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Abstract
Background: The accurate deciphering of spatial domains, along with the identification of differentially expressed genes and
the inference of cellular trajectory based on spatial transcriptomic (ST) data, holds significant potential for enhancing our
understanding of tissue organization and biological functions. However, most of spatial clustering methods can’t decipher the
complex structures in ST data or did not entirely employ features embedded in different layers.
Results: This manuscript introduces STMSGAL, a novel framework for analyzing ST data by incorporating graph attention
autoencoder andmulti-scale deep subspace clustering. Firstly, STMSGAL constructs ctaSNN, a cell type-aware shared nearest
neighbors graph, using Louvian clustering exclusively based on gene expression profiles. Subsequently, it integrates expression
profiles and ctaSNN to generate spot latent representations using a graph attention auto-encoder andmulti-scale deep subspace
clustering. Lastly, our framework implements spatial clustering, differential expression analysis, and trajectory inference,
providing comprehensive capabilities for thorough data exploration and interpretation. STMSGAL was evaluated against five
other methods including SCANPY, SEDR, CCST, DeepST, and GraphST, using four 10x Genomics Visium datasets and onemouse
visual cortex STARmap dataset. The comparative analysis showcased STMSGAL’s remarkable performance across
Davies-Bouldin, Calinski-Harabasz, S_Dbw, and ARI values. STMSGAL significantly enhanced the identification of layer
structures across ST data with different spatial resolutions, and accurately delineated spatial domains in two breast cancer
tissues and adult mouse brain (FFPE).
Conclusion: STMSGAL is anticipated to serve as an essential tool for bridging the analysis of cellular spatial organization and
disease pathology, offering valuable insights for researchers in the field.

Key words: spatial transcriptomics; graph attention autoencoder; deep subspace clustering; multi-scale self-expression; self-
supervised learning; latent embedding feature learning; cell type-aware spatial neighbor network; differential expression analy-
sis; trajectory inference.

Background

The tissues in human body comprise various cell types where
each cell type implements a particular function [1]. The acti-
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Key Points

• A graph attention autoencoder is fully utilized to effectively integrate spatial locations and gene expression information by collec-
tively incorporating information between neighboring spots.

• Amulti-scale self-expressionmodule is explored to learn the associations between node representations in all encoder layers and
further obtain a more distinct self-expression coefficient matrix for mapping these features into a more precise subspace.

• A self-supervised learningmethod is designed to help spot latent feature learning by utilizing the clustering label as a supervisor.

vation of a cell is mainly affected by its surrounding environ-
ment [2, 3, 4]. Exploring relative positions of these cells con-
tributes to analyzing their spatial organization and disease pathol-
ogy [5, 6]. The rapid advance of single-cell RNA sequencing
(scRNA-seq) technologies enables us to investigate the gene ex-
pression patterns of various cells within a tissue/organ [7, 8, 9, 10,
11, 12, 13, 14, 15]. However, scRNA-seq technologies fail to pro-
vide spatial location information [16]. In contrast, spatial tran-
scriptomics (ST) technologies provide a large number of gene ex-
pression data and cellular location information for a tissue and
have witnessed tremendous development in the past several years
[17, 18, 19]. Based on the data generation ways, ST technolo-
gies mainly contain image-based methods and next-generation
sequencing-based (NGS-based) methods [20].
Image-based methods use in situ sequencing or in situ hy-

bridization to retain spatial locations of cells and further ob-
tain RNA transcripts based on images from the stained tissues.
MERFISH [21] can detect gene expression information of about
40,000 human cells in a single 18-hour measurement. STARmap
[22] can capture more than 1,000 genes in the mouse cortex
through an error-robust sequencing-by-ligation approach. se-
qFISH+ [23] combined sequential hybridization and standard
confocal microscope-based imaging technique to obtain super-
resolution imaging andmultiplexing data for 10,000 genes.
NGS-based methods depend on the number of spatial bar-

codes before library preparation [24]. Slide-seq [25, 26] obtained
randomly barcoded positions through in situ indexing and cap-
tured mRNAs through depositing onto a slide. High-definition
ST (HDST) [27] replaced the glass slides using beads deposited
in wells. The DBiT-seq [28] technique utilized polyT barcodes
in the tissue section based on microfluidics. Stereo-seq [29]
obtained nanoscale resolution through randomly barcoded DNA
nanoballs. 10x Genomics Visium (https://www.10xgenomics.com/)
demonstrated increased resolution with 55µm in diameter and
100µmcenter-center and sensitivitymore than 10,000 transcripts
per spot. It detected more unique molecules for each spot com-
pared with Slide-seq and HDST.
Onemain challenge in ST data analysis is to capture spatial do-

mains with similar expression patterns. For example, the laminar
organization in human cerebral cortex has close relationship with
its biological functions. In this tissue, cells within different cor-
tical layers have different expressions, morphology and physiol-
ogy [30]. One efficient way to identify spatial domains is to cluster
ST data. These clustering methods are mainly fall into two cate-
gories. The first category adopts conventional clusteringmethods,
for example,K-means clustering [31] andLouvain algorithms [32].
These algorithms are susceptible to small size of spots and sparsity
data, and the detected clusters may be discontinuous in sections.
The other category uses cell-type labels obtained from scRNA-seq
data to deconvolute spots [33, 34]. But this type ofmethods cannot
analyze ST data from the perspective of the cellular or subcellular
resolution.
It is crucial to learn a discriminative representation for each

spot by combininggene expression and spatial contextswhenclus-
tering ST data. Recently, several clustering algorithms have been
developed to identify spatial domains. For example, BayesSpace

