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Abstract: Background: The accurate deciphering of spatial domains, along with the identification
of differentially expressed genes and the inference of cellular trajectory based on
spatial transcriptomic (ST) data, holds significant potential for enhancing our
understanding of tissue organization and biological functions. However, most of spatial
clustering methods can neither decipher complex structures in ST data nor entirely
employ features embedded in different layers.
Results: This manuscript introduces STMSGAL, a novel framework for analyzing ST
data by incorporating graph attention autoencoder and multi-scale deep subspace
clustering. Firstly, STMSGAL constructs ctaSNN, a cell type-aware shared nearest
neighbor graph, using Louvian clustering exclusively based on gene expression
profiles. Subsequently, it integrates expression profiles and ctaSNN to generate spot
latent representations using a graph attention auto-encoder and multi-scale deep
subspace clustering. Lastly, STMSGAL implements spatial clustering, differential
expression analysis, and trajectory inference, providing comprehensive capabilities for
thorough data exploration and interpretation. STMSGAL was evaluated against
seven methods including SCANPY, SEDR, CCST, DeepST, GraphST, STAGATE, and
SiGra, using four 10x Genomics Visium datasets, one mouse visual cortex STARmap
dataset, and two Stereo-seq mouse embryo datasets. The comparison showcased
STMSGAL's remarkable performance across Davies-Bouldin, Calinski-Harabasz,
S_Dbw, and ARI values. STMSGAL significantly enhanced the identification of layer
structures across ST data with different spatial resolutions, and accurately delineated
spatial domains in two breast cancer tissues, adult mouse brain (FFPE), and mouse
embryos.
Conclusion: STMSGAL can serve as an essential tool for bridging the analysis of
cellular spatial organization and disease pathology, offering valuable insights for
researchers in the field.
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Abstract
Background: The accurate deciphering of spatial domains, along with the identification of differentially expressed genes and
the inference of cellular trajectory based on spatial transcriptomic (ST) data, holds significant potential for enhancing our
understanding of tissue organization and biological functions. However, most of spatial clustering methods can neither
decipher complex structures in ST data nor entirely employ features embedded in different layers.
Results: This manuscript introduces STMSGAL, a novel framework for analyzing ST data by incorporating graph attention
autoencoder andmulti-scale deep subspace clustering. Firstly, STMSGAL constructs ctaSNN, a cell type-aware shared nearest
neighbor graph, using Louvian clustering exclusively based on gene expression profiles. Subsequently, it integrates expression
profiles and ctaSNN to generate spot latent representations using a graph attention auto-encoder andmulti-scale deep subspace
clustering. Lastly, STMSGAL implements spatial clustering, differential expression analysis, and trajectory inference, providing
comprehensive capabilities for thorough data exploration and interpretation. STMSGAL was evaluated against sevenmethods
including SCANPY, SEDR, CCST, DeepST, GraphST, STAGATE, and SiGra, using four 10x Genomics Visium datasets, one mouse
visual cortex STARmap dataset, and two Stereo-seq mouse embryo datasets. The comparison showcased STMSGAL’s
remarkable performance across Davies-Bouldin, Calinski-Harabasz, S_Dbw, and ARI values. STMSGAL significantly enhanced
the identification of layer structures across ST data with different spatial resolutions, and accurately delineated spatial domains
in two breast cancer tissues, adult mouse brain (FFPE), andmouse embryos.
Conclusion: STMSGAL can serve as an essential tool for bridging the analysis of cellular spatial organization and disease
pathology, offering valuable insights for researchers in the field.

Key words: spatial transcriptomics; graph attention autoencoder; deep subspace clustering; multi-scale self-expression; self-
supervised learning; latent embedding feature learning; cell type-aware spatial neighbor network; differential expression analy-
sis; trajectory inference.

Background

The tissues in human body comprise various cell typeswhere each
cell type implements a particular function [1]. The activation of a
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Key Points

• A graph attention autoencoder is fully utilized to effectively integrate spatial locations and gene expression information by collec-
tively incorporating information between neighboring spots.

• Amulti-scale self-expressionmodule is explored to learn the associations between node representations in all encoder layers and
further obtain a more distinct self-expression coefficient matrix for mapping these features into a more precise subspace.

• A self-supervised learningmethod is designed to help spot latent feature learning by utilizing the clustering label as a supervisor.

cell is mainly affected by its surrounding environment [2, 3, 4, 5].
Exploring relative positions of these cells contributes to analyzing
cell-cell communication [6, 7, 8, 9] and their spatial organization
and disease pathology [10, 11, 12, 13]. The rapid advance of single-
cell RNA sequencing (scRNA-seq) technologies enables us to in-
vestigate the gene expression patterns of various cells within a tis-
sue/organ [14, 15, 16, 17, 18, 19, 20, 21, 22]. However, scRNA-seq
technologies fail to provide spatial location information [23]. In
contrast, spatial transcriptomics (ST) technologies provide a large
number of gene expression data and cellular location information
for a tissue and have witnessed tremendous development in the
past several years [24, 25, 26]. Based on the data generation ways,
ST technologies mainly contain image-based methods and next-
generation sequencing-based (NGS-based) methods [27].
Image-based methods use in situ sequencing or in situ hy-

bridization to retain spatial locations of cells and further ob-
tain RNA transcripts based on images from the stained tissues.
MERFISH [28] can detect gene expression information of about
40,000 human cells in a single 18-hour measurement. STARmap
[29] can capture more than 1,000 genes in the mouse cortex
through an error-robust sequencing-by-ligation approach. se-
qFISH+ [30] combined sequential hybridization and standard
confocal microscope-based imaging technique to obtain super-
resolution imaging andmultiplexing data for 10,000 genes.
NGS-based methods depend on the number of spatial bar-

codes before library preparation [31]. Slide-seq [32, 33] obtained
randomly barcoded positions through in situ indexing and cap-
tured mRNAs through depositing onto a slide. High-definition
ST (HDST) [34] replaced the glass slides using beads deposited
in wells. The DBiT-seq [35] technique utilized polyT barcodes
in the tissue section based on microfluidics. Stereo-seq [36]
obtained nanoscale resolution through randomly barcoded DNA
nanoballs. 10x Genomics Visium [37] demonstrated increased
resolution with 55µm in diameter and 100µm center-center and
sensitivity more than 10,000 transcripts per spot. It detected
more uniquemolecules for each spot comparedwith Slide-seq and
HDST.
Onemain challenge in ST data analysis is to capture spatial do-

mains with similar expression patterns. For example, the lami-
nar organization in human cerebral cortex has close relationship
with its biological functions. In this tissue, cells within different
cortical layers have different expressions, morphology and phys-
iology [38]. One efficient way to identify spatial domains is to
cluster ST data. These clustering methods are mainly fall into
two categories. The first category adopts conventional clustering
methods, for example, K-means clustering [39] and Louvain al-
gorithms [40]. These algorithms are susceptible to small size of
spots andsparsitydata, and thedetected clustersmaybediscontin-
uous in sections. The other category uses cell-type labels obtained
from scRNA-seq data to deconvolute spots [41, 42]. But this type
ofmethods can not analyze ST data from the perspective of the cel-
lular or subcellular resolution.
It is crucial to learn a discriminative representation for each

spot by combininggene expression and spatial contextswhenclus-
tering ST data. Recently, several clustering algorithms have been
developed to identify spatial domains. For example, BayesSpace

