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The Quantitative Analysis of Ligand Binding and Initial-Rate Data for Allosteric and
other Complex Enzyme Mechanisms
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(Received 5 June 1975)

1. The eight methods for plotting enzyme kinetic data are classified and analysed, and it is
shown how, in each case, it is only possible to obtain quantitative data on the coefficients
of the lowest- and highest-degree terms in the rate equation. 2. The combinations of co-
efficients that are accessible experimentally from limiting slopes and intercepts at both
low and high substrate concentration are stated for all the graphical methods and the
precise effects of these on curve shape in different spaces is discussed. 3. Ambiguities
arising in the analysis of complex curves and certain special features are also investigated.
4. Four special ordering functions are defined and investigated and it is shown how
knowledge of these allows a complete description of all possible complex curve shapes.

Childs & Bardsley (1975) have discussed the
existing literature on the structure and degree of
ligand-binding and steady-state rate equations and,
in particular, have given a mathematical analysis of
the conditions necessary for velocity versus substrate
concentration curves to be sigmoid or to have
turning points. Also, they have developed a compre-
hensive theory of the graphical techniques used in the
analysis of experimental binding or velocity data,
investigated the relationship between the various
methods and suggested several new techniques for
elucidating the degree and form of rate and binding
equations (Bardsley & Childs, 1975). Details must be
sought in the two publications cited but basically it
has been shown that analysis of all ligand-binding
and initial-rate data can be reduced to a common
pursuit, namely, that of fitting experimentally
observed data (y, say) to a rational polynomial
function in the concentration variable (x, say) of the
following type:

y = NID
where

N=1x+a2x2 + * +a,Xn
and

This will be referred to as an n to m (n: m) function
and although it will be the case that the coefficients
at and AI are always zero or positive and that the
degree m will be greater than or equal to the degree n,

the powers n and m and the magnitude of the co-

efficients are the subject ofexperimental investigation.
In fact, n and m will depend on the number of
enzyme species reacting with the substrate and the
coefficients will be complex functions of the rate
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constants and other concentration variables (second
substrates, modifiers, etc.), and the practice of
steady-state enzyme kinetics might be defined as the
attempt to discover n, m, a,, fl, and then to interpret
this information mechanistically. Since curves of y
against x are rather featureless for this purpose, the
usual experimental procedure is to generate two new
functions of dependent and independent variable
F(x, y) and G(x, y) say, which are then plotted against
each other to extract quantitative parameters.

Thus, for instance, eight graphical methods which
evolved during the historical development of enzyme
kinetics have been generally used, particularly the
double-reciprocal plot which was the first lineariza-
tion of the Michaelis-Menten hyperbola. Consider-
able confusion exists, however, when double-
reciprocal plots are non-linear, which is probably the
rule rather than the exception. For instance, where an
enzyme-catalysed reaction involves addition of only
one substrate to one site, the steady-state equation
will be a 1:1 function and can be completely described
by the two experimentally determined parameters V
and K. If other substrates are involved in the reaction
and the order of addition is obligatory, then the
resulting rate equation will still be 1:1 in all sub-
strates, provided that there is no consecutive addition
ofmore than one molecule of the same substrate. The
kinetic constants describing such a system can still be
obtained by replotting slopes and intercepts, but all
other mechanisms give higher-degree rate equations.
For instance, two kinetically distinct isoenzymes
catalysing the same reaction are described, in the
absence of product, by

(V1K2+ V2 K1)S+ (V1+ V2) S2
K1K2+ (K1+K2)S+S2
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which gives a concave-down hyperbola in double-
reciprocal space from which the constants can be
approximately obtained by extrapolation.

All other mechanisms (random, multi-sited,
allosteric, etc.) give high-degree rate equations which
are characterized experimentally by complex curves
or non-linear double-reciprocal plots and a number
of questions seem important and relevant here.
(i) What quantitative data can be readily extracted
from complex curves that will be of permanent value
irrespective of the degree of the rate equation or any
speculation about interpretation? (ii) What happens
to intuitively obvious features such as maxima and
sigmoid inflexions in the various graphical methods?
(iii) To what extent can kinetic constants or binding
constants be obtained from complex curves? (iv)
Which are the best methods to use in analysing
complex kinetics? (v) What are the mathematical
features of rate equations giving rise to complex
curves? (vi) To what extent do contemporary ideas
about enzyme mechanisms lead to predictions about
the relationship between curve shape and inter-
pretation in molecular terms? The purpose of this
paper is to answer questions (i), (ii), (iii) (iv) and (v).
Detailed proofs of the conclusions in the text have
been given previously (Childs & Bardsley, 1975;
Bardsley & Childs, 1975), are straightforward cal-
culations or are included in the Appendix to the
present paper.

Theoretical

We adopt the notation y(x) to describe initial
reaction rate (y) with all experimental conditions
constant except for the varied substrate (x) and note
that

n I

y= 2 ax/E4x
1=1 / =0

-NID (1)

where m = (n+r), r being the number of substrate
molecules adding consecutively to form a possible
dead-end complex. Some simplification of eqn. (1)
can be achieved by using dimensionless parameters
when f0= = 1 and a.= 8n for n=m, but for
convenience we shall allow ai, flB to be finite for all
i values since rate equations are calculated and
experimental data plotted in this form.

It is common practice to take y(x) data and trans-
form it into F(x, y) and G(x, y) which are then plotted
as FIG (Bardsley & Childs, 1975), and it is the aim of
the present study to show that this process invariably
leads to similar relationships involving the lowest- or
highest-degree coefficients.
The importance of certain numerator/denominator

cross products will be shown subsequently (see the

Appendix) and we propose the following notation for
the lowest-degree terms

e.g.

and

(2)Wk} = a -k.
20==IfiJ-kl

30 =V/12 = C3 fio .ifl2, etc.

