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ABSTRACT 
The Solute Carrier (SLC) superfamily of integral membrane proteins function to transport a wide array of small
molecules across plasma and organelle membranes.  SLC proteins also function as important drug transporters a
as viral receptors.  Despite being classified as a single superfamily, SLC proteins do not share a single common
classification; however, most belong to multi-pass transmembrane helical protein fold families. SLC proteins 
populate different conformational states during the solute transport process, including outward-open, intermedia
(occluded), and inward-open conformational states. For some SLC fold families this structural “flipping” 
corresponds to swapping between conformations of their N-terminal and C-terminal symmetry-related sub-
structures.  Conventional AlphaFold2, AlphaFold3, or Evolutionary Scale Modeling methods typically generate
models for only one of these multiple conformational states of SLC proteins. Several modifications of these AI
based protocols for modeling multiple conformational states of proteins have been described recently. These 
methods are often impacted by “memorization” of one of the alternative conformational states, and do not alwa
provide both the inward and outward facing conformations of SLC proteins. Here we describe a combined ESM
template-based-modeling process, based on a previously described template-based modeling method that relies 
the internal pseudo-symmetry of many SLC proteins, to consistently model alternate conformational states of S
proteins.  We further demonstrate how the resulting multi-state models can be validated experimentally by 
comparison with sequence-based evolutionary co-variance data (ECs) that encode information about contacts 
present in the various conformational states adopted by the protein. This simple, rapid, and robust approach for 
modeling conformational landscapes of pseudo-symmetric SLC proteins is demonstrated for several integral 
membrane protein transporters, including SLC35F2 the receptor of a feline leukemia virus envelope protein 
required for viral entry into eukaryotic cells. 
*Corresponding authors.  
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Abbreviations:  AF2 – AlphaFold2 Multimer; AF3 – AlphaFold3, EC - Evolutionary Covariance; ESM- 
Evolutionary-Scale Modeling, LDDT – Local-Distance Difference Test; MD – Molecular Dynamics; ML 
– Machine Learning;  mmCIF - macromolecular Crystallographic Information File; MSA – Multiple 
Sequence Alignment; PDB - Protein Data Bank; pLDDT - predicted Local-Distance Difference Test, a 
confidence score predicted from ML,  TM – Template Modeling score to assess similarity between two 
protein structures.  
 
 
INTRODUCTION 
Proteins adopt multiple conformational states which are essential to their functions.  While AlphaFold2/3 
(AF2/3)1, Evolutionary Scale Modeling (ESM)2,  and related machine-learning methods3,4 can provide 
accurate structural models of proteins, for systems that adopt multiple conformational states conventional 
AF2/3 and ESM calculations generally identify only one of the multiple states observed experimentally5-

12. Recently, significant advances have been reported using modified AF2 protocols and enhanced 
sampling methods to accurately model multiple conformational states of proteins, including integral 
membrane proteins13.  Promising approaches use a conventional AF2 platform with curated input such as 
(i) state-annotated conformational templates14,  (ii) shallow multiple sequence alignments (MSAs) chosen 
either randomly (AlphaFold-alt)6,15 or by clustering homologous protein sequences (AF-cluster)8, (iii) 
very shallow and even single protein sequences9,16 that allow knowledge inherent to the AI to dominate 
the modeling process, or (iv) using MSAs masked at multiple positions, as implemented in both 
(SPEACH-AF)17 and AF-sample212, to switch the prediction toward alternative conformational states.  
AF2 calculations using network dropouts (AF-sample) can also generate conformational diversity18-21.  
Despite these advances, however, challenges remain in consistently modeling the multiple alternative 
conformational states of proteins observed experimentally.  In particular, these enhanced sampling 
methods are only successful for about 50% of experimentally-available alternative conformer pairs9,11, 
leading to the suggestion that at least some of the cases of successful modeling of alternative 
conformational states rely on some kind of memorization by the AI, rather than its inherent “learning” of 
protein structure principles9. To the degree that memorization is required for a particular class of proteins 
for successful prediction of alternative conformational states, more robust methods leveraging the tools of 
AI-based modeling are required. 
 