[43] assumed that spots belonging to the same cell type may be
closer each other and built a Markov random field model with
Bayesian approach. stLearn [44] first proposed a spatial morpho-
logical gene expression normalization algorithm to normalize ST
data, and then employed standard Louvain clustering approach
to partition broad clusters into several sub-clusters. SEDR [45]
exploited a deep autoencoder network to learn gene representa-
tions and adopted a variational graph autoencoder to embed spa-
tial information. CCST [46] explored a graph convolutional net-
work to transfer gene expression information as cellular embed-
ding vectors, and trained a neural network to encode cell embed-
ding features for clustering. STAGATE [47] developed a adaptive
graph attention autoencoder (GATE) [48] to accurately identify
spatial domains by integrating gene expression information and
spatial neighbor network. DeepST [49] incorporated gene expres-
sion, spatial context, and histology to model spatially embedded
representation and further capture spatial domains. GraphST [50]
integrated graph self-supervised contrastive learning and graph
neural network [51, 52] for spatial clustering, multi-sample in-
tegration, and cell-type deconvolution. ConGI [53] adopted gene
expression with histopathological images to accurately capture
spatial domains based on contrastive learning. STGIC [54] is a
graph and image-based spatial clustering method. It can gen-
erate pseudo-labels for spatial clustering while does not depend
on any trainable parameters. SPACEL [55] deconvoluted cell type
composition based on a multiple-layer perceptron, and identified
spatial domains via graph convolutional network and adversarial
learning, lastly constructed a 3D architecture for each tissue. PRE-
CAST [56] integrated a few ST datasets that have complex batch
effects and biological effects. SRTsim [57] is spatially resolved
transcriptomics-specific simulator for spatial clustering and ex-
pression pattern analysis. Tang et al. [58] developed an image-
augmented graph transformer for spatial elucidation. The meth-
ods mentioned above have significantly promoted the studies of
tissue physiology from cell-centroid to structure-centroid and are
state-of-the-art spatial clustering methods. Particularly, Yuan et
al. [59] considered that current computation-based ST cluster-
ing is lack of a comprehensive benchmark and have systematically
benchmarked a collection of 13 spatial clustering methods on 7 ST
datasets (34 ST data). Their work has provided guidance for future
progresses in the ST data analysis field.

Although the aforementioned clusteringmethods obtained im-
pressive performance, their learned latent node representation
failed to achieve the most useful information because they did not
use current clustering labels. In addition, some methods includ-
ing SEDR and CCST only used the representation in the final hid-
den layer of an encoder for clustering ST data, which failed to con-
sider helpful features in the other layers. Although graph atten-
tion autoencoder-based methods [60, 61] have elucidated better
performance in integrating node attributes and graph structure
information, they can not decipher the complex structures in ST
data or did not entirely employ features embedded in different lay-
ers. Moreover, some models did not utilize a clustering-oriented
loss functionwhile others did not fully use the clustering labels for
node representation learning. The problems produced the subop-
timal clustering results. Here, we introduce STMSGAL, an ST anal-
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ysis framework by combining graph attention autoencoder and
multi-scale deep subspace clustering network.

Materials andmethods

Overview of STMSGAL

As shown in Figure 1, STMSGAL is composed of three main steps.
(i) Spatial neighbor network construction. STMSGAL constructs a
spatial neighbor network (SNN) based on spatial contexts, and ob-
tains a cell type-aware SNN called ctaSNN through Louvain clus-
tering exclusively based on gene expression data. (ii) Latent em-
bedding feature learning. Itmainly comprises spot embedding fea-
ture matrix construction, subspace clustering combining multi-
scale self-expression coefficient learning and affinity matrix con-
struction, and spot robust latent feature learning based on self-
supervised learning. (iii) Biological applications. ST data are clus-
tered and differential expression analysis and trajectory inference
are implemented. Similar to STAGATE [47], STMSGAL still con-
structs a ctaSNN and embedding featurematrix using GATE. How-
ever, differed from STAGATE, STMSGAL adopt the multi-scale
deep subspace clustering algorithm to obtain cluster labels based
onmulti-scale information from each encoder layer for spots, and
then adopt a self-supervisedmodule to learn robust latent features
of spots with clustering information.

Datasets

Four available 10x Genomics Visium datasets, one mouse visual
cortex STARmap dataset, and two Stereo-Seq datasets are used
to evaluate the STMSGAL performance. The former four 10x Ge-
nomics datasets are from Adult Mouse Brain (FFPE) [62], Human
Breast Cancer (BlockA Section 1) [63], HumanBreast Cancer (Duc-
tal Carcinoma In Situ (DCIS)) [64], and Human dorsolateral pre-
frontal cortex (DLPFC) tissues [65]. The former two datasets have
no clustering labels and the latter two datasets are known to be
labeled. The Adult Mouse Brain (FFPE) dataset contains 2,264
spots and 19,465 genes. Human Breast Cancer (DCIS) dataset in-
cludes 3,798 spots and 36,601 genes. Human Breast Cancer (Block
A Section 1) dataset detects 2,518 spots and 19,743 genes. The
DLPFC dataset contains 12 tissue slices. It captures 33,538 genes
with different spot numbers ranged from 3,460 to 4,789 in each
slice. Each slice contains 5 to 7 regions by manually annotation
[38]. The mouse visual cortex STARmap dataset provides the ex-
pression information of 1020 genes from 1207 cells [29]. The
Stereo-Seq dataset [66] from mouse embryos at E9.5 is obtained
based on high-resolution full-transcriptome coverage technolo-
gies (i.e., Stereo-Seq technology). The number of spots and one of
genes are 5,913 and 25,568 (E9.5_E1S1) as well as 4,356 and 24,107
(E9.5_E2S2), respectively.

Spatial neighbor network construction

Data preprocessing
To preprocess ST data, first, spots outside main tissue regions are
removed. Next, raw gene expressions are log-transformed and
normalized based on library size through the SCANPY package
[67]. Finally, multiple highly variable genes are selected as inputs.

Cell type-aware SNN construction
To integrate the similarity between spots neighbor to a given spot,
similar to STAGATE [47], STMSGAL constructs an undirected
neighbor network based on a pre-defined radius r and spatial con-
texts. Let A denote an adjacency matrix of the constructed SNN,
Aij = 1when the Euclidean distance between two spots i and j is less
than r. For 10x Genomics Visium data, an SNN where each spot

contains six nearest neighbors is built. Next, self-loops are added
to each spot. Finally, the SNN is pruned based on pre-clustering
and a ctaSNN is constructed. Particularly, the pre-clustering of
spots is conducted by Louvain clustering [40] exclusively based on
gene expression profiles. The edges where two spots linking them
belong to different clusters are pruned.

Latent embedding feature learning

Wang et al. [68] presented amulti-scale graph attention subspace
clustering model and obtained superior performance on three
graph datasets and two real-world datasets. The clusteringmodel
fully explored the associations between node representations in all
encoder layers and obtained more accurate self-expression coeffi-
cient matrix. To more accurately cluster spots, in this section, we
utilize the multi-scale graph attention subspace clustering model
[68] to learn latent embedding features of spots. First, spot em-
bedding feature matrix in each encoder layer is constructed via
GATE. Second, spot cluster labels are obtained through subspace
clustering. Finally, spot robust latent features are learned by self-
supervised learning.

