Supplementary material

Deep Learning Model to Diagnose Cardiac Amyloidosis from

Hematoxylin/Eosin-Stained Myocardial Tissue

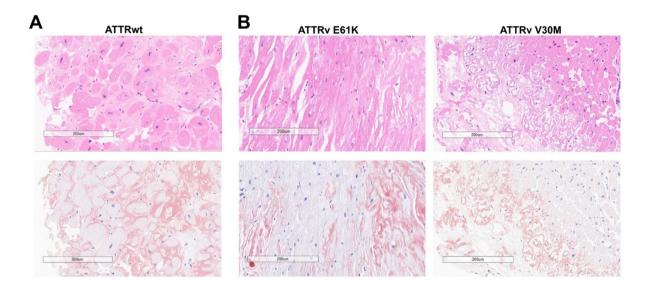
Takeshi Tohyama, Takeshi Iwasaki, Masataka Ikeda*, Masato Katsuki, Tatsuya Watanabe,

Kayo Misumi, Keisuke Shinohara, Takeo Fujino, Toru Hashimoto, Shouji Matsushima,

Tomomi Ide, Junji Kishimoto, Koji Todaka, Yoshinao Oda, and Kohtaro Abe

*To whom correspondence should be addressed: Masataka Ikeda

Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University,


Fukuoka, Japan

3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan

Phone: +81-92-642-5360, Fax: +81-92-642-5374

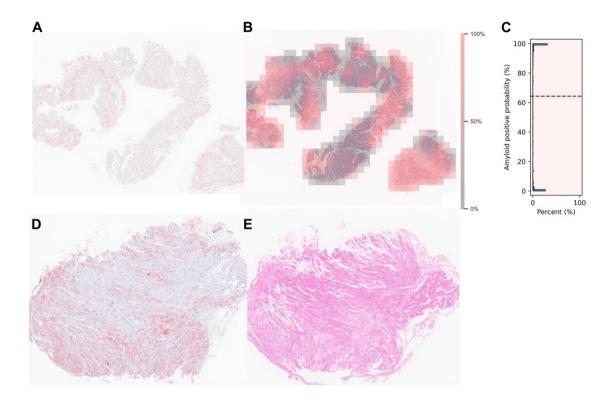

Email: ikeda-m@cardiol.med.kyushu-u.ac.jp

Figure S1

Figure S1 Images of hematoxylin/eosin (HE; upper panel) and Dylon (lower panel) staining in cases with wild-type transthyretin amyloidosis (ATTRwt) and variant transthyretin amyloidosis (ATTRv). (*A*) Images of HE and Dylon staining in cases with ATTRwt. (*B*) Images of HE and Dylon staining in cases with ATTRv, including the Lys61Glu (E61K) and Val30Met (V30M) variants.

Figure S2

Figure S2 Sets of Dylon staining (A and D), HE staining overlaid with the amyloid-positive area predicted by the model (B) and without overlay (E), and the distributions of amyloid-positive probabilities on a specimen basis (C). The set of A, B, and C is a case of variant transthyretin amyloidosis (ATTRv) with Val30Met (V30M), which was assigned to the test set for model development. The set of C and D is a case of ATTRv with Lys61Glu (E61K), which was assigned to the set for model evaluation; therefore, the Dylon (D) and HE staining images without overlay (E) are provided for reference. The distribution is described by histograms, and the median probability is indicated by a red-dotted line.

Table S1

Case	Year of Dx	Age	Sex	Type	Indication of Bx	LVH	LVEF
1	2014	76	F	AL	Heart failure Myocarditis susp. (post-recovery)	+	61
2	2016	82	M	ATTRwt	LV dysfunction	+	36
3	2017	74	М	ATTRwt	LV dysfunction CS susp.	+	36
4	2017	82	М	ATTRwt	Asynergy AS	+	79
5	2018	88	F	ATTRwt	Asynergy AS	+	59
6	2019	89	М	ATTRwt	LV dysfunction MR	_	49
7	2019	81	F	ATTRwt	LV dysfunction Heart failure	_	41
8	2020	91	М	ATTRwt	LV dysfunction Heart failure	_	39
9	2020	71	M	ATTRwt	LV dysfunction CS susp.	+	41

Table S1 Clinical information of 9 cases who had no suspicion of amyloidosis prior to biopsy. Left ventricular hypertrophy (LVH) was defined as an average thickness of the interventricular septum (IVS) and left posterior ventricular wall (LVPW) of \geq 11 mm or greater, or a left ventricular mass of \geq 115 g/m² in men and \geq 95 g/m² in women. Dx, diagnosis; Bx, biopsy; LVEF, left ventricular ejection fraction; F, female; M, male; CS, cardiac sarcoidosis; AS, aortic stenosis; MR, mitral regurgitation.