Symmetry allows a simple definition for the highest-
degree cross products, namely

(3)
Now the importance of these low-degree and high-

degree cross products is that the local behaviour of
the curve will be dictated by the first and second
derivatives which will be dominated in the extreme
range of independent variable by either the low-
degree or high-degree terms. These will be either
positive or negative depending on the difference in
magnitude between cross products of comparable
degree. The denominator of these derivatives will be
positive definite in the first quadrant and so inflexions
and turning points will in all cases be determined by
sign changes in a polynomial with coefficients con-
sisting ofIy values and q values as defined by eqns. (1),
(2) and (3). Similar expressions hold for all other
graphical methods usually employed in addition to
y/x and we would anticipate the curve shape to be
dictated by a,, ,I; i = 1,2,3; /20 and '3°2as x - 0 and
by oc, fli; i=n, n-1, n-2; On,n- and Obn,n-2 as
x -+ c. For intermediate values of x, the curve shape
will be determined for high-degree curves by a much
larger number of coefficients as equal degree terms
are contributed by a larger number of cross product
combinations and, in consequence, it seems unlikely
that any graphical method could give unambiguous
quantitative information about this region of
experimental values, i.e. the intermediate range of
substrate concentration.
A further point concerns the behaviour when the

extreme coefficients are zero. When On,n-1 =0 or
1= 0 then the curve shapes are to a degree am-
biguous, being then determined by the next q values
and qu values and in this instance, special features
appear in all graphical methods. Of even greater
interest is the graphical behaviour when the extreme
a, values are zero. Successive addition of two
molecules of the same substrate uninterrupted by
product release gives a rate equation with a, = 0, and
formation of a dead-end complex between enzyme
and substrate gives a rate equation with m = n+1
which is mathematically equivalent to setting a,, =0
in a n: n function. When ac1 or a,, = 0 dramatic
features are produced in all graphs as will be discussed.
The transformations y/x -* FIG used by kineticists

are algebraic or logarithmic and can be classified into
three distinct groups: Class I which are functions of
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y only, plotted against functions of x only; Class II
which are functions ofy only, plotted against functions
of x and y only; Class III which are functions of x
only, plotted against functions ofx and y only. It will
be systematically demonstrated that in all cases
analysis of FIG can only give information about
n, m, MI/&i, a/fi and relationships involving ac, fig,
ylkI and jhj and to see this we first consider an
arbitrary graph of FIG shown in Fig. 1.

Behaviour as G -* 0

Determination of accurate data for small values of
G could lead to the determination of the intercept and
gradient at G = 0 and, in some cases, the second
derivative. As seen from Fig. 1, (i) the first derivative
could be positive, zero or negative and the curve could
be concave-down (ii), concave-up (iii) or, in excep-
tional circumstances, could have an inflexion as in
(iv) and (v). Quantitative information is only available
from extrapolated slopes and intercepts when the
first derivative is non-zero, but zero first and second
derivatives have diagnostic value as will be shown.

Behaviour for intermediate values ofG

The presence of inflexions (vi), (viii) or turning
points (vii), (ix) is only of diagnostic significance as
regards the degree of the rate equation and mechan-
ism and is ofno quantitative value except as source of
experimental points for curve fitting after n, m and the
extreme coefficients have been determined.

Behaviour as G -X o

An asymptotic line can be reached from above (x)
or below (xi) and this depends qualitatively on the
sign of y or X, but quantitative information is only
accurately obtained from the slope (xiii) and intercept
(xii) of the asymptotic line.
We now proceed to the analysis of the usual

graphical procedures and, in all cases, the extreme
regions G -+0 and G -X o give the quantitative
information.

The Graphs Used in Enzyme Kinetic Studies

Class I graphs: functions of y only plotted against
functions ofx only

dF

where subscripts denote partial derivatives.

d2FdG_ = [y'(FyyG y' -F, Gx)3+ F, Gxy"]/Gx3

(a) Graph ofy/x. (i) As x - 0. From eqn. (1) we can
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investigate y/x near the origin and find, omitting
higher powers of x

y' [a1 flo+2a2 fiOX+ (303 90o+ 021)x2+ - ]*ID2
y"t 2fio[20+ 3V30x+ 3(2 V/40+ V/31) x2+ ]I*ID3

When a., =0 we have y'(0) =0 and y"(0) > 0, i.e. the
curve must be sigmoid. It is also sigmoid for .1>0
but when V/20 = 0y/x has an inflexion at the origin and
resembles a straight line there. Considerable interest
attaches to curves being concave-up at the origin
(sigmoid curves) as discussed previously (Childs &
Bardsley, 1975) and we see that even with w2 =0 y/X
may still be sigmoid if yr30 > 0. However, this
ambiguity will be resolved by inspecting other graphs
since, as will become clear, y20 =0 gives rise to well
defined features in all other graphical methods.

(ii) As x -+ Co. In the case m = n, we find, omitting
lower powers of x
Y[***(3 0b,,n-3+ On-l, n-2)X2"4+ 20$n, n-2 X2" -3

+ On,,n 1 X2n-2]/D2
y 22in... 3(20n-3, n+ On-2, n-1) X3 S5

+ 3On- 2,nX3" 4+ OnS- 1,nX3 3]/D3
The horizontal asymptote anl" is approached from
above (concave-up) for On,n-1<0, i.e. On-l,n >0.
When Ob,nn-,=0 approach to the asymptote will
depend on On,. - 2 Z 0, but this will lead to exceptional
behaviour in other plots. When m > n then Lim y = 0.

In conclusion, we note that the only reliable
quantitative parameters available from a plot of y/x
are the gradient [y'(0) = a,/fi0] and concavity at the
origin [y"(0) = 2V 20/fio2], the horizontal asymptote
anl,/f as x -m o and an approximate expression for
the gradient there, y'(x> 1) q n, n- /fn2X2.

(b) Graph of (1/y)/(1/x). (i) as 1/x -* 0. When
m > n, the curve is undefined at the origin and we only
consider the case m = n. The 1/y intercept is fiI/an and
the derivatives, neglecting higher powers of (l/x) are

O:)n, n-1t+ 20n, n- 2(-

+(3dnQn3(1) + n]/N2(1)

d2fl
2 2 ([Mn Obn, n-2-aOn- i Obn, n -1]

d(!
+ 3 [an On, n-3-aOn-2 On, n-I

+ 3 [2(atn Oin, n 4-aOn-3 On, n-1)
+ an-1 On, n-3 -aOn-2 On, n-2]X

+ }N (1
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F(x,y) (a)

(vii) I

(vi) (viii) (xlv)

(ix)
I

Fig. 1. Quantitative information available experimentally and local features concerning the graphical analysis of complex
steady-state data

