vs. 8-week) were evaluated by paired t-tests or rank sum tests and corrected for False Discovery Rate: $*P \le 0.05$, $q_FDR \le 0.1$.

Abbreviations: CON: control group; FR: Fiber-rich diet group; FR-RS: Fiber-rich diet and rope-kipping group. RS: rope-kipping group.

Fig. S5 OPLS-DA score plot at negative ion mode of each group before and after 8-

Abbreviations: CON: control group; FR: Fiber-rich diet group; FR-RS: Fiber-rich diet and rope-kipping group. OPLS-DA: Orthogonal Projections to Latent Structures Discriminant Analysis; RS: rope-kipping group.

Fig. S6 Effects of Fiber-rich diet and Rope-skipping interventions on serum metabolites at negative ion mode.

A: Significantly changed serum metabolites at negative ion mode of each intervention group after 8-week intervention. Colored dots indicate significance referring to baseline. Larger dots with labelled id indicate significance referring to CON group. B: Taxonomy information of labelled metabolite.

Abbreviations: CON: control group; FR: Fiber-rich diet group; FR-RS: Fiber-rich diet and rope-kipping group.

different intervention groups and the control group. Taurine and hypotaurine metabolism Steroid hormone 0 biosynthesis Pyrimidine metabolism Biosynthesis of unsaturatedfatty acids Primary bile acid biosynthesis Pyrimidine metabolism Pathway 0 Phenylalanine, tyrosine and tryptophan Enrichment Ratio 01 Pantothenate and CoA biosynthesis Phenylalanine P-value 0.08 metabolism Arachidonic acid metabolism -Pantothenate and CoA biosynthesis 0.06 \bigcirc beta-Alanine 0.04 metabolism beta-Alanine metabolism 0 0.02 1.54 1.56 1.58 1.60 1.62 1.0 1.2 1.4 1.25 1.50 1.75 2.00 1.6 -log10(P-value) -log10(P-value) -log10(P-value) FR Group RS Group FR-RS Group

Fig. S7 The KEGG pathway enrichment analysis of differential metabolites between

Abbreviations: CON: control group; FR: Fiber-rich diet group; FR-RS: Fiber-rich diet and rope-kipping group.

Fig. S8 KEGG pathway enrichment and impact analysis of differential metabolites

between combined intervention and control groups.

A: KEGG pathway enrichment bubble plot of differential metabolites, B: KEGG pathway impact treemap of differential metabolites.

Fig. S9 Baseline gut microbiota predict improvements in CMFs base on logistic regression models.

Abbreviations: RS: rope-kipping group; FR: fiber-rich group; FR-RS: fiber-rich diet and rope-kipping group. CMFs: cardiometabolic factors. WC: waist circumference; BFM: Body fat mass; BFP: Body fat percentage; BMI: Body mass index; TG, triglyceride; UA, uric acid.

Fig. S10 The Campus Nutrition Window

B

A

A Slogan of the Campus Nutrition Window. B A scene of college students picking up meals at the Campus Nutrition Window

Fig. S11 Packing boxes and packed meals prepared for the participants.

A Transparent four-compartment packing box: Used for packing breakfast for participants with an EER of 1630kcal/d. B White opaque four-compartment packing box: Used for packing breakfast for participants with an EER of 1160kcal/d. C Black opaque four-compartment packing box: Used for packing lunch and dinner for participants with an EER of 1630kcal/d. D White opaque five-compartment packing box: Used for packing lunch and dinner for participants with an EER of 1630kcal/d. D White opaque five-compartment packing box: Used for packing lunch and dinner for participants with an EER of 1630kcal/d. E Example of breakfast, lunch, and dinner for participants with an EER of 1630kcal/d. (f) Example of breakfast, lunch, and dinner for participants with an EER of 1160kcal/d. Sample photos were taken by participants after retrieving their meals, with personal information redacted. Abbreviation: EER: Estimated Energy Requirement. Fig. S12 The follow-up of participants involved in dietary intervention groups.

A The meal-packages were taken by participants after retrieving their meals and sent to the WeChat group as a checkin. Personal information was redacted. B Daily dietary records for follow-up participants. Fig. S13 The aerobic exercise intervention.

A: A scene of a professional PE teacher supervising and instructing participants on their rope skipping exercises;B:Scene of online rope skipping instruction video; C: A scene of grouped participants roping skip on the playground;D: The records of follow-up of participants involved in rope-skipping intervention through Online documents.