Embedding featurematrix construction
Similar to STAGATE [47], we use GATE to construct embedding
feature matrix. For spot i, an encoder with L layers takes its nor-
malized gene expressions xi as inputs to generate its embedding
features by collectively incorporating information of its neigh-
bors. Taking gene expressions as initial spot embeddings, that
is, h(0)i = xi, ∀i ∈

{
1, 2, · · · ,N

}
, the embedding of i in the k-th

(k ∈
{
1, 2, · · · , L – 1

}
) encoder layer is denoted by Eq. (1):

h(k)i = σ

∑
j∈Si

att(k)ij
(
Wkh

(k–1)
j

) (1)

where Wk, σ, Si, and att
(k)
ij denote the trainable weight matrix,

nonlinear activation function, a spot set that includes neighbors
of i in SNN and i itself, and weight of the edge between spot i and
spot j in the k-th graph attention layer, respectively. The output
z(k)i = h(k)i of the encoder is taken as the final spot embedding in
the encoder part. The L-th layer in the encoder does not use the
attention layer by Eq. (2):

h(L)i = σ
(
WLh

(L–1)
i

)
(2)

In the part of decoder, a decoder transforms the learned la-
tent embedding back into a normalized expression profile to re-
construct the spot features. Suppose that ĥ

(L)
i = Cz(L)i where C de-

note a self-expression matrix, and z(L)i denotes the embedding of
i in the L-th encoder layer. Next, Cz(L)i is feed into the decoder to
reconstruct the spot embeddings. In the k-th decoder layer, the
embedding features of spot i is constructed by Eq. (3):

ĥ
(k–1)
i = σ

∑
j∈Si

âtt(k–1)ij

(
Ŵkĥ

(k)
j

) (3)

The L layer in the decoder is denoted by Eq. (4):

ĥ
(0)
i = σ

(
Ŵ1ĥ

(1)
i

)
(4)

Its output is the reconstructed normalized expressions. In ad-
dition, we set Ŵk = Wk

T and âtt(k) = att(k) to avoid overfitting.
The attention mechanism is a one-layer feedforward neural



4 | GigaScience, 2024, Vol. 00, No. 0

network that is parametrized by a weight vector. A self-attention
mechanism [69] is used to compute the similarity between neigh-
boring spots by an adaptive way. In the k-th decoder layer, the
edge weight between spot i and its neighbor spot j is computed by
Eq. (5):

e(k)ij = Sigmoid(v(k)
T

s (Wkh
(k–1)
i ) + v(k)

T
r (Wkh

(k–1)
j )) (5)

where v(k)s and v(k)r are two trainableweight vectors. Next, the sim-
ilarity weights between spots are normalized by a softmax func-
tion by Eq. (6):

att(k)ij =
exp

(
e(k)ij

)
∑
j∈Si exp

(
e(k)ij

) (6)

The obtained weights are applied to further update the latent em-
bedding of spots in the encoder and decoder.
In addition, STMSGAL adopts a self-attention mechanism and

constructs a ctaSNN. Let attspatialij and attawareij denote the learned
spot similarity using SNN and ctaSNN, respectively, the final spa-
tial similarity is computedby combining the above twosimilarities
by Eq. (7):

attij =
(
1 – α

)
attspatialij + αattawareij (7)

whereα is a hyperparameter used toweigh the importance of SNN
and ctaSNN.
The reconstructed loss isminimized based on the residual sum

of squares by Eq. (8):

Latt = min
1
2

n∑
i=1

∥∥∥∥xi – ĥ(0)i ∥∥∥∥2
F

(8)

Particularly, weight decay equally imposes a penalty to the L2
norm, thus, the regularized loss is minimized. And the total loss
is represented as Eq. (9):

L1 = Latt +
1
2 ·

L–1∑
k=1

∥∥Wk∥∥2F (9)

Multi-scale deep subspace clustering
Differed from STAGATE [47], in this section, we adopt the multi-
scale deep subspace clustering algorithm to obtain cluster labels
based on multi-scale information from each encoder layer for
spots. The self-expression property of data greatly influences the
performance of subspace clustering. In a union subspace, each
data can be represented as a linear combination of the other data.
Thus, we use a multi-scale self-expressive module to obtain the
final self-expression coefficient matrix based on spot embedding
feature matrix: H(k) =

{
h(k)1 ,h

(k)
2 , · · · ,h

(k)
n

}
.

In deep subspace clustering network [70], a self-expression
layer is a full connection layer without bias and activation. And
its objection function is represented by Eq. (10):

min
C

∥C∥p +
1
2∥Z – CZ∥

2
F s.t. (diag(C) = 0) (10)

whereC indicates a self-expression coefficientmatrixused to build
an affinity matrix Λ for the following spectral clustering, Z indi-
cates the output feature matrix in the encoder, and ∥ · ∥p indicates
an arbitrary regularization norm.
Although deep subspace clustering obtains better clustering

performance, it fails to consider the multi-scale features exist-

ing in the other encoder layers. Here, we integrate the multi-
scale features to the original self-expression module. Given
the input normalized gene expressions in the i-th encoder layer
Z(k)

(
k = 1, 2, · · · , L

)
, the self-expression coefficientmatrixC(k) in

the k-th encoder layer can be computed by Eq. (11):

min
C(k)

1
2
∥∥∥Z(k) – C(k)Z(k)∥∥∥2

F
(11)

Next, the multi-scale self-expression matrix C(k) in different
layers is fused based on an adaptive approach by Eq. (12):

CF =
∑L
k=1 τk · C

(k)∑L
k=1 τk

(12)

where τk denotes a trainable variable used to balance the impor-
tance of each self-expressionmatrix.
Based on the obtained final self-expression matrix CF, deep

subspace clusteringmodel builds an affinitymatrixΛ for spectral
clustering [71] by Eq. (13):

Λ = 12
(∣∣CF∣∣ + ∣∣∣CTF ∣∣∣) (13)

Consequently, the clustering result Yclu can be obtained by
spectral clustering based onΛ.
Particularly, themulti-scale self-expression loss is represented

as Eq. (14):

Lmss = min
C(k)

1
2L ·

L∑
k=1

∥∥∥Z(k) – C(k)Z(k)∥∥∥2
F

s.t.
(
diag

(
C(k)

)
= 0

) (14)

Besides, a regularization loss is introduced to avoid C(k) too
sparse:

Lreg = min
C(k)

1
L ·

L∑
k=1

∥∥∥C(k)∥∥∥
p

s.t.
(
diag

(
C(k)

)
= 0

) (15)

Thus, the total loss inmulti-scale self-expressionmodule is de-
noted as Eq. (16):

L2 = Lmss + Lreg (16)

Spot robust latent feature learning
Furthermore, distinct from [47], we employ a self-supervised
module to learn spot robust latent features. First, spots are clas-
sified based on three full connection layers. Let the dimensions of
all full connection layers be denoted as

{
dL × D1 × D2 × D3 ×m

}
,

where dL denotes the dimension of Z(L), and D1, D2 and D3 denote
the dimensions of three full connection layers, respectively. We
obtain the classification results P ∈ Rn×m of n spots based on the
three full connection layers.
Next, we use the cross-entropy loss between the classifica-

tion results P and the clustering results Yclu to constrain self-
supervised learningmodule by Eq. (17):

L3 = Lsup = min
P
–
n∑
i=1

m∑
j=1
P(i, j) logYclu(i, j) (17)

where Yclu(i, j) denotes the j-th clustering label of spot i obtained
from spectral clustering, and P(i, j) denotes the j-th classification
label of spot i based on three full connection layers.
Finally, by integrating Eqs. (9), (14), (15), and (17), the total
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loss function of multi-scale GATE is denoted as Eq. (18):

Ltotal = min
(C,P,Z)

L1 + Lreg + λ · Lmss + Lsup (18)

whereλ is a tradeoff parameter used tomeasure the importance of
Lmss.

Biological application

STMSGAL first identifies spatial domains using Leiden cluster-
ing [72], Louvain clustering [40] or mclust clustering [73] based
on the obtained spot embedding feature matrix. Second, it im-
plements differential expression analysis using the t-test in the
Scanpy package. Finally, it conducts trajectory inference.