(a) An arbitrary graph ofFIG is shown containing all the features likely to beencountered. (i) The gradient and Faxis inter-
cept are accessible and these yield quantitative parameters. (ii)A curve can be locally concave-down or, as in (iii) concave-up
and this is not related to the gradient. With adequate experimental data, this may be quantitatively useful in some instances.
(iv) An inflexion may, in unusual circumstances, be present at the origin and the resulting curve may still be locally concave-
down or, as in (v) concave-up. This sort of rare ambiguity is fully discussed in the text. (vi) Inflexions of positive slope,
(vii) maxima, (viii) inflexions of negative slope and (ix) local minima may be useful in deciding about degree of the rate
equation or mechanism and in applying curve-fitting techniques but do not yield any reliable quantitative parameters.
(x) Concave-up or (xi) concave-down approach to an asymptotic line with an experimentally accessible intercept (xii) and
slope (xiii) provides useful quantitative parameters. (xiv) Tangents to the curve may be vertical, horizontal (vii; ix) or
radiate from the origin (xv), and a curve may intersect its own asymptote (xvi), or an arbitrary line. These features may have
diagnostic value, and are discussed in the text. (b) Slopes and intercepts available from the four principal algebraic trans-
formations. (i) y/x; (ii) (l/y)/(lfx); (iii) (x/y)/x; (iv) y/(y/x). All these graphs have limiting intercepts, gradients, and points of
intersection of asymptotic lines, which can yield information on the al and ,81. Four arbitrary examples are shown for
purposes of illustration, but it should be noted that since negative or positive gradients and intercepts can occur, the point of
intersection of the asymptotic lines can be in any of the four quadrants (except for ylx).
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Notice how O,n- 1= 0 leads to zero gradient at the
origin of this plot, thus clearing up ambiguity in
approach to the horizontal asymptote iny/x discussed
previously. In the extremely unlikely event that
(cn kb,n-,2-an-1 On,n-1=0 concavity at the origin
of (1/y)/(lIx) will be determined by (an qn,n-3-an-2
n,n- 1) and a similar situation exists in all other plots.
(ii) As 1/x -* c. Neglecting lower powers of 1/x

the derivatives are

d (; l2m-2 12m-3

+ '2a fO /

1(m-4
+(30(3.80+ 021) i

~ 30
(1 3m-6

()2 t ta2 V/12I_ al Y/JL 12(X

3m-7

+ 3[&3 Y. I al /14(31

+ 3[2(a4y1t - al ty504

+ 13 YW12-a2W13] (1 )3 m-+ }/(-)

In conclusion, we note that the only quantitative
parameters available from the graph of (1/y)/(1/x) are
the slope (tn,n-_/an2 and concavity 2(anoX,n - 2-aOn -1
On, I)/an3 at the intercept fi8/nl as 1/x -> 0 and the

asymptotic line l/yt 4O/Xalp(I/x)-_l/20X and con-

cavity 2(a2 /20_-x1 30)/lz13(1/x)3 as 1/x -- co.
Note that aCl =0 gives a parabolic instead of

straight-line asymptote and that the ambiguity
el = 0 gives an asymptotic line through the origin.
Ifnowy/x is sigmoid because yt2wo = o; qi30 >0 then the
asymptotic double-reciprocal line is reached from
below.

(c) Graph of(1/y)/x. For the case m = n, this graph
has no special properties, being merely the inverse of
y/x, but the graph has considerable importance in the
case m= n+1 since it is asymptotic to a straight line
(or a parabola form = n+2 and so on) as x -00o with

-)t[an( fln+ 1 X 2n n fin+ 1 X2n-1
+[(3oxn -2fn+I+n -l,n)X2n-2+ -]IN2

and the concavity can be estimated from

(-)(x>1) =2(a,1 ,Un-1, n+1 _ a nn-2, 1n+1)/a 3 X3

which indicates the mode of approach to the asymp-
totic line

(n+ I/Ian) X+ Vn, n+iIaCn2
y

An important point with this graph concerns the
possibility ofan inflexion. It has been pointed out that
a 1:2 function can have no inflexion in (I/y)/x
whereas a y/x curve with a final maximum gives an
inflexion and approach to the horizontal asymptote
from below and this has been proposed as a method
for distinguishing dead-end from partial substrate
inhibition (Childs & Bardsley, 1975). Note that the
above analysis indicates that a 2:3 function can
approach the asymptotic line in (1/y)/x from below
implying at least one inflexion when al a2 62 >
a22 x12+4L26&

(d) Graph of y/log x. A sigmoid inflexion in y/x
produces no special feature in this plot and turning
points are as for y/x. The curve cuts the y axis at

n rm
y(log x =0) =2 at/E and has gradient and con-

cavity there given by y'(l) and [y'(1)+y"(1)] respec-
tively. Otherwise the graph is of little value for
obtaining quantitative parameters.

(e) Graph of log y/x. The curve is undefined for
x = 0, but from log y = log N-log D we see that at
the point of intersection (xo) of the curve with the x

m

axis 2 (i1-a1)xo' =0 (log y = 0) and since (logy)' =
1=0

N'/N-D'/D and N= D the gradient at the inter-

section is 2 i(oa1-fi)x- '/N(xo). As x X the graph
1

approaches a limiting slope given by (log y)'P
(n-m)x-1.
Again, as with the previous semi-logarithmic plot,
there is little of value for estimating quantitative
parameters.

(f) Graph oflog y/log x. From the gradient

d logy
d logx

n In m Im

2i1rg x£1 of,cx' :-2ifix~I2 figx'10

n-I In m Im
= n-2 (n-i) acx-1 a1x1-1-2; ithx'12 41x'

1 1l 1 0

we see that the graph starts in the third quadrant
with a limiting slope of 1.0 (or 2.0 if al = 0, 3.0 if
a, = a2 = 0 and so on) and cuts the log y axis at

n Imlog 2 at/ nf) with a gradient of

ia) (2 /S)- at)( if)] / t( Ia) 2

and the log x axis at log xo with a gradient of
m

2 i(aC,-f,)xo'/N(xo). Thereafter the curve has a
1

maximum gradient of less than n and reaches a
limiting final slope of (n-m).
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An interesting point concerns themodeofapproach
to these limiting slopes. As x -+0, logy and log x
- o and the local concavity is seen from
dlogy
dlogx
(0<x 1)

4ll x+2V3.4x2
axl 0O+(l1fl1+ x2flO)X+(al 02+ a2fl1+C3 O)X2

Hence, a sigmoid y/x curve is always associated with
approach from above to the limiting asymptote in tzhe
third quadrant. Whenm = n the horizontal asymptote
is approached as for y/x but when m = n+I the local
concaVity as x Xo is discovered from

1 dlogy WI,-n+l x+2v.'7-2:+1
dlogx nfin+ix2+(anfln+ an-lfin+I)X
(x> 1)

i.e. approach from above for
an-1 fin +1 > ixn fin

Class II graphs: functions of y only plotted against
functions ofx andy only
dF

= F,y'I(G.+ G, y')
d2F
dGF= {y[(FYY GY-Fy Gyy)yy'2+(Fyy Gx-2Fy Gx)y'

-Fy Gxx]'ry Gx),}I(GX+ Gyy)3
The most familiar graph in this category is y/(y/x)

and the only quantitative parameters obtainable
experimentally are the y intercept a/nfl (m = n) with
gradient O.-1,niZfin and second derivative
2(cen On - 2, n -an - I n - 1, n)/ICn3 and the y/x intercept
Cmi/flo with gradient a, fio/v421 and second derivative
2f1o3(22 t4?- 1,12)/( t U)3. Apart from thequalitative
value in exaggerating sigmoidicity, this particular
graphical method is of little quantitative value.
However, one situation giving a unique type of plot

by this graphical method is the case of an enzyme
mechanism involving successive addition of the same
substrate twice uninterrupted by product release
(cm1 = 0) and also involving a dead-end complex
(m?n). Then this graph gives an interesting curve
starting from the origin and turning back completely
into the origin to form a closed loop.

