Supporting Information

A 3D Four-Fold Interpenetrated Conductive Metal-Organic Framework for Fast and Robust Sodium-Ion Storage

Zhaoli Liu, Juan Chu, Linqi Cheng, Junhao Wang, Chongyi Zhang, Cheng Zhang, Fengchao Cui, Heng-Guo Wang,* and Guangshan Zhu*

Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education and Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China.

*Corresponding authors.

E-mail: cuifc705@nenu.edu.cn; wanghg061@nenu.edu.cn

Table of Contents

Section S1. Experimental section

1.1 Materials

Anhydrous ethanol, acetone, isopropanol, and *N, N*-dimethylformamide (DMF) were purchased from Innochem. Cu(OAc)₂, disodium terephthalate (NaTP) and $2,3,6,7,10,11$ hexahydroxytriphenylene (HHTP) were purchased from Energy Chemical. Dibenzo- [g,p]chrysene-2,3,6,7,10,11,14,15-octaol (8OH-DBC) were purchased from Jilin Chinese Academy of Sciences-Yanshen Technology Co., Ltd. All reagents were obtained from commercial sources and used without further purification.

1.2 Synthesis of samples

Cu-DBC was synthesized according to the literature by a solvothermal method.¹ A schlenk tube was charged with $Cu(OAc)_{2}$ (9 mg), dibenzo-[g,p]chrysene-2,3,6,7,10,11,14,15-octaol (12.9 mg), 750 μL DMF and 3 mL deionized water. After approximately 20 min of ultrasonic treatment, the tube was subjected to three freeze-pump-thaw cycles, evacuated to vacuum and sealed. Then, the tube was placed in an oven with a temperature of 85 °C for 72 h. A dark blue precipitate was isolated by filtration, followed by washing with deionized water and acetone several times and dried overnight in a vacuum at room temperature.

Cu-HHTP was synthesized according to the literature by solvothermal method.² A vial was charged with Cu(OAc)₂ (17.8 mg), 2,3,6,7,10,11-hexahydroxytriphenylene (19.5 mg), 2 mL isopropanol and 2 mL deionized water. After approximately 20 min of ultrasonic treatment, the vail was placed in an oven with a temperature of 85 °C for 15 h. A dark product was obtained by filtration and washing with water, ethanol, and acetone. Finally, the product was dried overnight in a vacuum at 60 °C.

1.3 Material characterizations

TEM images were performed by JEM-2100F. SEM images were performed by HITACHI SU8010. Powder X-ray diffraction (XRD) measurements were tested on Smartlab (Cu K α radiation, λ =0.15405 nm, 40 kV, 30 mA). FT-IR spectra were determined by TJ270-30A. UV- vis spectra were measured by Shimadzu UV-2550 spectrophotometer within 300-800nm wavelength range. TGA curves were carried out on DSC 200 F3 between 25 and 800 °C at 12 $^{\circ}$ C min⁻¹ under air and N₂ atmosphere. The N₂ adsorption-desorption isotherms were determined at 77 K by using a Quantachrome Autosorb iQ apparatus. The electrodes were analyzed by X-ray photoelectron spectroscopy (XPS, Thermon ESCALAB 250) while all binding energies had to be corrected with C 1s.

1.4 Assembly of batteries and electrochemical measurements

The Cu-DBC or Cu-HHTP cathodes were prepared by casting the slurry, which is composed of Cu-DBC or Cu-HHTP, acetylene black, and sodium carboxymethyl cellulose (CMC) in weight ratio of 6:3:1 or 8:1:1 with deionized water, onto aluminum foil. The disodium terephthalate (NaTP) anode was prepared by casting the slurry, which is composed of NaTP, acetylene black, and polyvinylidene fluoride (PVDF) in a weight ratio of 6:3:1 with N-methyl-2-pyrrolidone (NMP), onto copper foil. The above electrodes were dried at 80 $^{\circ}$ C in an oven for 12 h. Cu-DBC or Cu-HHTP cathodes load the active material of more than 0.5 mg cm⁻².

The electrochemical tests of half-cells and full-cells were performed using 2025 coin-type cells assembled in an Ar-filled glove box. The cathode (or anode) of half cells were assembled containing Cu-DBC/Cu-HHTP (or NaPT) electrodes, $1M$ NaP F_6 in DME as the electrolyte (100 μL), Na metal as the counter electrode and glass fiber (Whatman GF-A) as the separator. The full cell was fabricated using a similar method with that used for the cathode of half cells, except that the pre-sodiated NaTP anode was used instead of Na metal.