[35] assumed that spots belonging to the same cell type may be
closer each other and built a Markov random field model with
Bayesian approach. stLearn [36] first proposed a spatial morpho-
logical gene expression normalization algorithm to normalize ST
data, and then employed standard Louvain clustering approach to
partition broad clusters into several sub-clusters. SEDR [37] ex-
ploited a deep autoencoder network to learn gene representations
and adopted a variational graph autoencoder to embed spatial in-
formation. CCST [38] explored a graph convolutional network to
transfer gene expression information as cellular embedding vec-
tors, and trained a neural network to encode cell embedding fea-
tures for clustering. STAGATE [39] developed a adaptive graph
attention autoencoder (GATE) [40] to accurately identify spatial
domains by integrating gene expression information and spatial
neighbor network. DeepST [41] incorporated gene expression,
spatial context, and histology to model spatially embedded repre-
sentation and further capture spatial domains. GraphST [42] inte-
grated graph self-supervised contrastive learning and graph neu-
ral network [43] for spatial clustering, multi-sample integration,
and cell-type deconvolution. ConGI [44] adopted gene expres-
sion with histopathological images to accurately capture spatial
domains based on contrastive learning. STGIC [16] is a graph and
image-based spatial clustering method. It can generate pseudo-
labels for spatial clustering while does not depend on any train-
able parameters. SPACEL [45] deconvoluted cell type composition
based on a multiple-layer perceptron, and identified spatial do-
mains via graph convolutional network and adversarial learning,
lastly constructed a 3D architecture for each tissue. PRECAST [46]
integrateda fewSTdatasets thathave complexbatcheffects andbi-
ological affects. SRTsim [47] is spatially resolved transcriptomics-
specific simulator for spatial clustering and expression pattern
analysis.

Although the aforementioned clusteringmethods obtained im-
pressive performance, their learned latent node representation
failed to achieve the most useful information because they did not
use current clustering labels. In addition, some methods includ-
ing SEDR and CCST only used the representation in the final hid-
den layer of an encoder for clustering ST data, which failed to con-
sider helpful features in the other layers. Although graph atten-
tion autoencoder-based methods [48, 49] have elucidated better
performance in integrating node attributes and graph structure
information, they can not decipher the complex structures in ST
data or did not entirely employ features embedded in different lay-
ers. Moreover, some models did not utilize a clustering-oriented
loss functionwhile others did not fully use the clustering labels for
node representation learning. The problems produced the subop-
timal clustering results. Here, we introduce STMSGAL, an ST anal-
ysis framework by combining graph attention autoencoder and
multi-scale deep subspace clustering network.

Materials andmethods

https://www.10xgenomics.com/
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Overview of STMSGAL

As shown in Figure 1, STMSGAL is composed of three main steps.
(i) Spatial neighbor network construction. STMSGAL constructs a
spatial neighbor network (SNN) based on spatial contexts, and ob-
tains a cell type-aware SNN called ctaSNN through Louvain clus-
tering exclusively based on gene expression data. (ii) Latent em-
bedding feature learning. Itmainly comprises spot embedding fea-
ture matrix construction, subspace clustering combining multi-
scale self-expression coefficient learning and affinity matrix con-
struction, and spot robust latent feature learning based on self-
supervised learning. (iii) Biological applications. ST data are clus-
tered and differential expression analysis and trajectory inference
are implemented.

Datasets

Four available 10x Genomics Visium datasets and one mouse vi-
sual cortex STARmap dataset are used to evaluate the STMSGAL
performance. The former four 10x Genomics datasets are from
Adult Mouse Brain (FFPE), Human Breast Cancer (Ductal Carci-
noma In Situ (DCIS)), Human Breast Cancer (Block A Section 1),
and Human dorsolateral prefrontal cortex (DLPFC) tissues. The
former two datasets have no clustering labels and the latter two
datasets are known to be labeled. The Adult Mouse Brain (FFPE)
dataset contains 2,264 spots and 19,465 genes. HumanBreast Can-
cer (DCIS) dataset includes 3,798 spots and 36,601 genes. Human
Breast Cancer (Block A Section 1) dataset detects 2,518 spots and
19,743 genes. The DLPFC dataset contains 12 tissue slices. It cap-
tures 33,538 genes with different spot numbers ranged from 3,460
to 4,789 in each slice. Each slice contains 5 to 7 regions by man-
ually annotation [30]. The mouse visual cortex STARmap dataset
provides the expression information of 1020 genes from 1207 cells
[22].

Spatial neighbor network construction

Data preprocessing
To preprocess ST data, first, spots outside main tissue regions are
removed. Next, raw gene expressions are log-transformed and
normalized based on library size through the SCANPY package
[50]. Finally, multiple highly variable genes are selected as inputs.

Cell type-aware SNN construction
To integrate the similarity between spots neighbor to a given spot,
STMSGAL constructs an undirected neighbor network based on a
pre-defined radius r and spatial contexts. Let A denote an adja-
cency matrix of the constructed SNN, Aij = 1 when the Euclidean
distance between two spots i and j is less than r. For 10x Genomics
Visium data, an SNN where each spot contains six nearest neigh-
bors is built. Next, self-loops are added to each spot. Finally,
the SNN is pruned based on pre-clustering and a ctaSNN is con-
structed. Particularly, the pre-clustering of spots is conducted by
Louvain clustering [32] exclusively based on gene expression pro-
files. The edges where two spots linking them belong to different
clusters are pruned.

Latent embedding feature learning

To learn latent embedding features for each spot, inspired by
multi-scale graph attention subspace clusteringnetworkprovided
by Wang et al. [51], we developed a spot latent embedding feature
learning approach. First, spot embedding feature matrix in each
encoder layer is constructed via GATE. Second, spot cluster labels
are obtained through subspace clustering. Finally, spot robust la-
tent features are learned by self-supervised learning.