Class III graphs: functions of x only plotted against
functions ofx andy only
dF = Fx/(Gx+ Gyy')
d2F
dG = [(FxxGx-Fx Gxx)+ (Fxx Gy-2Fx Gxy)y

-Fx G^yyy2 Fx Gyyy]I(Gx+ Gyy')3
The most frequently encountered graph in this

group is x/(xly) which is more conveniently discussed
as GIF. If m = n+r, then the graph approaches a
linear asymptote for r=0 or a quadratic for r = 1,
cubic for r= 2, etc., and subsequent discussion is for
the case r = 0, i.e. m = n.
The asymptotic line is easily seen by synthetic

division to be
x

(flnlCmn)X+'An.n-iICn2 for x >1

and the condition for approach to this asymptotefrom
above or below is readily found from the remainder
or from

(-) 2(an-1 On-, n-an On-2, 01063 X3 for x> 1

The x/y intercept is Po/al and the gradient and con-
cavity there are easily seen from

(-y) = -vu20/a2

- = 2(a2 1-1 1y42)/xj3 for x = 0

Table 1. Quantitativeparameters accessibk experimentallyfor thegraphical methods used in enzyme kinetic studies (form = n,
al>0)

Graph Independe
y/x forx=O y=O

y'= acl3o
'* / = 2V?21l0/o2

ent variable -- 0 Independent variable -a
y = ocldfl, at x==
y'tn,"I_/fan2 X2 for x > I

for =0 -= flnlO Asymptotic line as 1 22is(fl) - 1at, and 2nd
x y x x

I1st derivative = 'An.n, _I1/02 3.? m 3 l
2nd derivative = 2(a.n'An. -2 - Ocn--iOn.n )/On3 derivative ~~2(or2 v4z)oc2

forY = 0 y=cmn/fln
x 1st derivative = 'A -_ j.fin

2nd derivative= 2(cmn n-2, n-an -1 n -1,n)/Cn

for x=0 - = flo/ah
y
1st derivative = -v4?/an2
2nd derivative = 2(a2 V.4?0a-or,32m

for y = O!Y =a- lo
x
1st derivative = al. loIv.
2nd derivative - 23(cm v?- V12)It

Asymptotic line as X o is (fin!aCn) x+ 'n. n -l/an2 and
2nd derivative 2(°n 'An. n - 2- On -1 'An, n - i)Ian3 xx3

X
Y X

* y

Yx

X ,
,X
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Information Available from Limiting Slopes and
Intercepts
The quantitative information available from

asymptotic slopes and intercepts resulting from the
four principal algebraic graphing procedures together
with deductions about concavity are shown in
Fig. 1(b) and Tables 1 and 2. A further important
point concerns the use of extrapolated asymptotic
lines in determining the degree of the rate equation.
Analysis shows that the degree of a n: n rate equation
is two greater than the maximum number of times the
actual graph can cut the extrapolated asymptote in
(1/y)/(1/x) (asymptote as 1/x -* ce) or (x/y)/x
(asymptote as x -- o). Hence a 2:2 function cannot
cut the asymptote at all, whereas a 3:3 function can
cut it only once, and a 4:4 function up to two times,
etc. Many experimental workers extrapolate data
from Scatchard [y/(y/x)] plots to obtain information
on ligand binding, the y intercept being taken as n,
the number of independent binding sites. Curved
plots are interpreted as an indication ofco-operativity,
and despite the absence of a rigorous theory, data is
sometimes extrapolated from low ligand concentra-
tion to obtain a y intercept, instead of high ligand
concentration to give ac//)., which might be a better
approximation to n. Fig. l(b) gives the actual value
of all possible intercepts and co-ordinates of inter-
section of asymptotes. Analysis of such plots in terms
of low- and high-affinity sites is extremely unreliable,
and for further details concerning non-linear
Scatchard plots see Childs & Bardsley (1976).

Experimental Demonstration of Sigmoid Inflexions
and Final Maxima

It is presumed that difficulty can arise in the
experimental determination of a sigmoid inflexion
because reaction rate is too low to be accurately
measured at low substrate concentration and that
difficulty or inaccuracy can arise in determining a
final maximum with high substrate concentration
owing to solubility or other experimental limitations.
In these circumstances, an experimental worker
would wish to know which graphical methods would
be likely to accentuate such characteristics as
sigmoid inflexions and maxima and the present
discussion concerns the mapping ofpoints in the four
principal algebraic transformations since, as we have
indicated, logarithmic methods are of little value.
Curvature is also of no value in settling this sort of
question since curvature ratios between the graphical
methods cannot be reduced to simple relationships
but are complex functions of the independent
variable in question and can show large multiple
inversions of magnitude. However, there are certain
important analytical features that should be indicated
at this point and which are further developed in the
Appendix.
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(I)

/

y

(II)

y/x

/

Fig. 2. Graphical behaviour at low substrate concentration

The curve shapes indicated are all for a sigmoid curve (yr4l >0) and either (i)X2yiv0-X14,V >0 or (ii) O2V/20_1 tII3 <0. The
point 0 is at x, the first positive root ofy'. The point 0 is at xo the first positive root of xy'-y. - --, Asymptote; ----, tan-
gents to the curves from the origin. For purposes ofillustration the curves are divided into two hypothetical sections.-o,
The region readily accessible experimentally; -0o, the region of greatest experimental difficulty. Important features of
the individual graphs are as follows: y/x; xo> x, and at xo the curve is concave-down. (1ly)f(lf1x); the curve is always concave-
up at xo and a tangent there passes through the origin. y/(yfx); a vertical section occurs at xo. (x/y)/x; a horizontal section
occurs at xo. Features (i) and (ii) are indistinguishable in yfx but in the other graphs we see that (i) is always concave-up for
x <xo whereas (ii) undergoes a change in concavity for x <xo.