Cyclic voltammetry (CVs) measurements were tested by CHI600E electrochemical workstation with the voltage range of 1.0-3.5 V. Electrochemical measurements were performed using the NEWARE battery system with the voltage range of 1.0-3.5 V. Electrochemical impedance spectroscopy (EIS) tests were conducted over a frequency range of 100 kHz-0.1 Hz. The chemical diffusion coefficient of Na⁺ ions was tested by galvanostatic intermittent titration technique (GITT) at a current density of 0.05 A g^{-1} for 10 min followed by

30 min of relaxation. $\pi \tau \left(\frac{S}{\sigma} \right)$ ΔE_t , τ is a relaxation time; n_m is the number of moles, $D_S = \frac{4}{\pi \tau}$ $\overline{\pi\tau}$ \vert $\left(\frac{n_m V_m}{S}\right)^2 \left(\frac{\Delta E_S}{\Delta E_t}\right)^2$ ΔE_t $)^2$ and the V_m is the molar volume of the electrode material, and S is an electrode contact area, and ΔE_s is a voltage change caused by pulses, ΔE_t is the voltage change of constant current charge and discharge.

Section S2. Calculation Section

2.1 Calculations of charge storage kinetics

Kinetics can be analyzed using the equation below:

$$
i = av^b(1)
$$

where i is the peak current and ν is the scan rate based on the CV curves.

The capacitive contribution can be calculated by the following equation:

$$
i=k_1v+k_2v^{1/2}(2)
$$

where *i*, k_1v , and $k_2v^{1/2}$ represent current, capacitive, and ionic diffusion contributions, respectively.

2.2 DFT computational methods

The quantum chemical calculation of the electronic structure of Cu-DBC fragments was performed by Gaussian 16 package³ under B3LYP^{4, 5}/def2-TZVP⁶ level. Electronic structure analyses were conducted using Multiwfn⁷ and VMD⁸ software.

First-principles calculations for simplified Cu-DBC unit cells have been implemented in the Vienna Ab initio Simulation Package (VASP)^{9, 10}. Projector augmented wave (PAW)¹¹ method was employed to describe core-valence interaction with plane wave cut-off energy of 500 eV. The generalized gradient approximation with the Perdew-Burke-Ernzerhof functional (GGA-PBE)¹² was used to describe the exchange-correlation potential of the electrons. Spin polarization calculations was performed for all simulations with the consideration of empirical dispersions of Grimme (DFT-D3)¹³ for the long-range vdW interactions. For an accurate description of the localized d electrons of Cu, the on-site Coulomb interaction was added to the d orbital of Cu with a U value of 4.0 eV using the rotationally invariant approach of Liechtenstein et al.^{14, 15} The Brillouin zone integration was performed by using the k-point sampling of the Monkhorst-Pack scheme with a $2 \times 2 \times 9$ grid.¹⁶ The convergence criterion of energy and structural relaxation were set as less than 1.0×10^{-6} eV and 0.02 eV Å⁻¹, respectively.

Section S3. Results and Discussion

Figure S1. N₂ adsorption-desorption isotherms and pore distribution of Cu-DBC.

Figure S2. FT-IR spectra of Cu-DBC and 8OH-DBC.

Figure S3. EPR spectra of 8OH-DBC and Cu-DBC.

Figure S4. UV-vis spectra of Cu-DBC and 8OH-DBC.

Figure S5. (a) The XPS survey spectrum of Cu-DBC and XPS spectra of (b) Cu 2p and (c) O 1s.

Figure S6. (a) k^3 -weighted FT spectra for Cu-DBC, CuO, Cu₂O and Cu foil. (b) k^3 -weighted FT-EXAFS experimental and fitting curves of Cu-DBC. (c) Wavelet transform for Cu-DBC, CuO, Cu₂O and Cu foil.

Figure S7. SEM (a-b) and HRTEM (c) images of Cu-DBC.

Figure S8. HAADF-STEM image of Cu-DBC.

Figure S9. (a) SEM image of Cu-DBC and corresponding element mapping images of C, O, and Cu. (b) The corresponding energy dispersive X-ray spectra of Cu-DBC.

Figure S10. TGA curves of Cu-DBC under Air and N₂ atmosphere.

Figure S11. PXRD patterns of Cu-DBC after soaking in organic solvents (DMF), electrolytes (DME), NaOH (1 M) and HAC (1 M).