Embedding featurematrix construction
For spot i, an encoder with L layers takes its normalized gene
expressions xi as inputs to generate its embedding features by
collectively incorporating information of its neighbors. Taking
gene expressions as initial spot embeddings, that is, h(0)i =
xi, ∀i ∈

{
1, 2, · · · ,N

}
, the embedding of i in the k-th (k ∈{

1, 2, · · · , L – 1
}
) encoder layer is denoted by Eq. (1):

h(k)i = σ

∑
j∈Si

att(k)ij
(
Wkh

(k–1)
j

) (1)

where Wk, σ, Si, and att
(k)
ij denote the trainable weight matrix,

nonlinear activation function, a spot set that includes neighbors
of i in SNN and i itself, and weight of the edge between spot i and
spot j in the k-th graph attention layer, respectively. The output
z(k)i = h(k)i of the encoder is taken as the final spot embedding in
the encoder part. The L-th layer in the encoder does not use the
attention layer by Eq. (2):

h(L)i = σ
(
WLh

(L–1)
i

)
(2)

In the part of decoder, a decoder transforms the learned la-
tent embedding back into a normalized expression profile to re-
construct the spot features. Suppose that ĥ

(L)
i = Cz(L)i where C de-

note a self-expression matrix, and z(L)i denotes the embedding of
i in the L-th encoder layer. Next, Cz(L)i is feed into the decoder to
reconstruct the spot embeddings. In the k-th decoder layer, the
embedding features of spot i is constructed by Eq. (3):

ĥ
(k–1)
i = σ

∑
j∈Si

âtt(k–1)ij

(
Ŵkĥ

(k)
j

) (3)

The L layer in the decoder is denoted by Eq. (4):

ĥ
(0)
i = σ

(
Ŵ1ĥ

(1)
i

)
(4)

Its output is the reconstructed normalized expressions. In ad-
dition, we set Ŵk = Wk

T and âtt(k) = att(k) to avoid overfitting.
The attention mechanism is a one-layer feedforward neural

network that is parametrized by a weight vector. A self-attention
mechanism [52] is used to compute the similarity between neigh-
boring spots by an adaptive way. In the k-th decoder layer, the
edge weight between spot i and its neighbor spot j is computed by
Eq. (5):

e(k)ij = Sigmoid(v(k)
T

s (Wkh
(k–1)
i ) + v(k)

T
r (Wkh

(k–1)
j )) (5)

where v(k)s and v(k)r are two trainableweight vectors. Next, the sim-
ilarity weights between spots are normalized by a softmax func-
tion by Eq. (6):

att(k)ij =
exp

(
e(k)ij

)
∑
j∈Si exp

(
e(k)ij

) (6)

The obtained weights are applied to further update the latent em-
bedding of spots in the encoder and decoder.
In addition, STMSGAL adopts a self-attention mechanism and

constructs a ctaSNN. Let attspatialij and attawareij denote the learned
spot similarity using SNN and ctaSNN, respectively, the final spa-
tial similarity is computedby combining the above twosimilarities
by Eq. (7):
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attij =
(
1 – α

)
attspatialij + αattawareij (7)

whereα is a hyperparameter used toweigh the importance of SNN
and ctaSNN.
The reconstructed loss isminimized based on the residual sum

of squares by Eq. (8):

Latt = min
1
2

n∑
i=1

∥∥∥∥xi – ĥ(0)i ∥∥∥∥2
F

(8)

Particularly, weight decay equally imposes a penalty to the L2
norm, thus, the regularized loss is minimized. And the total loss
is represented as Eq. (9):

L1 = Latt +
1
2 ·

L–1∑
k=1

∥∥Wk∥∥2F (9)

Multi-scale deep subspace clustering
In this section, we use subspace clustering algorithm to obtain
cluster labels of spots. The self-expression property of data greatly
influences the performance of subspace clustering. In a union sub-
space, each data can be represented as a linear combination of the
other data. Thus, we use a multi-scale self-expressive module to
obtain the final self-expression coefficient matrix based on spot
embedding feature matrix: H(k) =

{
h(k)1 ,h

(k)
2 , · · · ,h

(k)
n

}
.

In deep subspace clustering network [53], a self-expression
layer is a full connection layer without bias and activation. And
its objection function is represented by Eq. (10):

min
C

∥C∥p +
1
2∥Z – CZ∥

2
F s.t. (diag(C) = 0) (10)

whereC indicates a self-expression coefficientmatrixused to build
an affinity matrix Λ for the following spectral clustering, Z indi-
cates the output feature matrix in the encoder, and ∥ · ∥p indicates
an arbitrary regularization norm.
Although deep subspace clustering obtains better clustering

performance, it fails to consider the multi-scale features exist-
ing in the other encoder layers. Here, we integrate the multi-
scale features to the original self-expression module. Given
the input normalized gene expressions in the i-th encoder layer
Z(k)

(
k = 1, 2, · · · , L

)
, the self-expression coefficientmatrixC(k) in

the k-th encoder layer can be computed by Eq. (11):

min
C(k)

1
2
∥∥∥Z(k) – C(k)Z(k)∥∥∥2

F
(11)

Next, the multi-scale self-expression matrix C(k) in different
layers is fused based on an adaptive approach by Eq. (12):

CF =
∑L
k=1 τk · C

(k)∑L
k=1 τk

(12)

where τk denotes a trainable variable used to balance the impor-
tance of each self-expressionmatrix.
Based on the obtained final self-expression matrix CF, deep

subspace clusteringmodel builds an affinitymatrixΛ for spectral
clustering [54] by Eq. (13):

Λ = 12
(∣∣CF∣∣ + ∣∣∣CTF ∣∣∣) (13)

Consequently, the clustering result Yclu can be obtained by
spectral clustering based onΛ.

