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Section S1. Experimental section
1.1 Materials

Anhydrous ethanol, acetone, isopropanol, and N, N-dimethylformamide (DMF) were
purchased from Innochem. Cu(OAc),, disodium terephthalate (NaTP) and 2,3,6,7,10,11-
hexahydroxytriphenylene (HHTP) were purchased from Energy Chemical. Dibenzo-
[g,p]chrysene-2,3,6,7,10,11,14,15-octaol (8OH-DBC) were purchased from Jilin Chinese
Academy of Sciences-Yanshen Technology Co., Ltd. All reagents were obtained from
commercial sources and used without further purification.

1.2 Synthesis of samples

Cu-DBC was synthesized according to the literature by a solvothermal method.! A schlenk
tube was charged with Cu(OAc), (9 mg), dibenzo-[g,p]chrysene-2,3,6,7,10,11,14,15-octaol
(12.9 mg), 750 pL DMF and 3 mL deionized water. After approximately 20 min of ultrasonic
treatment, the tube was subjected to three freeze-pump-thaw cycles, evacuated to vacuum and
sealed. Then, the tube was placed in an oven with a temperature of 85 °C for 72 h. A dark blue
precipitate was isolated by filtration, followed by washing with deionized water and acetone
several times and dried overnight in a vacuum at room temperature.

Cu-HHTP was synthesized according to the literature by solvothermal method.? A vial was
charged with Cu(OAc), (17.8 mg), 2,3,6,7,10,11-hexahydroxytriphenylene (19.5 mg), 2 mL
isopropanol and 2 mL deionized water. After approximately 20 min of ultrasonic treatment, the
vail was placed in an oven with a temperature of 85 °C for 15 h. A dark product was obtained
by filtration and washing with water, ethanol, and acetone. Finally, the product was dried
overnight in a vacuum at 60 °C.

1.3 Material characterizations

TEM images were performed by JEM-2100F. SEM images were performed by HITACHI

SU8010. Powder X-ray diffraction (XRD) measurements were tested on Smartlab (Cu Ka-

radiation, A=0.15405 nm, 40 kV, 30 mA). FT-IR spectra were determined by TJ270-30A. UV-
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vis spectra were measured by Shimadzu UV-2550 spectrophotometer within 300-800nm
wavelength range. TGA curves were carried out on DSC 200 F3 between 25 and 800 °C at 12
°C min! under air and N, atmosphere. The N, adsorption-desorption isotherms were
determined at 77 K by using a Quantachrome Autosorb iQ apparatus. The electrodes were
analyzed by X-ray photoelectron spectroscopy (XPS, Thermon ESCALAB 250) while all
binding energies had to be corrected with C 1s.

1.4 Assembly of batteries and electrochemical measurements

The Cu-DBC or Cu-HHTP cathodes were prepared by casting the slurry, which is composed
of Cu-DBC or Cu-HHTP, acetylene black, and sodium carboxymethyl cellulose (CMC) in
weight ratio of 6:3:1 or 8:1:1 with deionized water, onto aluminum foil. The disodium
terephthalate (NaTP) anode was prepared by casting the slurry, which is composed of NaTP,
acetylene black, and polyvinylidene fluoride (PVDF) in a weight ratio of 6:3:1 with N-methyl-
2-pyrrolidone (NMP), onto copper foil. The above electrodes were dried at 80 °C in an oven
for 12 h. Cu-DBC or Cu-HHTP cathodes load the active material of more than 0.5 mg cm.

The electrochemical tests of half-cells and full-cells were performed using 2025 coin-type
cells assembled in an Ar-filled glove box. The cathode (or anode) of half cells were assembled
containing Cu-DBC/Cu-HHTP (or NaPT) electrodes, IM NaPFqin DME as the electrolyte (100
uL), Na metal as the counter electrode and glass fiber (Whatman GF-A) as the separator. The
full cell was fabricated using a similar method with that used for the cathode of half cells, except
that the pre-sodiated NaTP anode was used instead of Na metal.

Cyclic voltammetry (CVs) measurements were tested by CHI600E electrochemical
workstation with the voltage range of 1.0-3.5 V. Electrochemical measurements were
performed using the NEWARE battery system with the voltage range of 1.0-3.5 V.
Electrochemical impedance spectroscopy (EIS) tests were conducted over a frequency range of
100 kHz-0.1 Hz. The chemical diffusion coefficient of Na* ions was tested by galvanostatic

intermittent titration technique (GITT) at a current density of 0.05 A g! for 10 min followed by
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4 (anm)z AE 5
Dy =— )
mr\ S AE;" 1is a relaxation time; n,, is the number of moles,

30 min of relaxation.
and the V,, is the molar volume of the electrode material, and S is an electrode contact area,
and AE; is a voltage change caused by pulses, AE; is the voltage change of constant current
charge and discharge.
Section S2. Calculation Section
2.1 Calculations of charge storage kinetics
Kinetics can be analyzed using the equation below:
i=avb (1)
where i is the peak current and v is the scan rate based on the CV curves.
The capacitive contribution can be calculated by the following equation:
i =kv+ kw2 (2)
where i, k;v, and k,v'? represent current, capacitive, and ionic diffusion contributions,
respectively.
2.2 DFT computational methods

The quantum chemical calculation of the electronic structure of Cu-DBC fragments was
performed by Gaussian 16 package® under B3LYP# 5/def2-TZVP® level. Electronic structure
analyses were conducted using Multiwfn” and VMD? software.