Sigmoid inflexions
The condition that a curve be sigmoid in y/x is that

there by a positive root ofy and xy'-y and denoting
the smallest positive root of(xy'-y) as xo and ofyf as
xr then invariably xo >x, (see the Appendix). Suppose
that experimental data are only available as far down
as xo, then this lowest experimental point will occur
as indicated in Fig. 2. To locate the point in (1 /y)/(l/x)
we note that a line joining the origin with x-',
[y(xo)]-l has the equation

1 xo (l\
y y(xO) xJ

and from

d 2-I}iL_xy
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xofyo is also the gradient of the curve at x- 1. In other
words, a tangent drawn through the curve at the
point x-1 will pass through the origin irrespective of
whether the asymptotic line has a positive or negative
intercept. Also, from

d()

at xo and since yN(xo) <0 for xo> x, the double-
reciprocal plot will be concave-up at this point. Hence
equal ambiguity is shown by all plots.

Final maxima
The condition qY-l,n>0 leading to a final maxi-

mum at x = xf in y/x, an initial minimum in (I/y)/
(1/x) and initial maximum iny/(y/x) is also ambiguous
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f, xi x

(ii)

y/x

., /(i)
7.7

' ::, "'
z

,_
77' ,

1.7

Fig. 3. Graphical behaviour at high substrate concentration

The curve shapes shown are all for a n:n curve with a final maximum (q1,,n >0) and either (i) an. O., n-2-Mn-l qIO, n-I <0 or

(ii) oca On,n-2-ac-l O...-1>0. Thepoint-isatxf thelargestpositiveroot ofy'. Thepointuisatxi the largestpositive root ofy'.
- - Asymptote; ----, tangents to the curve from the origin. For purposes of illustration, the curves are divided into two
hypothetical sections. -0, The region readily accessible experimentally; , the region of greatest experimental
difficulty. Important features of the individual graphs are as follows: y/x; xf where the curve is concave-down is followed by
Xg where concavity changes as the curve approaches a,,8.. (l/y)/(l/x); xf is at a minimum. y/(y/x); xf is at a maximum.
(xly)/xr; the curve is always concave-up at xf and a tangent there passes through the origin. Features (i) and (ii) are in-
distinguishable in y/x but in the other graphs we see that (i) undergoes a change in concavity for x>Xf whereas (ii) is always
concave-up in (I/y)/(l/x), (x/y)fx but concave-down in y/(y/x).

as regards (x/y)/x where the asymptotic line has a

negative intercept. The equation of the line joining
the origin to the point xf, xfly(xf) is

(y) _(yX))
and from

-= (-xy')/y2

we see that this is also the expression for the derivative
at xf and a similar ambiguity arises as illustrated in
Fig. 3. Since at the final maximum y' =0 and y'<0,
it follows that y/x and y/(y/x) are always concave-
down, whereas (1/y)/(1/x) and (x/y) are always
concave-up at the point Xf.

Fig. 4 illustrates the resolution of ambiguities
resulting from tyl=0 and S n-,n=0 previously
discussed.

Conclusion

The aim of this study has been to decide what
quantitative parameters are available from the eight
graphical methods used in enzyme studies that will be
completely independent of the degree of the rate
equation and free from any assumptions as to
mechanism. In any given case, there is, of course, no
substitute for the careful determination of experi-
mental data and statistical processing to obtain the
coefficients in the usual way, but the aim here has been
that of mathematical analysis of the relationship
between the coefficients of the rate or binding
equation in order to extract a set of rules relating the
intercepts and limiting gradients of the various
graphs to the coefficients. From this point of view, it
has been proved that accumulating data at extreme
ranges of substrate concentration to the neglect of the
intermediate range is the best procedure for obtaining
kinetic or binding constants by extrapolation
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y

(ii)Co

x(ii)

(i)

Ai
AA.

A11Al
(ii) A .-I

A.A

.-1

/x

A(ii)

(i) A1A-
A/

.-I
A

1-1

.1.-

A-L.
y/x x

Fig. 4. Experimental determination ofambiguities in sigmoid infiexions andfinal maxima
Where V 20 or n are zero, then the curves- can still show ial possibilities of local concavities due to the next terms
Vs40 and On-2,n as discussed in the text. This behaviour is unlikely but can occur with high-degree functions and spotting
this type of ambiguity is ofsome importance. The special features produced in the graphs under these circunstances which
are unaffected by all other parameters and which therefore have diagnostic value are illustrated. (i) When VI = 0, y/x;
y'(O) = 0 and the graph leaves the origin much like a straight line. (1/y)/(1/x); the asymptotic line goes through the origin.
y/(y/x); y/x intercept vertical. (x/y)/x; x/y intercept horizontal: (ii) When 5n-l,n = 0, y/x, no special feature. (l/y)/(1/x);
i/y intercept horizontal. y/(y/x); y intercept horizontal. (x/y)/x; the asymptotic line passes through the origin.

procedures and will always, irrespective of the
method used, give the same information. This will be
apparent from Tables 1 and 2.
The interpretation of these limiting intercepts and

gradients is more controversial. Ligand-binding
functions have n = m = number of non-identical
binding sites and have a very limited range ofpossible
curve shapes, e.g. maxima are not possible, whereas
steady-state equations can have n = m or n<m and
may have n>number of binding sites and in addition
may have turning points. For this reason, interpreta-
tion- of saturation functions will always be less
ambiguous than steady-state equations. Now a,, 81
will usually vary in magnitude more for steady-state
equations than saturation functions and further
analysis ofcurves with V/ and q values near zero shows
that these give smooth featureless curves in all spaces
and, in these circumstances, the double log plot or
Hill plot gives a useful approximation to n. However,
when oar, pg are ofdiffering magnitude as in steady-state
mechanisms, then the yv and ; values are not zero and

Vol. 153

complex curve shapes result, and, under these
circumstances, double log or Hill plots are completely
worthless. This criticism is in addition to the usual
one that no enzyme-catalysed reaction even approxi-
mately obeys the Hill equation.

It seems appropriate to conclude with an examina-
tion of possible answers to the six questions formu-
lated in the introduction.

(i) Table 1 and Fig. 1 contain a summary of all the
information available from limiting intercepts and
gradients in terms of a,, pi, V and #.

(ii) Table 2 and Figs. 2 and 3 describe the relation-
ship between curve shape in various spaces and
Figs. 4 and 5 illustrate the ambiguous cases and
special features discussed in the text.