Particularly, themulti-scale self-expression loss is represented
as Eq. (14):

Lmss = min
C(k)

1
2L ·

L∑
k=1

∥∥∥Z(k) – C(k)Z(k)∥∥∥2
F

s.t.
(
diag

(
C(k)

)
= 0

) (14)

Besides, a regularization loss is introduced to avoid C(k) too
sparse:

Lreg = min
C(k)

1
L ·

L∑
k=1

∥∥∥C(k)∥∥∥
p

s.t.
(
diag

(
C(k)

)
= 0

) (15)

Thus, the total loss inmulti-scale self-expressionmodule is de-
noted as Eq. (16):

L2 = Lmss + Lreg (16)

Spot robust latent feature learning
To learn spot robust latent features, we employ a self-supervised
module. First, spots are classified based on three full connection
layers. Let the dimensions of all full connection layers be denoted
as

{
dL × D1 × D2 × D3 ×m

}
, where dL denotes the dimension of

Z(L), and D1, D2 and D3 denote the dimensions of three full con-
nection layers, respectively. We obtain the classification results
P ∈ Rn×m of n spots based on the three full connection layers.
Next, we use the cross-entropy loss between the classifica-

tion results P and the clustering results Yclu to constrain self-
supervised learningmodule by Eq. (17):

L3 = Lsup = min
P
–
n∑
i=1

m∑
j=1
P(i, j) logYclu(i, j) (17)

where Yclu(i, j) denotes the j-th clustering label of spot i obtained
from spectral clustering, and P(i, j) denotes the j-th classification
label of spot i based on three full connection layers.
Finally, by integrating Eqs. (9), (14), (15), and (17), the total

loss function of multi-scale GATE is denoted as Eq. (18):

Ltotal = min
(C,P,Z)

L1 + Lreg + λ · Lmss + Lsup (18)

whereλ is a tradeoff parameter used tomeasure the importance of
Lmss.

Biological application

STMSGAL first identifies spatial domains using Leiden cluster-
ing [55], Louvain clustering [32] or mclust clustering [56] based
on the obtained spot embedding feature matrix. Second, it im-
plements differential expression analysis using the t-test in the
Scanpy package. Finally, it conducts trajectory inference.

Spatial clustering
Based on the learned spot embedding featurematrix,weuse differ-
ent strategies to identify spatial domains. For the DLPFC dataset,
mclust clustering [56] is applied to spatial clustering. For other
datesets, Louvain or Leiden clustering [32, 55] is used to imple-
ment ST clustering.
In addition, although spot embedding feature matrix is ob-

tained by integrating both gene expressions and spatial contexts,
several spots may be incorrectly assigned to spatially diametrical
domains,whichmay causenoise and influencedownstreamanaly-



Zhou et al. | 5

sis. To solve this problem, an optional optimization step is used to
further optimize spatial clustering results obtained from Louvain
clustering on the DLPFC dataset: for a given spot i, its surround-
ing spots within an r radius circle are taken as its neighbors. Next,
we reassign i to a spatial domainwith themost frequent label of its
neighbors. In addition, the clustering results are visualized using
UMAP [57].

Differential expression analysis
Differential expression analysis is one primary downstream anal-
ysis method on transcriptomic data [58, 59, 60]. It helps identify
biomarkers for novel cell types or detect gene signatures for cel-
lular heterogeneity, and further provides data for other secondary
analyses (such as gene set or pathway analysis, and network anal-
ysis). We use the t-test implemented in the SCANPY package [50]
to identify differentially expressed genes for spatial domains.

Trajectory inference
ST technologies help depict tissues and organisms in great de-
tail. Tracking the transcriptomic profiles of cells over time and
studying their dynamic cellular process contributes to the compu-
tational reconstruction of cellular developmental processes. Tra-
jectory inference enables us to better study the potential dynamics
of a query biological process, for example, cellular development,
differentiation, and immune responses [61]. It can detect a graph-
like structure existing in the dynamic process from the sampled
cells. Properties of cells are compared over pseudotime [62] by
mapping them to the captured structure. Trajectory inference al-
lows us analyze how cells evolve fromone cell state to another, and
when andhow should cellsmake cell fate decisions. In this section,
the PAGA algorithm [63] in the SCANPY package [50] is employed
to depict spatial trajectory. The obtained trajectory figures are vi-
sualized using the scanpy.pl.paga_compare() function.

Results

Experimental setting

In STMSGAL, both encoder and decoder with the activation func-
tion of exponential linear unit (ELU) [64] were neural networks
with two graph attention layers, where the number of neurons is
512 and 30, respectively. The Adam optimizer [65] was employed
tominimize their reconstruction loss. In the self-supervisedmod-
ule, the activation function was set to rectified linear units (ReLu)
[66]. For Louvain clustering, the radius r was set to 50 when
STMSGAL obtained the best clustering performance on the DLPFC
dataset.
STMSGAL adopted the same data preprocessing as those of

SCANPY. Both of themused log-normalized, constructed the near-
est neighbor network. SCANPY obtained spatial clustering with
the scanpy.tl.louvain() function. Table 1 shows parameter settings
of STMSGAL on five ST datasets. For each dataset with labels, the
resolution parameter was tuned manually to ensure the cluster
number was equal to the ground truth. Thus, the cluster number
in each method was set to the same as one of ground truth layers.
For other clustering methods, we adopted their default settings.

Evaluationmetrics

For three datasets with labels (Human Breast Cancer (Block A Sec-
tion 1), DLPFC, and mouse visual cortex STARmap), we employed
adjusted rand index (ARI) [67] to evaluate the performance of dif-
ferent spatial clustering algorithms. ARI computes the similarity
between thepredicted clustering labels and reference cluster labels

by Eq. (19):

ARI = RI – E[RI]
max(RI) – E[RI]

(19)

where the unadjusted rand index RI = (a + b)/C2n where a and b
indicate the number of pairs correctly labeled in the same dataset
and not in the same dataset, respectively. C2n indicates the total
number of possible pairs. E[RI] indicates the expected RI based on
random labeling. A higher ARI score denotes better performance.
For two datasets whose spatial domain annotations are un-

available (Adult Mouse Brain (FFPE) and Human Breast Cancer
(DCIS)), we evaluated the performance of spatial clustering algo-
rithms based on three clustering metrics, that is, Davies-Bouldin
(DB) score [68], Calinski-Harabasz (CH) score [69], and S_Dbw
score [70, 71]. DB was computed by averaging all cluster similar-
ities where the similarity between each cluster and its most sim-
ilar cluster was taken as its cluster similarity. And the similarity
was computed by the ratio of within-cluster distances to between-
cluster distances. CH is used to measure the cluster validity by av-
eraging the squares of within- and between-cluster distance sum
of all spots. S_Dbw evaluate intraclass compactness and interclass
density of each spot. Small DB and S_Dbw and large CH indicate
the optimal cluster clustering.