Spatial clustering
Based on the learned spot embedding featurematrix,weuse differ-
ent strategies to identify spatial domains. For the DLPFC dataset,
mclust clustering [73] is applied to spatial clustering. For other
datesets, Louvain or Leiden clustering [40, 72] is used to imple-
ment ST clustering.
In addition, although spot embedding feature matrix is ob-

tained by integrating both gene expressions and spatial contexts,
several spots may be incorrectly assigned to spatially diametrical
domains,whichmay causenoise and influencedownstreamanaly-
sis. To solve this problem, an optional optimization step is used to
further optimize spatial clustering results obtained from Louvain
clustering on the DLPFC dataset: for a given spot i, its surround-
ing spots within an r radius circle are taken as its neighbors. Next,
we reassign i to a spatial domainwith themost frequent label of its
neighbors. In addition, the clustering results are visualized using
UMAP [74].

Differential expression analysis
Differential expression analysis is one primary downstream anal-
ysis method on transcriptomic data [75, 76, 77]. It helps identify
biomarkers for novel cell types or detect gene signatures for cel-
lular heterogeneity, and further provides data for other secondary
analyses (such as gene set or pathway analysis, and network anal-
ysis). We use the t-test implemented in the SCANPY package [67]
to identify differentially expressed genes for spatial domains.

Trajectory inference
ST technologies help depict tissues and organisms in great de-
tail. Tracking the transcriptomic profiles of cells over time and
studying their dynamic cellular process contributes to the compu-
tational reconstruction of cellular developmental processes. Tra-
jectory inference enables us to better study the potential dynamics
of a query biological process, for example, cellular development,
differentiation, and immune responses [78]. It can detect a graph-
like structure existing in the dynamic process from the sampled
cells. Properties of cells are compared over pseudotime [79] by
mapping them to the captured structure. Trajectory inference al-
lows us analyze how cells evolve fromone cell state to another, and
when andhow should cellsmake cell fate decisions. In this section,
the PAGA algorithm [80] in the SCANPY package [67] is employed
to depict spatial trajectory. The obtained trajectory figures are vi-
sualized using the scanpy.pl.paga_compare() function.

Results

Experimental setting

In STMSGAL, both encoder and decoder with the activation func-
tion of exponential linear unit (ELU) [81] were neural networks
with two graph attention layers, where the number of neurons is

512 and 30, respectively. The Adam optimizer [82] was employed
tominimize their reconstruction loss. In the self-supervisedmod-
ule, the activation function was set to rectified linear units (ReLu)
[83]. For Louvain clustering, the radius r was set to 50 when
STMSGAL obtained the best clustering performance on the DLPFC
dataset.
STMSGAL adopted the same data preprocessing as those of

SCANPY. Both of themused log-normalized, constructed the near-
est neighbor network. SCANPY obtained spatial clustering with
the scanpy.tl.louvain() function. Table 1 shows parameter settings
of STMSGAL on five ST datasets. For each dataset with labels, the
resolution parameter was tuned manually to ensure the cluster
number was equal to the ground truth. Thus, the cluster number
in each method was set to the same as one of ground truth layers.
For other clustering methods, we adopted their default settings.

Evaluationmetrics

For three datasets with labels (Human Breast Cancer (Block A Sec-
tion 1), DLPFC, and mouse visual cortex STARmap), we employed
adjusted rand index (ARI) [84] to evaluate the performance of dif-
ferent spatial clustering algorithms. ARI computes the similarity
between thepredicted clustering labels and reference cluster labels
by Eq. (19):

ARI = RI – E[RI]
max(RI) – E[RI]

(19)

where the unadjusted rand index RI = (a + b)/C2n where a and b
indicate the number of pairs correctly labeled in the same dataset
and not in the same dataset, respectively. C2n indicates the total
number of possible pairs. E[RI] indicates the expected RI based on
random labeling. A higher ARI score denotes better performance.
For two datasets whose spatial domain annotations are un-

available (Adult Mouse Brain (FFPE) and Human Breast Cancer
(DCIS)), we evaluated the performance of spatial clustering algo-
rithms based on three clustering metrics, that is, Davies-Bouldin
(DB) score [85], Calinski-Harabasz (CH) score [86], and S_Dbw
score [87, 88]. DB was computed by averaging all cluster similar-
ities where the similarity between each cluster and its most sim-
ilar cluster was taken as its cluster similarity. And the similarity
was computed by the ratio of within-cluster distances to between-
cluster distances. CH is used to measure the cluster validity by av-
eraging the squares of within- and between-cluster distance sum
of all spots. S_Dbw evaluate intraclass compactness and interclass
density of each spot. Small DB and S_Dbw and large CH indicate
the optimal cluster clustering.

Performance comparison of STMSGAL with six other
methods on two datasets without labels

To investigate the clustering performance of STMSGAL, we com-
pared it with five other clustering algorithms, that is, SCANPY
[67], SEDR [45], CCST [46], STAGATE [47], DeepST [49], and
GraphST [50] on two 10xGenomics Visiumdatasetswithout labels
(i.e., Adult Mouse Brain (FFPE) and Human Breast Cancer (DCIS)).
The former one method obtained broad applications in single-
cell clustering, and the remaining five methods were widely ap-
plied to spatial clustering. Table 2 shows the DB, CH, and S_Dbw
scores computed by STMSGAL and other methods on the above
two datasets. The best performance in each column was denoted
using the bold font. The results demonstrated that STMSGAL com-
puted the smallest DB and S_Dbw and the highest CH on Adult
Mouse Brain (FFPE), and the highest CH and the smallest S_Dbw
onHumanBreast Cancer (DCIS), suggesting its optimal clustering
performance.
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STMSGAL demonstrates robust clustering performance
across ST datasets with different spatial resolutions

To evaluate the STMSGAL performance on spatial domain identifi-
cation, we compared it with existing seven state-of-the-artmeth-
ods on 4DLPFC sections. Particularly, in complex networks, nodes
are clustered into relatively dense communities through the clus-
tering algorithm. Louvain clustering is a nonspatial clustering
algorithm. It assigns each spot to significantly differential com-
munity and achieves the desired clusters by iteratively merging
and splitting communities. It exhibits powerful clustering perfor-
mance than spectral clustering when clustering ST data, such as
DLPFC. Thus, we used the Louvian clustering for performing clus-
tering again on DLPFC.
Moreover, the DLPFC dataset provides high resolution images

and satisfies the need of spatial clustering methods including
SiGra that must combine high resolution images for clustering
ST data. The results elucidated that spatial domains captured
by STMSGAL were consistent with manual annotation on human
DLPFC sections and the definition of cortical stratification in neu-
roscience (Figure 2).
In addition, STMSGAL effectively captured the expected corti-

cal layer structures and significantly improved spatial clustering
performance in comparisonwith SCANPY, SEDR, CCST, STAGATE,
SiGra, DeepST, and GraphST (Figure 2 and Supplementary Figure
S1). For average ARIs, STMSGAL achieved the best performance
(Figure 2B). In the DLPFC section 151509, STMSGAL clearly de-
picted the layer borders and obtained the best average ARI of 0.511.
In the section, although the clustering results of SCANPY roughly
adhered to the expected layer structures, its cluster boundary was
discontinuouswithmanynoises,whichgreatly influenced its clus-
tering accuracy. Moreover, SCANPY is a non-spatial clustering al-
gorithm, andSEDR, CCST,DeepST, STAGATE, SiGra, andGraphST
are spatial clustering algorithms. Interestingly, the performance
of the above six spatial clustering algorithms especially STMSGAL
is better than the clusteringmethod, elucidating STMSGAL’s pow-
erful spatial domain identification ability (Figure 2C).
STMSGAL manifested the distance between spatial domains