(iii) Interpretation of ac,, A in terms of kinetic or
binding constants will always be ambiguous unless
alternative experimental evidence is available. For
instance, extrapolation of curved reciprocal plots
does not always give K1, K2, V1, V2 for a two-
sited enzyme, but only for the special case of two

ill
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J (ii

x

/ I

ii) / /
//

(i)
y/x

(i)

(ii

x

Fig. 5. Graphical manifestations ofspecialfeatures in the graphs ofrational polynomialfunctions

Certainmechanisms discussed in the textlead torate equations inwhich either a, = Oor a., = Oand this gives rise to dramatic
features in all graphs. , The special feature; the rest of thecurvewhich mayhave additional complexities. (i) When

al = 0, y/x;y'(0) = Oand thecurve must besigmoid. (l/y)/(1/x);parabolicasymptote as l/x -+ e. y/(y/x); curve is concave-
up at the origin with zero gradient. (x/y)/x; curve undefined at the origin. (ii) When a, = 0 i.e., an (n-1): n function (or, as
discussed in the text an n:m function with m>n). y/x; y 0 as x --. o. (l/y)/(l/x); curve undefined at the origin. y/(y/x);
curve is concave down at the origin and has infinite gradient. (x/y)/x; parabolic asymptote as x o.

kinetically distinct isoenzymes, i.e. fully independent
sites, each obeying a 1:1 function. Further, a large
number of mechanisms give curved reciprocal plots
and independent evidence for two sites is required
before extrapolation is justified. Any inflexion at all
in a double-reciprocal plot requires at least a 2:3
function which excludes two independent sites.

(iv) y/x, (1ly)/(l/x) and the log plots are useful for
curves with turning points but not very good for
spotting 'sigmoid inflexions'. y/(y/x) is extremely
valuable for demonstrating 'sigmoid inflexions' and
for spotting a, or a. =0 (m> n) but not, in general,
useful quantitatively. (l/y)/(l/x) gives 8/c1L and
(x/y)/x gives i.8/c, as the gradient of asymptotic lines,
but there may be considerable difficulty in deciding
from experimental points the precise location of the
asymptotic line. Also, these methods are generally
inferior toy/(y/x) for demonstrating non-linearity, but
this method does exaggerate experimental error at
low substrate concentration. There are no simple

formulae connecting curvature, yl(l +y'2)312 for
these graphical methods, i.e. no one graph is more
curved than another as such but this will depend on
the particular function and x value. The Hill plot has
some value for ligand-binding curves [j(oo) = 1] and
for smooth 'well behaved' v/s graphs [v(oo) = Vmax. =
aC1j.8, but is completely worthless for analysing
complex curves with sigmoid inflexions (where
extrapolated V... and Km values are negative) or
maxima (where V.... has no meaning) that is to say,
in precisely those circumstances where it is most
used. Fuller details of special uses of the various
gaphical methods will be found in Bardsley &
Childs (1975).

(v) The relationship between n, m, act, I8 and curve
shape is now well understood (Childs & Bardsley,
1975; Bardsley & Childs, 1975) for the existing
graphical methods but there may be much better
transformations for plotting complex curves. After
all, the methods currently employed are not mathem-
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aticallycalculated procedures but originated accident-
ally as historical attempts to transform or linearize
the Michaelis-Menten equation, which probably has
more limited applicability than has hitherto been
thought.

(vi) Terminology such as substrate inhibition,
substrate activation, positive, negative co-operativity,
etc. has been introduced into the interpretation of
enzyme kinetics on an insufficiently secure theoretical
basis. If the terms are merely adjectives to describe
curve shape, then it is surely better to say that a curve
is concave-up in a certain region and concave-down in
another which implies no mechanistic conclusion,
rather than to state that a curve indicates a region of
positive co-operativity followed by a region of
negative co-operativity and so on, with all the
associated interpretation in terms of molecular
gymnastics. In fact, the whole transfer of allosteric

theory from static binding systems to dynamic
catalytic systems has been carried out uncritically
because of insufficient knowledge ofthe mathematical
description of curve shape and because of the
enormous complexity of realistic allosteric rate
equations. The former deficiency is now remedied and
preliminary investigations of allosteric rate equations
shows that positive and negative co-operativity do
not invariably lead to the effects on curve shape
predicted.
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APPENDIX

(1) Relationship between Curve Shape and q and V/
Values as Defined in the Text (Eqns. 1, 2, 3)
At this stage we augment the discussion in the text

and it will be found necessary to consult a previous
publication [Bardsley & Childs (1975), especially
Table 1]. The aim will be to show that, for the
principal graphical methods, local behaviour will be
determined by four special ordering functions which
can largely be written in terms of q and Vy, particularly
for extreme ranges of independent variable. The
function y(x) can be thought of as a ratio oftwo poly-
nomials, N which is continuous and monotonically
increasing and D which is also always concave-up for
x >0. As the two graphs of Nlx and Dlx approach,
separate or cross-over, etc., then the graph ofy/x will
show inflexions, turning points etc., which will be
reflected in all other derived graphs and we now seek
the connexion between concavity and gradient in all
spaces. To do this, we first consider six primary
functions which give rise to four special ordering
functions and subsequently we investigate the
geometric consequences of the behaviour of the
ordering functions as touching on the under-
estimation or exaggeration of sigmoidicity, say by
extrapolation of data points at low substrate con-
centration.

(2) Primary Functions
Denoting differentiation with respect to x by

primes, we find that the following six primary poly-
nomials are required.

n

N= 2 0Xl
n

N' 2, ian xtI

n

N#=1 i(i-1)atXI 2-
2

D = E fl X
0
m

Di= ifi xi 1
1
m

D" = i(i_-l)xi -2
2

Now all these polynomials are positive for x>0
except forN which has N(O) = 0. Thus denominators
consisting ofD functions, being positive, need not be
considered when analysing derivatives for roots and
further analysis of derivatives with indeterminate
forms (N in denominator at x = 0) by l'Hospital's
rule establishes continuity in all cases except for a,
or a."= 0 as discussed previously.

(3) Origins and Definition of the Ordering Functions
Considering differentiation of y, we find y = NID

leads to y'=(N'D-D'N)/D2 andy= [(N'D-DtN)D
-2D'(N'D-D'N)]/D3, and similar expressions hold
for all derivatives.

In fact, for the graphs ofy/x, (1/y)/(l x), y/(y/x) and
(x/y)/x to decide about inflexions and turning points
there are just four polynomials required, which we
refer to as ordering functions, namely:
F1 = N'D- D'N
F2 = (N"D-DN) D-2D'(N'D-D'N)
F3= (N'D-D'N)x-ND
F4 = [2N'(N'D-D'N)-N(N"D-D"N)] x

-2N(N'D-D'N)
It will be obvious that the coefficients of these poly-
nomials will consist of differences of cross products
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between coefficients of N and D and these can be
rranged in several different ways. The b, Wv nomen-

clature introduced in the text arises, naturally in the
oonsideration of the strutumeof these ordering
functions.