Performance comparison of STMSGAL with five other
methods on two datasets without labels

To investigate the clustering performance of STMSGAL, we com-
pared it with five other clustering algorithms, that is, SCANPY
[50], SEDR [37], CCST [38], DeepST [41], andGraphST [42] on two
10x Genomics Visium datasets without labels (i.e., Adult Mouse
Brain (FFPE) and Human Breast Cancer (DCIS)). The former two
methods obtained broad applications in single-cell clustering, and
the remaining five methods were widely applied to spatial cluster-
ing. Table 2 shows the DB, CH, and S_Dbw scores computed by
STMSGAL and other methods on the above two datasets. The best
performance in each columnwas denoted using the bold font. The
results demonstrated that STMSGAL computed the smallest DB
and S_Dbw and the highest CH on Adult Mouse Brain (FFPE), and
the highest CH and the smallest S_Dbw on Human Breast Cancer
(DCIS), suggesting its optimal clustering performance.

STMSGAL demonstrates robust clustering performance
across ST datasets with different spatial resolutions

To evaluate the STMSGAL performance on spatial domain identi-
fication, we compared it with existing five state-of-the-art meth-
ods on 4 DLPFC sections. The results elucidated that spatial do-
mains captured by STMSGAL were consistent with manual an-
notation on human DLPFC sections and the definition of cortical
stratification in neuroscience (Figure 2).
In addition, STMSGAL effectively captured the expected corti-

cal layer structures and significantly improved spatial clustering
performance in comparison with SCANPY, SEDR, CCST, DeepST,
and GraphST (Figure 2 and Supplementary Figure S1). For aver-
age ARIs, STMSGAL achieved the best performance (Figure 2B).
In the DLPFC section 151507, STMSGAL clearly depicted the layer
borders and obtained the best average ARI of 0.533. In the sec-
tion, although the clustering results of SCANPYroughly adhered to
the expected layer structures, its cluster boundary was discontin-
uous withmany noises, which greatly influenced its clustering ac-
curacy. Moreover, SCANPY is a non-spatial clustering algorithm,
and SEDR, CCST, DeepST and GraphST are spatial clustering al-
gorithms. Interestingly, the performance of the above five spa-
tial clustering algorithms especially STMSGAL is obviously better
than the clusteringmethod, elucidating STMSGAL’s powerful spa-
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tial domain identification ability (Figure 2C).
STMSGAL manifested the distance between spatial domains

and characterized the spatial trajectory in aUMAPplot [57] by inte-
grating spatial contexts. For example, in theDLPFC section 151507,
the UMAP plots delineated by STMSGAL embeddings elucidated
well-organized cortical layers and consistent spatial trajectories,
which was in accord with functional similarity between adjacent
cortical layers and the chronological order [72]. Furthermore, in
the UMAP plots delineated by SCANPY embeddings, spots that be-
long to different layerswere not clearly dividedwhile GraphST and
STMSGALcouldwell dividemost spots intodifferent layers (Figure
2D). Finally, we used a trajectory inference approach named PAGA
[63] to verify the inferred trajectory. The PAGA graphs depicted by
both STMSGALandGraphST embeddingshad a approximately lin-
ear development trajectory from layer 1 to layer 6. In addition, the
identified adjacent layers by STMSGAL and GraphST showed sim-
ilarity while ones from SCANPY embeddings were mixed (Figure
2D).
We further evaluated the performance STMSGAL on themouse

visual cortex STARmap dataset, which is an image-based ST
dataset at single-cell resolution and is generated by the STARmap
technique [22]. Using the gold standard annotated by experts, as
shown in Figure 3, STMSGAL obtained the best ST clustering per-
formance with ARI of 0.568 compared to SCANPY, SEDR, CCST,
and GraphST, while CCST achieved the second-best ranking with
ARI of 0.516.

STMSGAL can accurately dissect spatial domains on two
breast cancer tissues

Differed from the cerebral cortex with clear and known morpho-
logical boundaries, breast cancer tissues are remarkably heteroge-
neous and consist of complex tumor microenvironments. Conse-
quently,manually labeling cancer data only via tumormorphology
can not fully depict the complexity. Thus, we utilized STMSGAL
to find spatial domains on two 10x Genomics Visium datasets with
respect to Human Breast Cancer (Block A Section 1) and Human
Breast Cancer (DCIS).
Human Breast Cancer (Block A Section 1) data have obvious in-

tratumoral and intertumoral differences. It was manually anno-
tated by SEDR [37] (Figure 4A) and was divided into 20 regions. It
contains 4 main morphotypes: Ductal Carcinoma in Situ/Lobular
Carcinoma in Situ (DCIS/LCIS), Invasive Ductal Carcinoma (IDC),
tumor surrounding regions with low features of malignancy (Tu-
mor edge), and healthy tissue (Healthy).
We compared the clustering accuracy of STMSGAL with

SCANPY [50], SEDR [37], CCST [38], DeepST [41], and GraphST
[42] in termsof averageARI. The results show that STMSGAL com-
puted the best ARI, significantly outperforming five other cluster-
ingmethods (Figure 4B).
Figure 4C shows spatial domains identified by SCANPY, SEDR,