and characterized the spatial trajectory in aUMAPplot [74] by inte-
grating spatial contexts. For example, in theDLPFCsection 151509,
the UMAP plots delineated by STMSGAL embeddings elucidated
well-organized cortical layers and consistent spatial trajectories,
which was in accord with functional similarity between adjacent
cortical layers and the chronological order [89]. Furthermore, in
the UMAP plots delineated by SCANPY embeddings, spots that be-
long to different layerswere not clearly dividedwhile GraphST and
STMSGALcouldwell dividemost spots intodifferent layers (Figure
2D). Finally, we used a trajectory inference approach named PAGA
[80] to verify the inferred trajectory. The PAGA graphs depicted by
both STMSGALandGraphST embeddingshad a approximately lin-
ear development trajectory from layer 1 to layer 6. In addition, the
identified adjacent layers by STMSGAL and GraphST showed sim-
ilarity while ones from SCANPY embeddings were mixed (Figure
2D).
We further evaluated the performance STMSGAL on themouse

visual cortex STARmap dataset, which is an image-based ST
dataset at single-cell resolution and is generated by the STARmap
technique [29]. mclust is a widely-used R package applied to
model-based clustering through finite Gaussian mixture mod-
elling. It is more suitable to single-cell resolution data with fewer
samples, such as mouse visual cortex STARmap dataset. Thus,
we used mclust for performing clustering again on STARmap. Us-
ing the gold standard annotated by experts, as shown in Figure
3, STMSGAL obtained the best ST clustering performance with
ARI of 0.568 compared to SCANPY, SEDR, CCST, STAGATE, and
GraphST, while STAGATE achieved the second-best ranking with
ARI of 0.563 (Figure 3).
We also validated the performance of STMSGAL for identifying

tissue structures on theStereo-seqdataset frommouse embryos at
E9.5. Tissue domain annotations ofmouse embryoswere obtained
from Ref. [66].
We investigated the clustering results of STAGATE, GraphST,

and STMSGAL on the E9.5_E1S1 embryo. As shown in Figure 4A,
although the original annotation had 12 reference clusters, we set
the number of clusters in our testing to 20 to acquire a higher res-
olution of tissue segmentation. The clusters identified by both
STAGATE and STMSGALmatched the annotation well (Figure 4B).
As shown in Table 3, however, compared to STAGATE, STMSGAL
computed the smallest DB and S_Dbw and the highest CH.
Moreover, we compared the clustering results of STAGATE,

GraphST, and STMSGAL on the E9.5_E2S2 mouse embryo. Here,
we set the number of clusters to 13, matching the original anno-
tation (Figure 4C). The results demonstrated that STMSGAL com-
puted the smallest DB and S_Dbw and the highest CH (Table 3).
STAGATE produced more smoother clusters but failed to reveal
anyfine-grained tissue complexity (Figure 4D). For example, STA-
GATE failed to identify cavity in the brain (domain 2). In contrast,
STMSGAL’s clusters better matched the annotated regions.

STMSGAL can accurately dissect spatial domains on two
breast cancer tissues

Differed from the cerebral cortex with clear and known morpho-
logical boundaries, breast cancer tissues are remarkably heteroge-
neous and consist of complex tumor microenvironment. Conse-
quently,manually labeling cancer data only via tumormorphology
can not fully depict the complexity. Thus, we utilized STMSGAL
to find spatial domains on two 10x Genomics Visium datasets with
respect to Human Breast Cancer (Block A Section 1) and Human
Breast Cancer (DCIS).
Particularly, Louvain clusteringmay produce arbitrarily badly-

connected communities. In the worst case, the obtained com-
munitiesmay even be discontinuous, especially when performing
clustering iteratively. Moreover, due to the limitation of resolu-
tion, smaller communities may be clustered into larger communi-
ties. That is, smaller communities may be hidden and cause that
the obtained communities contain significant substructures.
Leiden clustering is a modified version of Louvain clustering

and can yield well-connected communities based on the smart lo-
cal move strategy. Cancer tissues with tumor heterogeneity con-
tain many small substructures. Thus, we used the Leiden cluster-
ing for cancer tissues with tumor heterogeneity, such as Human
Breast Cancer.
Human Breast Cancer (Block A Section 1) data have obvious in-

tratumoral and intertumoral differences. It was manually anno-
tated by SEDR [45] (Figure 5A) and was divided into 20 regions. It
contains 4 main morphotypes: Ductal Carcinoma in Situ/Lobular
Carcinoma in Situ (DCIS/LCIS), Invasive Ductal Carcinoma (IDC),
tumor surrounding regions with low features of malignancy (Tu-
mor edge), and healthy tissue (Healthy).
We compared the clustering accuracy of STMSGAL with

SCANPY [67], SEDR [45], CCST [46], STAGATE [47], DeepST [49],
and GraphST [50] in terms of average ARI. The results show that
STMSGAL computed the best ARI, significantly outperforming
five other clustering methods (Figure 5B).
Figure 5C shows spatial domains identified by SCANPY, SEDR,

CCST, STAGATE, DeepST, GraphST and STMSGAL. The results
demonstrate that the identified domains by STMSGALwerehighly
consistent with manual annotations in Figure 5A and had more
regional continuity. In addition, compared with other methods,
STMSGAL obtained the best clustering accuracy with ARI of 0.606.
Furthermore, STMSGAL identified several sub-clusterswithin the
tumor regions, such as spatial domains 4 and 13 (Figure 5D). Fur-
thermore, STMSGAL identified some spatial domains with low
heterogeneity (i.e., healthy regions) that were remarkably consis-



Zhou et al. | 7

tent with the manual annotations in Figure 5A.
We also analyzed intratumoral transcriptional differences

among domain 1 (DCIS/LCIS), 4, and 13 (IDC) based on differen-
tial expression analysis (Figure 4E). In domain 1, we identified
three differentially expressed genes, that is, CPB1, COX6X, and
IL6ST. CPB1 can obviously differentiate DCIS from the other sub-
types of breast cancer [90]. COX6Xmayhelp the differentiation be-
tween estrogen receptor-positive and estrogen receptor-negative
subtypes [91]. The expression of IL6ST closely associates with a
lower risk of invasion,metastasis and recurrence [92]. In domains
4 and 13, two differentially expressed genes IGFBP5 and CRISP3
have dense linkages with the treatment of mammary carcinoma
[93, 94]. The knockdown of CRISP3 can greatly inhibit the migra-
tion and invasion of mammary carcinoma cells and ERK1/2 MAPK
signaling pathway. CRISP3 was also considered a marker for clin-
ical outcomes in the mammary carcinoma patients [93]. IGFBP5
helps manage tamoxifen resistance in breast cancer [94]. The
above results suggested that STMSGALcanaccurately identify spa-
tial regions with different biological functions.
We further investigated ST data on Human Breast Cancer

(DCIS). Figure 6A gives its manually annotated areas. STMSGAL
identified more fluent and continuous regions than other algo-
rithms and better matched the annotated areas (Figure 6B, Sup-
plementary Figure S2 and Table 2). Figure 6D lists the top 3 differ-
entially expressed genes (i.e., AZGP1, CD24, and ERBB2) in domain
0 (Figure 6C). The expression of AZGP1 determines the histologic
grade of tumours in breast cancer [95]. CD24 is a key indicator of
triplenegative breast cancer [96, 97, 98]. In particular, the overex-
pression of ERBB2 categorizes ERBB2/HER2-positive, a subclass of
breast cancer. The subclass accounts for about 20-30% among all
types of breast malignancies and is usually linked to poor progno-
sis [99]. Targeting ERBB2 contributes to the treatment of ERBB2-
positive breast cancers [100].