First-principles calculations for simplified Cu-DBC unit cells have been implemented in the
Vienna Ab initio Simulation Package (VASP)® 1°. Projector augmented wave (PAW)!! method
was employed to describe core-valence interaction with plane wave cut-off energy of 500 eV.
The generalized gradient approximation with the Perdew-Burke-Ernzerhof functional (GGA-
PBE)'? was used to describe the exchange-correlation potential of the electrons. Spin
polarization calculations was performed for all simulations with the consideration of empirical
dispersions of Grimme (DFT-D3)!3 for the long-range vdW interactions. For an accurate

description of the localized d electrons of Cu, the on-site Coulomb interaction was added to the
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d orbital of Cu with a U value of 4.0 eV using the rotationally invariant approach of
Liechtenstein et al.!* 5 The Brillouin zone integration was performed by using the k-point
sampling of the Monkhorst-Pack scheme with a 2x2x9 grid.'® The convergence criterion of

energy and structural relaxation were set as less than 1.0x10 eV and 0.02 eV Al respectively.
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Section S3. Results and Discussion
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Figure S1. N, adsorption-desorption isotherms and pore distribution of Cu-DBC.
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Figure S2. FT-IR spectra of Cu-DBC and SOH-DBC.
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Figure S3. EPR spectra of SOH-DBC and Cu-DBC.

S9



Cu-DBC
——80H-DBC

B

&

5]

=

]

=

ot

a 4
=
= T'/ /‘\

200 300 400 500 600 700

Wavelength (nm)

Figure S4. UV-vis spectra of Cu-DBC and 80OH-DBC.
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Figure S5. (a) The XPS survey spectrum of Cu-DBC and XPS spectra of (b) Cu 2p and (¢) O
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Figure S7. SEM (a-b) and HRTEM (c) images of Cu-DBC.
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Figure S8. HAADF-STEM image of Cu-DBC.
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Figure S9. (a) SEM image of Cu-DBC and corresponding element mapping images of C, O,

and Cu. (b) The corresponding energy dispersive X-ray spectra of Cu-DBC.
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Figure S10. TGA curves of Cu-DBC under Air and N, atmosphere.
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Figure S11. PXRD patterns of Cu-DBC after soaking in organic solvents (DMF), electrolytes
(DME), NaOH (1 M) and HAC (1 M).
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Figure S12. PXRD patterns of Cu-HHTP.
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Figure S13. Top view (a) and side view (b) of Cu-HHTP unit cell.
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Figure S14. FT-IR spectra of Cu-HHTP and HHTP.
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Figure S15. (a) The XPS survey spectrum of Cu-HHTP and XPS spectra of (b) Ols and (c¢) Cu

2p.
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Figure S16. TGA curves of Cu-HHTP at Air and N, atmosphere.
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Figure S17. N, adsorption-desorption isotherms and pore distribution of Cu-HHTP.
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Figure S18. Current-voltage characteristic of Cu-DBC and Cu-HHTP using the two probe

method.
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Figure S19. CV curves of Cu-HHTP at 0.1 mV s,
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Figure S20. Electrochemical impedance spectra of pristine Cu-DBC and Cu-HHTP.
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Table S1. EXAFS fitting parameters at the Cu K-edge for Cu-DBC.

Sample Shell N R(A) 02(A?) Eo R factor
Cu-0 3.37 1.92 0.00132 0.857
Cu-DBC Cu-0 1.80 2.12 0.00132 0.857 0.023
Cu-C 2.41 3.27 0.00132 0.857

N, coordination number; R, the distance to the neighboring atom; ¢2, the Mean Square
Relative Displacement (MSRD); E, inner potential correction; R factor indicates the
goodness of the fit.
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Table S2. Comparison of electrochemical performance between the typical cathodes and Cu-

DBC cathode for SIBs.
active
Capacity [mAh Cycle life [cycles, Rate performance material

gl@mAgt] retention%@ A g'] [mAhg'@ A g™] content Refs.
NasV; sCros(PO4)3 163@15 2650, 72@0.75 128@1.5 80% 17
NMTVP 118.5@12 4500,86@0.6 59.3@0.6 70% 18
03-NNAMO 110@17 200,86@0.085 20@1.7 70% 19
Nay/3Niz;3Mn;/30, 89@17.3 1200,71.2@1.73 58.2@3.5 80% 20
MnNi-PB 93.9@15 700,85.3@0.75 69.4@15 70% 21
Ni3(HATQ), 108.1@100 1000,95@1 77.1@2 60% 22
Cu-TBA 153.6@50 3000,100@1 50.1@5 40% 23
Co,(TTFTB) 195@100 200,42@0.1 40@1 30% 24
NiCoFe-PBA 145@15 600,90@0.75 90@1.5 70% 25
UiO-abdc 100@10 150,100@0.01 35@1 60% 26

This

Cu -DBC 120.6@50 4000,81.9@2 77@5 60% work

This

Cu -DBC 104.4@50 1100,67@1 15.5@5 80% work
Na,CsO¢ 190.0@25 100,95@0.025 95.0@0.25 70% 27
PTCDA 145@10 200,80@0.2 91@1 70% 28

PYT-TABQ

/rGO 245@200 1400,98@1 141.5@8 60% 29
PTCDI 140@10 300,90@0.2 103@0.6 70% 30
Hollow PPy 97@20 1000,78.5@0.4 87@0.32 80% 31
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