CCST, DeepST, GraphST and STMSGAL. The results demonstrate
that the identified domains by STMSGAL were highly consistent
with manual annotations in Figure 4A and hadmore regional con-
tinuity. In addition, compared with other methods, STMSGAL ob-
tained the best clustering accuracy with ARI of 0.606. Further-
more, STMSGAL identified several sub-clusters within the tumor
regions, such as spatial domains 4 and 13 (Figure 4D). Further-
more, STMSGAL identified some spatial domains with low het-
erogeneity (i.e., healthy regions) that were remarkably consistent
with the manual annotations in Figure 4A.
We also analyzed intratumoral transcriptional differences

among domain 1 (DCIS/LCIS), 4, and 13 (IDC) based on differential
expression analysis (Figure 4E). In domain 1, we identified three
differentially expressed genes, that is, CPB1, COX6X, and IL6ST.
CPB1 can obviously differentiate DCIS from the other subtypes of
breast cancer [73]. COX6Xmayhelp the differentiation between es-

trogen receptor-positive and estrogen receptor-negative subtypes
[74]. The expression of IL6ST closely associates with a lower risk
of invasion, metastasis and recurrence [75]. In domains 4 and 13,
two differentially expressed genes IGFBP5 and CRISP3 have dense
linkages with the treatment ofmammary carcinoma [76, 77]. The
knockdown of CRISP3 can greatly inhibit the migration and in-
vasion of mammary carcinoma cells and ERK1/2 MAPK signaling
pathway. CRISP3 was also considered a marker for clinical out-
comes in the mammary carcinoma patients [76]. IGFBP5 helps
manage tamoxifen resistance in breast cancer [77]. The above re-
sults suggested that STMSGAL can accurately identify spatial re-
gions with different biological functions.
We further investigated ST data on Human Breast Cancer

(DCIS). Figure 5A gives its manually annotated areas. STMSGAL
identified more fluent and continuous regions than other algo-
rithms and better matched the annotated areas (Figure 5B and Ta-
ble 2). Figure 5D lists the top 3 differentially expressed genes (i.e.,
AZGP1, CD24, and ERBB2) in domain 0 (Figure 5C). The expression
of AZGP1 determines the histologic grade of tumours in breast can-
cer [78]. CD24 is a key indicator of triplenegative breast cancer
[79, 80, 81]. In particular, the overexpression ofERBB2 categorizes
ERBB2/HER2-positive, a subclass of breast cancer. The subclass ac-
counts for about 20-30% among all types of breast malignancies
and is usually linked to poor prognosis [82]. Targeting ERBB2 con-
tributes to the treatment of ERBB2-positive breast cancers [83].

STMSGAL helps to better delineate the similarity be-
tween neighboring spots on Adult Mouse Brain (FFPE)

STMSGAL was still applied to provide insights into more complex
tissues on a 10x Genomics Visium dataset fromAdult Mouse Brain
(FFPE). Figure 6A shows spatial domains identified by SCANPY,
DeepST, STMSGAL without the ctaSNN (α = 0), and STMSGAL
(α = 0.5). In the hippocampal region, the clustering results gen-
erated by SCANPY roughly separated the brain tissue structures
composed of different cell types but failed to capture small spa-
tial domains. SCANPY did not observe the “cord-like” structure
(i.e., Ammon’s horn) and the “arrow-like” structure (i.e., dentate
gyrus) within the hippocampus. DeepST only smoothed the spa-
tial domain boundaries, but failed to delineate small spatial do-
mains. STMSGAL without ctaSNN captured the Ammon’s horn,
but did not characterize smaller spatial domains. However, STMS-
GAL with ctaSNN clearly identified both the Ammon’s horn and
dentate gyrus structures in the hippocampus, and significantly
improved spatial domain identification. Furthermore, even for ST
data composed of heterogeneous cell types with low spatial resolu-
tion, STMSGAL with ctaSNN can still accurately decipher the spa-
tial similarity. It set a resolution parameter to 0.2 and better imple-
mented pre-clustering based on the Louvain algorithm on Adult
Mouse Brain (FFPE). As shown in Figure 6A, the cell type-aware
module greatly advanced the spatial domain identification.
Figure 6B gives the annotation of hippocampus structures

from the Allen Reference Atlas on Adult Mouse Brain (FFPE). Al-
though spatial regions generated by both STMSGAL and DeepST
had smooth boundary, STMSGAL detected more sub-clusters
within the hippocampus (Figure 6A). For example, STMSGAL
characterized clear “cord-like” structure and “arrow-like” struc-
ture in the hippocampal region, in accord with annotations about
the hippocampus structures from the Allen Reference Atlas [84]
(Figure 6A).
Additionally, the expressions of multiple known gene mark-

ers validated the cluster partitions of STMSGAL (Figure 6C and
Supplementary Figure S2). For example, C1ql2 was highly ex-
pressed on the identified DG-sg region [85]. Hpca, that medi-
ates calcium-dependent translocation of brain-type creatine ki-
nase in hippocampal neurons, was highly expressed in the Am-
mon’s horn region [86]. Notably, STMSGAL also captured sev-
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eral well-separated spatial domains and deciphered their spatial
expression patterns based on differential expression analysis. Do-
main 15 within the hippocampus except for the “cord-like” and
“arrow-like” structures delineated high expressions of two astro-
cytes gene markersMt2 and Gfap [87]. The spatial domain 14 sur-
rounding the hippocampal expressed multiple oligodendrocytes-
related gene markers including Trf andMbp [88] (Supplementary
Figure S2). The above results elucidated that STMSGAL can ef-
ficiently detect spatial heterogeneity and further decompose spa-
tial expression patterns. Notably, the cell type-aware module ob-
viously boosted the partition of tissue structures on Adult Mouse
Brain (FFPE) based on its UMAP plot [57] while those of DeepST
and STMSGALwithout ctaSNNweremore like a smooth version of
the non-spatial method SCANPY (Figure 6D).
Finally, all attention layers of STMSGALwith ctaSNNwere visu-

alized. In each layer, nodes were arranged based on spot spatial lo-
cations, and edgeswere colored by correspondingweights. The re-
sults demonstrated that the combination of attention mechanism
and ctaSNNboosted the characterizationof theboundaries ofmain
tissue structures on Adult Mouse Brain (FFPE) (such as the cortex,
hippocampus, and midbrain) (Figure 6E). Collectively, attention
mechanism and ctaSNN contributed to delineating the similarity
between neighboring spots (Figure 6E).