STMSGAL helps to better delineate the similarity be-
tween neighboring spots on Adult Mouse Brain (FFPE)

STMSGAL was still applied to provide insights into more complex
tissues on a 10x Genomics Visium dataset fromAdult Mouse Brain
(FFPE) (Figure 7 and Supplementary Figure S3). Figure 7A shows
spatial domains identified by SCANPY, DeepST, STAGATE, and
STMSGAL. In the hippocampal region, the clustering results gen-
erated by SCANPY roughly separated the brain tissue structures
composed of different cell types but failed to capture small spa-
tial domains. SCANPY did not observe the “cord-like” structure
(i.e., Ammon’s horn) and the “arrow-like” structure (i.e., dentate
gyrus) within the hippocampus. DeepST only smoothed the spa-
tial domain boundaries, but failed to delineate small spatial do-
mains. STMSGAL without ctaSNN captured the Ammon’s horn,
but did not characterize smaller spatial domains. However, STMS-
GAL with ctaSNN clearly identified both the Ammon’s horn and
dentate gyrus structures in the hippocampus, in accord with an-
notations about the hippocampus structures from the Allen Ref-
erence Atlas [101] (Figure 7B). The above results suggested that
STMSGAL significantly improved spatial domain identification.
Furthermore, even for ST data composed of heterogeneous cell
types with low spatial resolution, STMSGAL with ctaSNN can still
accurately decipher the spatial similarity.
Additionally, the expressions of multiple known gene mark-

ers validated the cluster partitions of STMSGAL (Figure 7C and
Supplementary Figure S4). For example, C1ql2 was highly ex-
pressed on the identified DG-sg region [102]. Hpca, that medi-
ates calcium-dependent translocation of brain-type creatine ki-
nase in hippocampal neurons, was highly expressed in the Am-
mon’s horn region [103]. Notably, STMSGAL also captured sev-
eral well-separated spatial domains and deciphered their spatial
expression patterns based on differential expression analysis. Do-

main 15 within the hippocampus except for the “cord-like” and
“arrow-like” structures delineated high expressions of two astro-
cytes genemarkersMt2 and Gfap [104]. The spatial domain 14 sur-
rounding the hippocampal expressed multiple oligodendrocytes-
related genemarkers including Trf andMbp [105] (Supplementary
Figure S4). The above results elucidated that STMSGAL can ef-
ficiently detect spatial heterogeneity and further decompose spa-
tial expression patterns. Notably, the cell type-aware module ob-
viously boosted the partition of tissue structures on Adult Mouse
Brain (FFPE) based on its UMAP plot [74] while those of DeepST
wasmore like a smoothversionof thenon-spatialmethodSCANPY
(Figure 7D).
Finally, all attention layers of STMSGAL with ctaSNN were vi-

sualized. In each layer, nodes were arranged based on spot spa-
tial locations, and edges were colored by corresponding weights.
The results demonstrated that the combination of attentionmech-
anism and ctaSNN boosted the characterization of the boundaries
of main tissue structures on Adult Mouse Brain (FFPE) (such as
the cortex, hippocampus, and midbrain) (Figure 7E). Collectively,
attention mechanism and ctaSNN contributed to delineating the
similarity between neighboring spots (Figure 7E).

Ablation study

In our STMSGAL method, the combination of graph attention
autoencoder (GATE) and multi-scale deep subspace clustering
aims to obtain multi-scale feature information of spots. The self-
supervised module aims to learn robust latent features with clus-
tering information for each spot.
To justify the contribution and necessity of these components,

we conducted the ablation study to further investigate the ef-
fects of GATE, multi-scale deep subspace clustering, and the
self-supervised module on spatial clustering performance on the
DLPFC sections from 151507 to 151510. As shown in Table 4, L1
denotes the reconstruction loss of normalized expressions based
on GATE. L2 denotes the loss of the multi-scale deep subspace
clustering module, which contains regularization loss Lreg and
multi-scale self-expression lossLmss, andL3 is the loss of the self-
supervised module.
From Table 4, we found that both the multi-scale deep sub-

space clustering module and the self-supervised module cooper-
ated well with GATE and greatly improved the clustering perfor-
mance. The results demonstrated that the self-supervised mod-
ule, which utilized the clustering labels to self-supervise the learn-
ing of spot embeddings, obtained more accurate clustering ability.
And themulti-scale deep subspace clusteringmodule fully utilized
the embeddedmulti-scale information andmanifested an obvious
effect on spatial clustering, suggesting that a proper clustering-
oriented loss function can efficiently enhance the clustering per-
formance.
Moreover, to analyze the effect of the multi-scale strategy

on spatial clustering performance, we compared the difference
between individual self-expression layers and multi-scale self-
expression layers. Table 5 gives the ARI values of STMSGAL with
the multi-scale strategy or not on the DLPFC section from 151507
to 151510. We applied a controlled variable approach to make the
rest modules the same. The results indicated that the perfor-
mance of STMSGALwith themulti-scale strategy was better than
one from single self-expression layer on the four DLPFC sections,
verifying that the multi-scale strategy fully utilized the embed-
ding features in different layers. In addition, the adaptive fusion
method still significantly improved the spatial clustering perfor-
mance.
Since some spots could be erroneously assigned to spatially dia-

metrical domains and cause noises during spot embedding feature
learning, we used an additional optimization step to further opti-
mize spatial clustering results obtained from Louvain clustering
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on the DLPFC dataset.
To further investigate the effect of the additional optimization

step on the spatial clustering performance, we compared the per-
formance of STMSGAL with the additional optimization step or
not on Sections 151507 to 151510 of DLPFC. Table 6 gives the ARI
values of STMSGAL with the additional optimization step or not
on DLPFC. The results demonstrated that STMSGAL with the ad-
ditional optimization step significantly outperformed STMSGAL
without the step. Thus, the additional optimization step couldhelp
spatial clustering.
Whenperforming clustering again,weusedLouvian clustering

on DLPFC, Leiden clustering on Human Breast Cancer, andmclust
on STARmap. To analyze why to use different clustering algo-
rithms on different datasets, we conducted ablation experiments
on the above three datasets. Tables 7-8 demonstrated ablation
analysis results based on different clustering methods when per-
forming clustering again onDLPFC 10xGenomics Visiumdatasets,
STARmap, and Human Breast Cancer (Block A Section 1), respec-
tively. The results demonstrated that STMSGAL significantly im-
proved ST clustering accuracy when using Louvian clustering on
DLPFC, Leiden clustering on Human Breast Cancer, andmclust on
STARmap.

Discussion

Accurately detecting spatial domains and identifying differentially
expressed genes can greatly boost our understanding about tissue
organization and biological functions. In this manuscript, we de-
veloped a spatial domain identification framework called STMS-
GAL based on GATE and multi-scale deep subspace clustering.
STMSGAL can been accurately incorporated to the standard analy-
sis pipeline by using the “anndata” object in the SCANPY package
[67] as inputs.
Differed from classical autoencoders, STMSGAL utilized an at-

tention mechanism in multiple hidden layers of the encoder and
decoder. First, it constructed ctaSNN through Louvain cluster-
ing exclusively based on gene expression profiles. The weights of
edges in the ctaSNN depicted the similarity between neighboring
spots and were adaptively learned. Next, it integrated expression
profiles and the constructed ctaSNN to formspot latent embedding
representation based on GATE. It mainly includes spot embedding
feature matrix construction, subspace clustering combining self-
expression coefficient learning and affinity matrix construction,
spot robust latent feature learning based on self-supervised learn-
ing. Finally, it implemented biological applications including spot
clustering, differentially expression analysis, and trajectory infer-
ence.
In theSTMSGALmethod, themulti-scale self-expressionmod-

ule was used to fully explore the associations between spot rep-
resentations in all encoder layers. The deep subspace cluster-
ing module was utilized to obtain the clustering labels for each
spot through a clustering-oriented loss function. And the self-
supervised module was introduced to effectively learn spot latent
representation. The combination of the above threemodules helps
to learn more discriminative features with clustering information
for each spot. And then the obtainedmore discriminative features
with clustering information was used to be as the input of spectral
clustering and conduct the final clustering.
Traditional subspace clustering mainly contains two proce-

dures: constructing affinity matrix through representation learn-
ing and spectral clustering. However, the spectral clustering is
sensitive to the construction of similarity matrix and the selec-
tion of various parameters. But the Leiden/Louvain/mclust clus-
teringmethods aremore appropriate to biological data and exhibit
powerful spatial clustering performance. Consequently, the Lei-
den/Louvain/mclust clustering has beenwidely used in the field of
spatial clustering. Thus, our proposed STMSGAL framework used