(4) of the Ordering Functions
(i) FI
From the relationships

F1 = D2y'

d

= F X-2 dy
d i

it will be clear that roots ofy' occur at t
of the graphs of N'D and D'N and pi
points in y/x, (l/y)/(l/x) and y/(ylx), t

A general formula for F1 in terms of
(Bardsley & Childs, 197S).

(ii) F2
Since F2 = D3y" then roots produc

y/x and have a more subtle effect on
other spaces as will be discussed. A g
for F2 in terms of has been givei
Childs, 1975), but it is also possible tc
terms entirely as V/ as shown in the nu

(iii) F3
We find the following relationships

F3 (XN)

D_ (xy'-y)

=D2xz()
=D2 x2Y//

indicating that roots of F3 produce tu
(x/y)/x and correspond to points of
in y/(y/x) and as discussed in the text,
points on the (I/y)/(l/x) curve whert
that point to the origin is actually at a
curve. This important feature will shor
and now we merely record the generE
F3 which can be written entirely in

n-l-n -I*
Pb3 ;;t t(i5+ *lzi,kk (2k'FV3 tv14+1),(i+k)

(iv) F4
This function relates to the other graphs as follows:

F4 = N3(3)4

= D3 [2y'(xy'y)-xyy]

-3d2(y)
= x3N3

d 3T

(F3y3 d2y
\ / d (x)

Hence, roots of F4 imply ineions n (l/y)/(l/x),
(x/y)/x and yI(ylx). F4 >0 implies that (l/y)/(l/ x) and
(xly)Ix are concave-up and so is yl(ylx) for F3>0.

(4) Roots of the Ordering Functions
the intersection The roots of F1 and F2 have been extensively
roduce turning discussed (Bardsley & Childs, 1975) and it only
)ut not (x/y)/x. remains to discuss F3 and F4.
has been given Since a sigmoid curve has the first term in F3 posi-

tive and since the last two terms are always negati've,
it fo}lows that, in this circumstance, there must be at
least one positive root. However, multiple roots can

x inflexions in occur in complex highdegree curves and these might
curve shape in be thought of as points of intersction of the graphs
;eneral formula ofy and xy'. Consider a curve ofy/x as in AppendLix
en (rardsley & Fig. l(a). A tangent drawn from the origin to the
wrte the frst curve has the equation y xy' and so intersects theitext curve at the root of F3. As shown, this must occur atleast once for a sigmoid curve.

Positive roots of F4 occur at the interstion of
2y'(xy'-y) and xy/-and to discover these points it is
necessary to fir discover the order of occurrence of
the roots of xy'-y and y".
(5) Order of Occwurree of the Roots of the Ordering
Functions

Attention is now confined to the behaviour of
curves for small value ofx in order to illuminate the
problem of the overestimation or exaggeration of
sigmoidicity by extrapolation from data points for
small x. Consider the first terms in the four functions
where we have:

wning points in F1 = C18fio+20(2zfox+(3a30i+ 021)x 2
rfinite gradlent + (4a4 fl + 031) X3+
, correspond to 320 40 312=

Et line joiinns + 1O+ 4+t2+f1253 +2$2)/iX x
ltangenttothe +[IOV504+ 8V341 + 023+ 081 031 +.Pz 12) /PO] X3itangent to the14 3

tly be exploited + .

al formulae for F3 = x2 [ 2lt+2v4°x+ (3 ,43+13 )x2
as follows: +(4ky"+2 ,343)X3+*]

iF-2x 3 {[0(2 3200_l130] +3[a3 20 _- 40]X41+1) F4 = _V2
LXJ 14) f:

y3 V4]2+ 3[2(a4w°-1w5) +1 i12 a2 1]X+*
1976
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Now, although we know that Vtu/ >0 leads to at least
one positive root ofF2 and F3, that qS,- ,,> 0 leads to
at least one positive root of F1 and F2 and that
20>0anda2 1 .112<° leads to at least one root
of F4, it is clear that complete algebraic analysis of
such high-degree polynomials is not possible for the
general case.
For this reason, we first turn attention to a low-

degree function, namely the 2:2 which we take for
convenience in the dimensionless forms:

y = (Ax+Bx2)/(1 +x+Bx2)
y'= [A +2Bx+B(1-A)x2]/(1 +x+Bx2)2

y" = 2[(B-A)-3ABx- 3B2x2-B2(1 -A) X3]/
(1 +x+Bx2)3

xy'-y = x2[(B-A)-2ABx-B2x2]/(l +x+Bx2)2

(-y) = B[B-A(1 -A)/(A +Bx)3

The four ordering functions after removing common
factors and roots at 0 are:

fA = A+2Bx+B(1-A)x2
f2=(B-A)-3ABx-3B2x2-B2(1 -A)x2
f3= (B-A)-2ABx-B2x2
f4=B-A(1 -A)

Now f1 must have a root for A >1 leading to a
maximum in y/x, and f2 has one root for B>A (a
sigmoid inflexion in y/x) and one root for A> 1
(following the final maximum in y/x). Further,]4 can
have no sign changes being positive for B> A, or
A >1 (i.e. 2:2 sigmoid y/x curves or y/x curves with
maxima always give concave-up double-reciprocal
plots), otherwise f4 is negative (double-reciprocal
plots concave-down) or zero corresponding to
factorization giving y/x as a 1:1 function. To locate
the relative positions of the roots off2 andf1 we note
that

f2 =f3-BxR
where

R = A+2Bx+B(1-A)x2

For the case of interest (B>A), we observe that the
first root of y" is always less than that of xy'-y for
A A 1 and it is only necessary to consider the relative
magnitude of the positive roots of f3 (q, say) and
R (r, say) forB>A, A > 1. Sinceq= (A-AVA2+B-A)l
-B and r = (B+V/B2+AB(1-A)/B(A-1) and
r>q implies that the positive root of y" is smaller
than the root ofxy'-y we find the condition for this
to be the case is A2+B-A+(1-A)VA2+B-A+
AVB2-AB(1-A)>0 and this is always true since
A2+B-A >AV1A2+B-A.
Vol. 153

(5) Topological Considerations about the Roots of the
Ordering Functions

In considering the extrapolation of data points for
determination of sigmoidicity, it is of some interest
to know the order ofoccurrence of the roots ofFi, F2,
F3, F4. For the sake of illustration, the argument will
be based on the double-reciprocal plot and it is
presumed that the problem is: given a sigmoid curve
or stair-step curve, then extrapolation of data points
in double-reciprocal space will overestimate sig-
moidicity (as judged by a negative intercept for the
extrapolated asymptote) for a curve that is concave-
down and will underestimate it for a curve that is con-
cave-up in approach to the asymptote. Our approach
will be to treat x as a parameter and trace out the
curve from x =0 and since we are dealing with small
values of x, we assume no roots of y', i.e. F1 >0
in the interval of concern.