Discussion

Accurately detecting spatial domains and identifying differentially
expressed genes can greatly boost our understanding about tissue
organization and biological functions. In this manuscript, we de-
veloped a spatial domain identification framework called STMS-
GAL based on GATE and multi-scale deep subspace clustering.
STMSGAL can been accurately incorporated to the standard analy-
sis pipeline by using the “anndata” object in the SCANPY package
[50] as inputs.
Differed from classical autoencoders, STMSGAL utilized an at-

tention mechanism in multiple hidden layers of the encoder and
decoder. First, it constructed ctaSNN through Louvain cluster-
ing exclusively based on gene expression profiles. The weights of
edges in the ctaSNN depicted the similarity between neighboring
spots and were adaptively learned. Next, it integrated expression
profiles and the constructed ctaSNN to formspot latent embedding
representation based on GATE. It mainly includes spot embedding
feature matrix construction, subspace clustering combining self-
expression coefficient learning and affinity matrix construction,
spot robust latent feature learning based on self-supervised learn-
ing. Finally, it implemented biological applications including spot
clustering, differentially expression analysis, and trajectory infer-
ence.
We compared the performance of STMSGAL with five other

clustering methods on four 10x Genomics Visium datasets from
Adult Mouse Brain (FFPE), Human Breast Cancer (DCIS), Human
Breast Cancer (Block A Section 1), and the DLPFC tissues, as well
as one mouse visual cortex STARmap dataset. The five compari-
sonmethods include SCANPY, GraphST, SEDR, CCST, and DeepST.
The SCANPYhas beenwidely applied to single-cell clustering. The
remaining are state-of-the-art spatial clusteringmethods. The re-
sults demonstrated that our proposed STMSGALmethod obtained
impressive performance over five other competing methods in
terms of four evaluation metrics (i.e., DB, CH, S_Dbw, and ARI).
STMSGAL significantly improved the identification of layer struc-
tures in four DLPFC sections and mouse visual cortex STARmap
data, accurately dissected spatial domains on twobreast cancer tis-
sues, and efficiently depicted the similarity between neighboring
spots on Adult Mouse Brain (FFPE).
STMSGAL greatly boosted ST data analysis. It may be mainly

attributed to the following features: First, although existingmeth-
ods (such as stLearn) took histological images as inputs, they

achieved limited performance. For example, stLearn adopted a
pre-trained neural network to obtain spot features from images
and further computed their morphological distances via cosine
distance. However, the pre-defined strategy in stLearn was not
flexible and resulted in its poor spatial clustering performance. In
contrast, STMSGALadopted anattentionmechanismto adaptively
integrate spatial locations and gene expression profiles.
Second, a multi-scale self-expression module was designed to

train a self-expression coefficient matrix in different encoder lay-
ers. SEDR and CCSTmerely adopted the representations in the en-
coder final hidden layer for spatial clustering tasks, wastingmuch
useful information embedded in its other layers. Comparatively,
themulti-scale self-expressionmodule fully explored the associa-
tions between node representations in all encoder layers. Thus, it
fully adopted the embeddedmulti-scale information and obtained
a more distinct self-expression coefficient matrix. Furthermore,
it mapped these features into a more precise subspace for spatial
clustering.
Finally, deep subspace clustering module was proposed to ob-

tain the clustering labels with a clustering-oriented loss function.
And a self-supervised module was introduced to effectively guide
spot latent representation learning. Thus, the learned spot latent
embedding representation greatly improved the clustering perfor-
mance.
Although STMSGAL achieved accurate spatial clustering per-

formance, the deep subspace clustering can be further developed.
In the near future, motivated by the linkages between spatial do-
main identification and single-cell segmentation used to image-
based ST data, we anticipate that STMSGAL can be further ex-
tended for single-cell segmentation task applied to the subcellular
resolution technologies. We also hope to enhance its applicability
on other datasets generated by new sequencing technologies.

Availability of source code and requirements

• Project name: STMSGAL
• Project home page: https://github.com/plhhnu/STMSGAL
• Operating system(s): Platform independent
• Programming language: Python
• License: MIT license

Data availability

All data analyzed in this paper are available in raw form from their
original authors. Source codes and datasets are available in the
GitHub repository.
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Table 1. Parameter settings
Dateset Parameter settings

DLPFC

rad_cutoff = 150
n_top_genes=3000
cost_ssc = 0.1
α = 0
method = ’louvain’

Human Breast Cancer
(Block A Section 1)

rad_cutoff = 300
n_top_genes=1000
cost_ssc = 1
α = 0.7
method = ’leiden’

Adult Mouse Brain
(FFPE)

rad_cutoff = 300
n_top_genes=3000
cost_ssc = 0.1
α = 0.5
method = ’louvain’

Human Breast Cancer
(DCIS)

rad_cutoff = 300
n_top_genes=3000
cost_ssc = 1
α = 0.5
method = ’louvain’

Mouse visual cortex

rad_cutoff = 400
n_top_genes=3000
cost_ssc = 0.1
α = 0
method = ’mclust’

Table 2. Performance comparison of STMSGAL with other five cluster-
ing methods on Adult Mouse Brain (FFPE) and Human Breast Cancer
(Ductal Carcinoma In Situ).