Leiden/Louvain/mclust for performing clustering again to identify
spatial domains after obtainingmore discriminative features with
clustering information based on multi-scale deep subspace clus-
tering.
We compared the performance of STMSGAL with seven other

clustering methods on four 10x Genomics Visium datasets from
Adult Mouse Brain (FFPE), Human Breast Cancer (DCIS), Human
Breast Cancer (Block A Section 1), and the DLPFC tissues, as well
as one mouse visual cortex STARmap dataset. The seven compar-
ison methods include SCANPY, GraphST, SEDR, CCST, STAGATE,
DeepST, and SiGra. The SCANPYhas beenwidely applied to single-
cell clustering. The remaining are state-of-the-art spatial cluster-
ing methods. The results demonstrated that our proposed STMS-
GAL method obtained impressive performance over other com-
peting methods in terms of four evaluation metrics (i.e., DB, CH,
S_Dbw, and ARI). STMSGAL significantly improved the identifica-
tion of layer structures in four DLPFC sections, mouse visual cor-
tex STARmap data, andmouse embryos data, accurately dissected
spatial domains on two breast cancer tissues, and efficiently de-
picted the similarity between neighboring spots on Adult Mouse
Brain (FFPE).
STMSGAL greatly boosted ST data analysis. It may be mainly

attributed to the following features: First, although existingmeth-
ods (such as stLearn) took histological images as inputs, they
achieved limited performance. For example, stLearn adopted a
pre-trained neural network to obtain spot features from images
and further computed their morphological distances via cosine
distance. However, the pre-defined strategy in stLearn was not
flexible and resulted in its poor spatial clustering performance. In
contrast, STMSGALadopted anattentionmechanismto adaptively
integrate spatial locations and gene expression profiles.
Second, a multi-scale self-expression module was designed to

train a self-expression coefficient matrix in different encoder lay-
ers. SEDR and CCSTmerely adopted the representations in the en-
coder final hidden layer for spatial clustering tasks, wastingmuch
useful information embedded in its other layers. Comparatively,
themulti-scale self-expressionmodule fully explored the associa-
tions between node representations in all encoder layers. Thus, it
fully adopted the embeddedmulti-scale information and obtained
a more distinct self-expression coefficient matrix. Furthermore,
it mapped these features into a more precise subspace for spatial
clustering.
Finally, deep subspace clustering module was proposed to ob-

tain the clustering labels with a clustering-oriented loss function.
And a self-supervised module was introduced to effectively guide
spot latent representation learning. Thus, the learned spot latent
embedding representation greatly improved the clustering perfor-
mance.
In summary, STMSGAL is a powerful spatial clustering frame-

work that constructs an integrated representation for spots by ag-
gregating both transcriptomic data and spatial context. STMSGAL
derived low-dimensional embedding, enabling to conduct spatial
clustering and trajectory inference more accurately. Moreover,
STMSGAL facilitates to decipher new principles in spatially orga-
nized context.
Although STMSGAL achieved accurate spatial clustering per-

formance, the deep subspace clustering algorithm can be further
developed. In the near future, motivated by the linkages between
spatial domain identification and single-cell segmentation used to
image-based ST data, we anticipate that STMSGAL can be further
extended for single-cell segmentation task applied to the subcellu-
lar resolution technologies. We also hope to enhance its applicabil-
ity on other datasets generated by new sequencing technologies.
Moreover, self-supervised learning can effectively learn spot

representations, but optimizing the spot representations by com-
bining the pseudo labels can affect the convergence of the model.
The contrastive learning algorithm is a promising paradigm of the
self-supervised learning model. In the future, we will introduce
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contrastive learning to facilitate spot representation learning and
spatial clustering.
Finally, the accumulation of STdata generates spatial omics big

data,whichposemany technical challenges todata integrationand
analysis. To enable STMSGAL to deal with larger datasets, we will
further alleviate the computational burden of STMSGAL using a
graph convolutional networkmini-batch or parallel techniques to
construct large-scale graphs for spatial omics data.

Availability of source code and requirements

• Project name: STMSGAL
• Project home page: https://github.com/plhhnu/STMSGAL
• Operating system(s): Platform independent
• Programming language: Python
• License: MIT license for the code, Creative Commons CC0
1.0 Public Domain Dedication for the filtered spatial transcrip-
tomic data

• RRID: SCR_025422
• biotools: stmsgal

Additional Files

Supplementary Figure S1. Comparison of spatial domains identi-
fied by SCANPY, SEDR, CCST, DeepST, STAGATE, SiGra, GraphST,
and STMSGAL, and manual annotations in 3 sections of human
DLPFC tissues.
Supplementary Figure S2. Cluster assignments generated by

SCANPY, SEDR, CCST, STAGATE, DeepST, GraphST, and STMS-
GAL on Human Breast Cancer (Ductal Carcinoma In Situ (DCIS)).
Supplementary Figure S3. Cluster assignments generated by

SCANPY, SEDR, CCST, STAGATE, DeepST, GraphST, and STMS-
GAL on Adult Mouse Brain (FFPE).
Supplementary Figure S4. Visualizations of spatial domains

and expressions of the corresponding marker genes identified by
STMSGAL with Louvain clustering on adult mouse hippocampus
tissue.

Data availability

Source codes and datasets of STMSGAL are available in the GitHub
repository [106]. Specifically, the DLPFC dataset is accessible
within the spatialLIBD package [65]. The Adult Mouse Brain
(FFPE), Human Breast Cancer (DCIS) and Human Breast Cancer
(Block A Section 1) datasets are collected from the 10x Genomics
website [62, 63, 64]. An archival copy of the code and supporting
data is also available via the GigaScience repository, GigaDB [107].
DOME-ML (Data, Optimization,Model and Evaluation inMachine
Learning) annotations are available via a link in GigaDB [107].
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Table 1. Parameter settings
Datesets Parameter settings

DLPFC

rad_cutoff = 150
cost_ssc = 0.1
α = 0
method = ’Louvain’

Human Breast Cancer
(Block A Section 1)

rad_cutoff = 300
cost_ssc = 1
α = 0.7
method = ’leiden’

Adult Mouse Brain
(FFPE)

rad_cutoff = 300
cost_ssc = 0.1
α = 0.5
method = ’Louvain’

Human Breast Cancer
(DCIS)

rad_cutoff = 300
cost_ssc = 1
α = 0.5
method = ’Louvain’

Mouse visual cortex

rad_cutoff = 400
cost_ssc = 0.1
α = 0
method = ’mclust’

Stereo-seq mouse embryo

rad_cutoff = 3
cost_ssc = 0.1
α = 0
method = ’Louvain’

Table 2. Performance comparison of STMSGAL with six other cluster-
ing methods on Adult Mouse Brain (FFPE) and Human Breast Cancer
(Ductal Carcinoma In Situ (DCIS)).