Figure S12. PXRD patterns of Cu-HHTP.

Figure S13. Top view (a) and side view (b) of Cu-HHTP unit cell.

Figure S14. FT-IR spectra of Cu-HHTP and HHTP.

Figure S15. (a) The XPS survey spectrum of Cu-HHTP and XPS spectra of (b) O1s and (c) Cu

2p.

Figure S16. TGA curves of Cu-HHTP at Air and N₂ atmosphere.

Figure S17. N₂ adsorption-desorption isotherms and pore distribution of Cu-HHTP.

Figure S18. Current-voltage characteristic of Cu-DBC and Cu-HHTP using the two probe method.

Figure S19. CV curves of Cu-HHTP at 0.1 mV s^{-1} .

Figure S20. Electrochemical impedance spectra of pristine Cu-DBC and Cu-HHTP.

Figure S21. (a) CV curves of Cu-DBC recorded at different scan rates. (b) Capacitive and diffusion-controlled contribution at 1.0 mV s⁻¹. (c) b-value calculated by fitting the plots of log(i) versus log(v). (d) The contribution ratio of the capacitive capacities and diffusioncontrolled capacities at different scan rates.

Figure S22. (a) GITT curves of Cu-DBC and Cu-HHTP. (b) LogD ($D = Na^+$ diffusion coefficient calculated by GITT) of Cu-DBC and Cu-HHTP at the charging state.

Figure S23. Cycle stability of Cu-DBC with mass-loading of 2.5 mg cm⁻² at 0.2 A g^{-1} .

Figure S24. (a) Galvanostatic charge/discharge profiles of Cu-DBC at -20 ℃. (b) Cycle stability of Cu-DBC at -20 ℃.

Figure S25. cycle stability of Cu-DBC at 50 ℃.

Figure S26. *In situ* Raman spectra of Cu-DBC during the GCD process (the peaks near the shadow are attributed to the stretching vibrations of Cu-O).

Figure S27. (a) *Ex-situ* PXRD patterns of Cu-DBC cathode during the GCD process. (b) Electrochemical impedance spectra of Cu-DBC cathodes after long cycles. The SEM images of Cu-DBC before (c) and after (d) 100 cycles.

FABILITY LETTER Internet parameters at the CWIX cage for CWDDC.							
Sample	Shell		R(Å)	$\sigma^2(\AA^2)$		R factor	
Cu-DBC	Cu-O	3.37	1.92	0.00132	0.857	0.023	
	$Cu-O$	1.80	2.12	0.00132	0.857		
	Cu C	2.41	3.27	0.00132	0.857		

Table S1. EXAFS fitting parameters at the Cu K-edge for Cu-DBC.

N, coordination number; R, the distance to the neighboring atom; σ^2 , the Mean Square Relative Displacement (MSRD); E_0 , inner potential correction; R factor indicates the goodness of the fit.

Table S2. Comparison of electrochemical performance between the typical cathodes and Cu-DBC cathode for SIBs.