Datasets Methods Metrics
DB CH S_dbw

Adult Mouse Brain (FFPE)

SCANPY 1.442 358.67 0.481
SEDR 1.951 84.569 0.652
CCST 1.173 507.421 0.453
DeepST 1.166 842.033 0.328
GraphST 1.470 310.860 0.501
STMSGAL 1.155 1010.724 0.311

Human Breast Cancer (DCIS)

SCANPY 2.069 379.084 0.593
SEDR 2.627 54.778 0.742
CCST 1.469 507.421 0.453
DeepST 1.263 611.567 0.48
GraphST 1.951 369.594 0.610
STMSGAL 1.451 1190.850 0.332

*The bold font indicates the best performance in each column. Lower
Davies-Bouldin (DB) and S_Dbwand higher Calinski-Harabasz (CH) denote
better performance.
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Figure 1. Pipeline for clustering ST data based on GATE and deep subspace clustering network. (i) ctaSNN construction. (ii) Spot latent embedding feature learning. (iii)
Biological applications.
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Figure 2. STMSGAL improves the identification of layer structures in the DLPFC tissue. (A)Ground-truth segmentation of 6 cortical layers and onewhitematter layer in the
DLPFC section 151507. (B) Boxplots of ARI computed by STMSGAL and five other methods in the DLPFC sections, from 151507 to 151510. (C) Cluster assignments generated
by SCANPY, SEDR, CCST, DeepST, GraphST and STMSGAL in the DLPFC section 151507. (D) UMAP visualizations and PAGA graphs generated by SCANPY, GraphST, and
STMSGAL embeddings in the DLPFC section 151507.
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Figure 3. Spatial domains identified by SEDR, CCST, GraphST, SCANPY, and STMSGAL in the mouse visual cortex STARmap dataset.
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Figure 4. STMSGAL can accurately dissect spatial domains on Human Breast Cancer (Block A Section 1). (A) Manual pathology labeling via the H&E staining. (B) The
average ARI values computed by SCANPY, SEDR, CCST, DeepST, GraphST, and STMSGAL on Human Breast Cancer (Block A Section 1). (C) Cluster assignments generated
by SCANPY, SEDR, CCST, DeepST, GraphST, and STMSGAL on Human Breast Cancer (Block A Section 1). (D) Spatial domains identified by STMSGAL. (E) Heatmap of the
top 5 differentially expressed genes of domains 1, 4, and 13 on Human Breast Cancer (Block A Section 1).
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Figure5. STMSGALcanaccurately dissect spatial domains onHumanBreast Cancer (Ductal Carcinoma InSitu). (A)H&Estainingfigures annotatedbyAgoko’s telepathology
platform onHuman Breast Cancer (DCIS). (B)Spatial domains identified by SCANPY, GraphST, DeepST, and STMSGAL onHuman Breast Cancer (DCIS). (C) Spatial domains
0, 4, and 9 identified by STMSGAL. (D) Stacked violin plots illustrate the top 3 differentially expressed genes on spatial domains 0, 4 and 9, and their expressions on all
spatial domains.
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Figure 6. STMSGAL reveals spatial domains on Adult Mouse Brain (FFPE). (A) Spatial domains identified by SCANPY, DeepST, STMSGAL with α = 0.5, and STMSGAL
without the cell type-awaremoduleα = 0. α indicates the weight of ctaSNN. (B) The annotation of hippocampus structures from the Allen Reference Atlas onmouse brain.
(C) Visualization of domains identified by STMSGAL and the corresponding marker genes. (D) UMAP visualization generated by SCANPY, DeepST, STMSGAL with α = 0,
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by STMSGAL with Louvain clustering on adult mouse hippocampus tissue.
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Dear editor,  

We would like to submit manuscript entitled “Unveiling patterns in spatial transcriptomics 

data: a novel approach utilizing graph attention autoencoder and multi-scale deep subspace 

clustering network”, which we wish to be considered for publication in GigaScience.  

The accurate deciphering of spatial domains, along with the identification of differentially 

expressed genes and the inference of cellular trajectory based on spatial transcriptomic (ST) data, 

holds significant potential for enhancing our understanding of tissue organization and biological 

functions. However, most of spatial clustering methods can't decipher the complex structures in ST 

data or did not entirely employ features embedded in different layers.  

Here, we introduce STMSGAL, a novel framework for analyzing ST data by incorporating 

graph attention autoencoder and multi-scale deep subspace clustering. Firstly, STMSGAL 

constructs ctaSNN, a cell type-aware shared nearest neighbors graph, using Louvian clustering 

exclusively based on gene expression profiles. Subsequently, it integrates expression profiles and 

ctaSNN to generate spot latent representations using a graph attention auto-encoder and multi-scale 

deep subspace clustering. Lastly, our framework implements spatial clustering, differential 

expression analysis, and trajectory inference, providing comprehensive capabilities for thorough 

data exploration and interpretation.  

STMSGAL was evaluated against five other methods including SCANPY, SEDR, CCST, 

DeepST, and GraphST, using four 10x Genomics Visium datasets and one mouse visual cortex 

STARmap dataset. The comparative analysis showcased STMSGAL's remarkable performance 

across Davies-Bouldin, Calinski-Harabasz, S_Dbw, and ARI values. STMSGAL significantly 

enhanced the identification of layer structures across ST data with different spatial resolutions, and 

accurately delineated spatial domains in two breast cancer tissues and adult mouse brain (FFPE).  

STMSGAL is anticipated to serve as an essential tool for bridging the analysis of cellular 

spatial organization and disease pathology. The STMSGAL and analysis codes to reproduce the 

aforementioned analysis are hosted at https://github.com/plhhnu/STMSGAL. 

This manuscript has the following contributions: 

(1) An attention mechanism is fully utilized to effectively integrate spatial locations and gene 

expression information.        
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(2) A multi-scale self-expression module is explored to learn spot latent embedding 

representations for spatial clustering.   

(3) A self-supervised learning method is designed to help spot latent feature learning. 

I believe this work will bring substantial interest to GigaScience’ reader community.  

This paper is our original unpublished work and it has not been submitted to any other journal.  

Thank you very much for your attention and consideration. 

With all best regards, 

Lihong Peng 

Professor 

Hunan University of Technology, Zhuzhou, 412007, China 

Email：plhhnu@163.com  
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