Case 1: stdir-step curves (Appendix Fig. la)

These functions have t/21>0 if sigmoid, but other-
wise the first positive root of y' produces a stair-step
rather than sigmoid inflexion. Geometric arguments
lead to the conclusion that the double-reciprocal plot
must be concave-up at a root of F3 for a2 v4/-

30 fladas 0 30 ..alty312>0 and also for a2V/',,- IY/12<0 only in this
case a root of F4 has also occurred.

Case 2: a sigmoid curve approaching the double-
reciprocal asymptote from below (Appendix Fig. l b)

The condition on this curve is V21 >0 and a2V20-
a].V30 <0 and for complex high-degree functions
several inflexions are possible as shown in Appendix
Fig. 1(b) for three roots of F3. Now as we trace the
curve from x =0 onwards, we find that the first tan-
gent that can possibly be drawn from the origin to the
curve is at a point where the curve is concave-up. At
this point F3=0, F4>0 (although as x-0 it was
originally negative) and so y" must have changed sign
after F4, i.e. 2y'(xy'-y)-xyy' changed sign. Hence,
the roots of F2, F3 and F4 must occur in the order
indicated in Appendix Fig. l(b) and the practical
significance of this is that data extrapolated from
x = 0 to xl will overestimate sigmoidicity, from xi to
X3 will depend on the range and from the section X3
to x6 will actually lead to the erroneous conclusion
that y/x is non-sigmoid.

Case 3: a sigmoid curve approaching the double-
reciprocalplotfrom above (Appendix Fig. 1c)
The condition for this is /21 >0 and a2Wii2

CY30 >0 and a possible shape for three roots ofF3 is
shown in Appendix Fig. l(c). In this case, the curve
must again be concave-up at the first tangent implying
that the first positive root of y/ is smaller than the

llS



W. G. BARDSLEY

'(a) ' I ','

X X
I/~~~~~~~~~

Fig. 1. Roots ofthe ordering functions and the experimental denwonstration ofsigmoidicity with high-degreefunctions
Positive roots occur as indicated: o, F3 = O(xy'-y = O); a, F4 = 0[2y'(xy'-y)-xyy' = O, C], F2 = 0(y' = O). It is assumed
that F1> 0(y'> O) throughout. , Asymptote; --,successive tangents to the curve from the origin. (a) Stair-step curves.
The sigmoid case (i), (ii), and (iii). These represent a family of increasingly exaggerated sigmoid stair-step curves, with
V/1 I > O. The curves differ in the number ofroots ofF3 [tangents from the origin to the curve in ylx and (I1/y)(1/rV) but vertical
sections in yl(ylx) and horizontal sections in (x/y)/x]. Geometric considerations lead to the following conclusions: (I) The
first root of F2 is always followed by a root of F3 in a sigmoid curve. (2) F2 and FX can have successive roots with no inter-
vening roots of F3. Roots ofF2 produce inflexions uniquelyin ylx and roots ofF4 produce inflexions uniquely in (1l/y)/(l/x),
(x/y)/x and y(ylx). Hence inversions of concavity can occur in ylx with no corresponding feature in the other graphs and
vice versa. (3) Two successive roots of F3 always have a root of F2 and F4 intervening. (4) After the first root of F3 in the
sigmoid case, successive roots occur in pairs, and the same is also true for F2 up to a maximum point, which requires at least
one further root of F2. The non-sigmnoid case (iv), (v), and (vi). These represent a family of increasingly exaggerated non-
sigmoid curves with V/20 <0. Geometric considerations reinforce rules (2) and (3) above and also require: (5) a root of F2
must occur in a non-sigmoid curve before any root of F3; (6) a non-sigmoid curve can have no roots of F3 at all, or an even
number, and the same is true for roots ofF2 under the conditions referred to in (4) above. (b) Estimation of sigmoidicity for
vell >0 and a2W2i°,-ae, y3 <0 with three roots of F3. Extrapolation of experimental data points to determine sigmoidicity
(intercept of asymptotic line) would result in the conclusions indicated.

Range of x Conclusion concerning 'sigmoidicity'
0-1 Overestimation
1-3 Overestimation at lower end but tmderestimation at higher end of range
3-6 Erroneous conclusion that y/x is non-sigmoid
6-9 Correct conclusion as regards sigmoidicity but with variable quantitative estimation.

(c) Estimation of sigmoidicity for v4?0>0 and X21-Ia,1 >0 with three roots of F3. In this curve no root of F4 precedes
the first root of F2 and F3 and in the range of at least 0-x2 sigmoidicity will be consistently underestimated. In the range
X2-5 the erroneous conclusion would be drawn that the y/x is non-sigmoid.

first root of xy'-y, but in this case there has been no
change in sign of 2y'(xy'-y)-xyy' intervening
between x = 0 and x2.

Conclusion

For all algebraic curves a set of four ordering
functions has been defined and knowledge of these
functions allows a complete description of all possible
curve shapes. In all cases, the first positive root of F2
occurs before that of F3 and geometric arguments
lead to the conclusion that although successive roots
of F2 and F4 can occur with no intervening roots of
F3, successive roots of F3 must have at least one
intervening root of both F4 and F2 in that order.

Roots of F2 and F3 map into all algebraic spaces
producing characteristic geometric features, but F2
uniquely determines the sign of curvature of y/x, and
F4 uniquely determines that of the graphs of (1/y)f
(1/x) and (x/y)/x, which therefore always have the
same sign of curvature for any given positive x.
A combination of F3 and F4 are needed to specify
concavity in y/(y/x) except that as x - co F3 becomes
negative and y/(y/x) has concavity opposite to that of
(I/y)/(1/x). A sigmoid curve must have at least one
root of F3 and an odd number overall. A non-
sigmoid curve can have no roots or only an even
number of roots of F3.

Thus, a y/x curve can have multiple inflexions with
no corresponding inflexions at all in (1/y)/(1/x), e.g. a

1976
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stair-step curve (negative co-operativity followed by a
region of positive co-operativity) could give a
uniformly concave double-reciprocal plot, which
would be interpreted as no change in apparent co-
operativity. This is not so surprising when it is
considered that a 2:2 sigmoid y/x curve with a

maximum has two inflexions, but gives a concave-up
(1/y)/(1/x) plot with no inflexions.
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