Section S4. References

- [1] J. Liu, Y. Zhou, Z. Xie, Y. Li, Y. Liu, J. Sun, Y. Ma, O. Terasaki, L. Chen, *Angew. Chem.-Int. Edit.*, 2020, **59**, 1081-1086.
- [2] Y. Chen, Q. Zhu, K. Fan, Y. Gu, M. Sun, Z. Li, C. Zhang, Y. Wu, Q. Wang, S. Xu, J. Ma, C. Wang, W. Hu, *Angew. Chem.-Int. Edit.*, 2021, **60**, 18769-18776.
- [3] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, Jr. J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian 16 Revision C.01, Gaussian Inc., Wallingford CT, 2016.
- [4] C. Lee, W. Yang, R. G. Parr, *Phys. Rev. B*, 1988, **37**, 785-789.
- [5] A. D. Becke, *Phys. Rev. A*, 1988, **38**, 3098-3100.
- [6] F. Weigend, R. Ahlrichs, *Phys. Chem. Chem. Phys.*, 2005, **7**, 3297-3305.
- [7] T. Lu, F. Chen, *J. Comput. Chem.*, 2012, **33**, 580-92.
- [8] W. Humphrey, A. Dalke, K. Schulten, *J. Mol. Graphics*, 1996, **14**, 33-38.
- [9] G. Kresse, J. Furthmüller, *Comput. Mater. Sci.*, 1996, **6**, 15-50.
- [10] G. Kresse, J. Furthmüller, *Phys. Rev. B*, 1996, **54**, 11169-11186.
- [11] I.-H. Lee, R. M. Martin, *Phys. Rev. B*, 1997, **56**, 7197-7205.
- [12] J. P. Perdew, K. Burke, M. Ernzerhof, *Phys. Rev. Lett.*, 1996, *77*, 3865-3868.
- [13] S. Grimme, *J. Comput. Chem.*, 2006, **27**, 1787-1799.
- [14] A. I. Liechtenstein, V. I. Anisimov, J. Zaanen, *Phys. Rev. B*, 1995, **52**, R5467-R5470.
- [15] L. Wang, T. Maxisch, G. Ceder, *Phys. Rev. B*, 2006, **73**, 195107.
- [16] H. J. Monkhorst, J. D. Pack, *Phys. Rev. B*, 1976, **13**, 5188-5192.
- [17] M. Chen, W. Hua, J. Xiao, J. Zhang, V. W. Lau, M. Park, G. H. Lee, S. Lee, W. Wang, J. Peng, L. Fang, L. Zhou, C. K. Chang, Y. Yamauchi, S. Chou, Y. M. Kang, *J. Am. Chem. Soc.*, 2021, **143**, 18091-18102.
- [18] P. Hu, C. Cai, X. Li, Z. Wei, M. Wang, C. Chen, T. Zhu, L. Mai, L. Zhou, *Adv. Funct. Mater.*, 2024, **34**, 2302045.
- [19] B. Peng, Y. Chen, L. Zhao, S. Zeng, G. Wan, F. Wang, X. Zhang, W. Wang, G. Zhang, *Energy Storage Mater.*, 2023, **56**, 631-641.
- [20] Q. Liu, Z. Hu, M. Chen, C. Zou, H. Jin, S. Wang, Q. Gu, S. Chou, *J. Mater. Chem. A*, 2019, **7**, 9215-9221.
- [21] Z. Xu, Y. Sun, J. Xie, Y. Nie, X. Xu, J. Tu, J. Zhang, L. Qiu, T. Zhu, X. Zhao, *ACS Sustain. Chem. Eng.*, 2022, **10**, 13277-13287.
- [22] D. Chen, L. Cheng, W. Chen, H. G. Wang, F. Cui, L. Chen, *Chem. Sci.*, 2024, **15**, 11564- 11571.
- [23] M. Qi, L. Cheng, H. G. Wang, F. Cui, Q. Yang, L. Chen, *Adv. Mater.*, 2024, **36**, e2401878.
- [24] K. Wakamatsu, S. Furuno, Y. Yamaguchi, R. Matsushima, T. Shimizu, N. Tanifuji, H. Yoshikawa, *ACS Appl. Energ. Mater.*, 2023, **6**, 9124-9135.
- [25] J. Peng, J. Wang, H. Yi, W. Hu, Y. Yu, J. Yin, Y. Shen, Y. Liu, J. Luo, Y. Xu, P. Wei, Y. Li, Y. Jin, Y. Ding, L. Miao, J. Jiang, J. Han, Y. Huang, *Adv. Energy Mater.*, 2018, **8**, 1702856.
- [26] A. V. Desai, V. R. Seymour, R. Ettlinger, A. Pramanik, A. G. Manche, D. N. Rainer, P. S. Wheatley, J. M. Griffin, R. E. Morris, A. R. Armstrong, *Chem. Commun.*, 2023, **59**, 1321– 1324.
- [27] Y. Wang, Y. Ding, L. Pan, Y. Shi, Z. Yue, Y. Shi, G. Yu, *Nano Lett.*, 2016, **16**, 3329-3334.
- [28] W. Luo, M. Allen, V. Raju, X. Ji, *Adv. Energy Mater.*, 2014, **4**, 1400554.
- [29] Y. Chen, H. Li, M. Tang, S. Zhuo, Y. Wu, E. Wang, S. Wang, C. Wang, W. Hu, *J. Mater. Chem. A*, 2019, **7**, 20891-20898.
- [30] W. Deng, Y. Shen, J. Qian, Y. Cao, H. Yang, *ACS Appl. Mater. Interfaces*, 2015, **7**, 21095- 21099.
- [31] D. Su, J. Zhang, S. Dou, G. Wang, *Chem. Commun.*, 2015, **51**, 16092-16095.