Datasets Methods Metrics
DB CH S_dbw

Adult Mouse Brain (FFPE)

SCANPY 1.442 358.67 0.481
SEDR 1.951 84.569 0.652
CCST 1.173 507.421 0.453
DeepST 1.166 842.033 0.328
STAGATE 1.467 495.547 0.427
GraphST 1.470 310.860 0.501
STMSGAL 1.155 1010.724 0.311

Human Breast Cancer (DCIS)

SCANPY 2.069 379.084 0.593
SEDR 2.627 54.778 0.742
CCST 1.469 507.421 0.453
DeepST 1.263 611.567 0.48
STAGATE 1.916 430.630 0.587
GraphST 1.951 369.594 0.610
STMSGAL 1.451 1190.850 0.332

*The bold font indicates the best performance in each column. Lower
Davies-Bouldin (DB) and S_Dbwand higher Calinski-Harabasz (CH) denote
better performance.

Table 3. Performance comparison of STMSGAL with STAGATE and
GraphST on the Stereo-seq mouse embryos.

Datasets Methods Metrics
DB CH S_dbw

E9,5_E1S1
STAGATE 1.579 582.733 0.585
GraphST 1.396 686.177 0.549
STMSGAL 1.957 1915.695 0.355

E9,5_E2S2
STAGATE 1.708 603.290 0.608
GraphST 1.686 563.371 0.632
STMSGAL 1.861 1171.402 0.488

*The bold font indicates the best performance in each column. Lower
Davies-Bouldin (DB) and S_Dbwand higher Calinski-Harabasz (CH) denote
better performance.

Table 4. Ablation study on different loss terms.

Datasets Loss Function ARI
L1 L2 L3

151507
◦ × × 0.508
◦ ◦ × 0.518
◦ ◦ ◦ 0.533

151508
◦ × × 0.405
◦ ◦ × 0.444
◦ ◦ ◦ 0.473

151509
◦ × × 0.392
◦ ◦ × 0.447
◦ ◦ ◦ 0.511

151510
◦ × × 0.437
◦ ◦ × 0.442
◦ ◦ ◦ 0.452

*The bold type indicates the best performance in each column.

Table 5. Ablation study on the multi-scale strategy.

Datasets Strategy ARI

151507 Without the multi-scale strategy 0.485
With the multi-scale strategy 0.533

151508 Without the multi-scale strategy 0.394
With the multi-scale strategy 0.473

151509 Without the multi-scale strategy 0.437
With the multi-scale strategy 0.511

151510 Without the multi-scale strategy 0.407
With the multi-scale strategy 0.452

*The bold type indicates the best performance in each column.

Table 6. Ablation study on the additional optimization step.

Datasets Strategy ARI

151507 Without the additional optimization step 0.509
With the additional optimization step 0.533

151508 Without the additional optimization step 0.450
With the additional optimization step 0.473

151509 Without the additional optimization step 0.484
With the additional optimization step 0.511

151510 Without the additional optimization step 0.430
With the additional optimization step 0.452

*The bold type indicates the best performance in each column.

Table7. Ablationanalysisunderdifferent clusteringmethodsonDLPFC
10x Genomics Visium datasets.

Methods Datasets Average ARI151507 151508 151509 151510
Louvain clustering 0.533 0.473 0.511 0.452 0.492

mclust 0.520 0.475 0.354 0.403 0.438
Leiden clustering 0.511 0.489 0.471 0.393 0.469
subspace clustering 0.216 0.325 0.395 0.284 0.294

*The bold type indicates the best performance in each column.

Table 8. Ablation analysis under different clustering methods on
STARmap and Human Breast Cancer (Block A Section 1).

Datasets Methods ARI

STARmap

Louvain clustering 0.282
mclust 0.568

Leiden clustering 0.273
subspace clustering 0.067

Human Breast Cancer
(Block A Section 1)

Louvain clustering 0.534
mclust 0.512

Leiden clustering 0.606
subspace clustering 0.588

*The bold type indicates the best performance in each column.
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Figure 1. Pipeline for clustering ST data based on GATE and deep subspace clustering network. (i) Spatial neighbor network construction. (ii) Latent embedding feature
learning. (iii) Biological applications.
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Figure 2. STMSGAL improves the identification of layer structures in the DLPFC tissue. (A) Ground-truth segmentation of 6 cortical layers and one white matter layer in
the DLPFC section 151509. (B) Boxplots of ARI computed by STMSGAL and other seven methods in the DLPFC sections, from 151507 to 151510. (C) Cluster assignments
generated by SCANPY, SEDR, CCST, STAGATE, DeepST, GraphST, SiGra and STMSGAL in the DLPFC section 151509. (D) UMAP visualizations and PAGA graphs generated
by SCANPY, GraphST, and STMSGAL embeddings in the DLPFC section 151509.
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Figure 3. Spatial domains identified by SCANPY, SEDR, CCST, STAGATE, GraphST, STAGATE, and STMSGAL in the mouse visual cortex STARmap dataset.
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DC STMSGALAnnotation STAGATE GraphST

Figure 4. STMSGAL improves accurately identification of different organs in the Stereo-seqmouse embryo. (A) Tissue domain annotations of the E9.5_E1S1mouse embryo
data. (B) Cluster assignments generated by STAGATE, GraphST, and STMSGAL on E9.5_E1S1 mouse embryo data. (C) Tissue domain annotations of the E9.5_E2S2 mouse
embryo data. (D) Cluster assignments generated by STAGATE, GraphST, and STMSGAL on the E9.5_E2S2mouse embryo data.
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Figure 5. STMSGAL can accurately dissect spatial domains on Human Breast Cancer (Block A Section 1). (A) Manual pathology labeling via the H&E staining. (B) The
average ARI values computed by SCANPY, SEDR, CCST, STAGATE, DeepST, GraphST, and STMSGAL on Human Breast Cancer (Block A Section 1). (C) Cluster assignments
generated by SCANPY, SEDR, CCST, STAGATE, DeepST, GraphST, and STMSGAL on Human Breast Cancer (Block A Section 1). (D) Spatial domains identified by STMSGAL.
(E)Heatmap of the top 5 differentially expressed genes of domains 1, 4, and 13 on Human Breast Cancer (Block A Section 1).
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Figure 6. STMSGAL can accurately dissect spatial domains on Human Breast Cancer (DCIS). (A) H&E staining figures annotated by Agoko’s telepathology platform on
Human Breast Cancer (DCIS). (B) Spatial domains identified by SCANPY, GraphST, STAGATE, and STMSGAL on Human Breast Cancer (DCIS). (C) Spatial domains 0, 4,
and 9 identified by STMSGAL. (D) Stacked violin plots illustrate the top 3 differentially expressed genes on spatial domains 0, 4 and 9, and their expressions on all spatial
domains.
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Figure 7. STMSGAL reveals spatial domains on AdultMouse Brain (FFPE). (A) Spatial domains identified by SCANPY, DeepST, STAGATE, and STMSGAL. (B)The annotation
of hippocampus structures from the Allen Reference Atlas on mouse brain. (C) Visualization of domains identified by STMSGAL and the corresponding marker genes. (D)
UMAPvisualizationgenerated bySCANPY,DeepST, STAGATE, andSTMSGALembeddings, respectively. (E)Visualization of all attention layers of STMSGALwith the ctaSNN
module. In each attention layer, nodes were arranged based on spatial contexts of spots, and edges were colored by corresponding weights.
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Figure S1. STMSGAL improves the identification of layer structures in the DLPFC tissue. Comparison of spatial domains identified by SCANPY, SEDR, CCST, DeepST, STA-
GATE, SiGra, GraphST, and STMSGAL, andmanual annotations in 3 sections of human DLPFC tissues.
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Figure S3. Cluster assignments generated by SCANPY, SEDR, CCST, STAGATE, DeepST, GraphST, and STMSGAL on Adult Mouse Brain (FFPE).
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Figure S4. STMSGAL reveals spatial domains on AdultMouse Brain (FFPE). Visualizations of spatial domains and expressions of the correspondingmarker genes identified
by STMSGAL with Louvain clustering on adult mouse hippocampus tissue.
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