The Solute Carrier (SLC) superfamily of integral membrane proteins function to transport a wide array of 
solutes across the plasma and organelle membranes. The superfamily includes more than 66 SLC protein 
families (https://www.bioparadigms.org/slc/intro.htm), each including many individual proteins. SLC 
proteins transport a wide array of molecules, including sugars, amino acids, vitamins, nucleotides, metals, 
inorganic ions, organic anions, oligopeptides, and drugs22-25. Some are orphan transporters with no known 
substrate. SLC proteins can also function as receptors for viral entry into the cell26. They constitute a 
major portion of all human transporter-related proteins and play key roles in human health and 
disease24,25,27. 
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Despite being classified as a single superfamily, the various SLC fold families do not share a single 
common fold classification and are not all phylogenetically related.  For example, the two most common 
SLC fold families, the major facilitator superfamily (MFS) fold, which constitute the largest class of SLC 
proteins, and the LeuT fold, another important class of SLCs, are topologically and structurally distinct24.  
However, despite these differences, many SLC transporters have a characteristic structural architecture 
with pseudo two-fold symmetry, where the two halves of the protein structure are related by a two-fold 
symmetry axis in the plane of the membrane bilayer24,28.  These halves have a similar fold but non-
identical conformations, enabling the protein to adopt multiple conformational states essential for its 
function. MSF-fold SLC proteins have a “6+6” topology comprised of two “inverted pseudo-repeat” 6-
helical bundles with antiparallel orientations related by a pseudosymmetry axis, while the strikingly 
similar but topologically distinct LeuT-fold membrane proteins feature two 5-helical bundles with 
“inverted pseudo-repeat” sequences that form structures related to one another by a pseudosymmetry 
axis24. Some (but not all) other SLC proteins also have folds with internal structural pseudosymmetry24.    
 
SLC proteins populate different conformational states during the transport process, including “outward-
open”, with a surface cavity directed one way, intermediate states (i.e., occluded, with no surface cavity), 
and “inward-open” with a surface cavity directed to the opposite side of the membrane23,24. These 
“inward-open” and “outward-open” conformational states are sometimes called inward-facing and 
outward-facing states in the literature. Crystal structures have been solved for inward-open, occluded, and 
outward-open states of several MFS and LeuT SLC proteins; for a few SLC proteins both inward and 
outward-open states have been determined by X-ray crystallography or cryoEM29-33.  This conformational 
“flipping” confers an “airlock” or “revolving door” function, which underlies their mechanisms of 
symporter or antiporter solute transport23,24,28. The switch between outward- and inward-open states 
results from swapping of the conformations of the N-terminal and C-terminal symmetry-related sub-
structures, in which the N-terminal helical bundle switches to adopt the conformation of the C-terminal 
helical bundle, while simultaneously the C-terminal helical bundle switches into the original conformation 
of the N-terminal helical bundle.  These dynamic structural and biophysical properties confer to SLC 
proteins their functions as gates for symporter and antiporter transport of biochemically-important solutes 
and biomolecules24,25.   
 
Both experimental and computational studies of SLC proteins have provided important insights into the 
role of these conformational dynamics in solute transport. Computational methods have the potential to 
have a significant impact in understanding structure-function relationships of SLC proteins and to guide 
the design of experiments.   However, as they are medium-sized integral membrane proteins, molecular 
dynamics simulations are quite challenging, requiring powerful computing resources, accurate potential 
energy functions, and appropriate simulation of membrane-mimicking environments. The evolving AI-
based enhanced sampling methods outline above can sometimes provide models of multiple 
conformational states of SLC proteins, but are not always successful6-12. These observations suggest the 
need for more robust methods for addressing this important class of membrane protein transporters.  
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Importantly, multiple conformational state modeling of proteins can be guided by evolutionary covariance 
(EC) analysis of functionally-preserved direct contacts, which can provide information about contacts 
present in the two (or more) states adopted by the protein structure 34-40. Of special significance for SLC 
proteins, is their unique pseudo-symmetrical transport mechanisms, which provides the basis for classical 
method of modeling the inward-open (or outward-open) conformations of some SLC proteins from 
knowledge of their outward (or inward) open conformations by swapping the pseudo-symmetric structures 
of the N- and C-terminal halves, and then using the resulting virtual structure as a template to model the 
alternative conformational state28,41-47. Although it seems obvious to combine these two concepts and 
utilize EC-based contact information together with swapping of pseudo-symmetric structures, this 
approach has not been previously implemented as a general strategy for modeling SLC proteins.  
 
Here we describe a simple and robust approach for modeling alternative conformational states of pseudo-
symmetric SLC proteins using a combined ESM – template-based-modeling process inspired by the 
methods of Forrest and others28,41-47. In this approach, templates are generated from a “flipped virtual 
sequence” using ESMFold2, and template-based modeling is then performed using either AF21 or, where 
training bias will impact the AF2 structure prediction, with the template-based modeling software 
MODELLER48.  First, an ESM-AF2 approach was used to model the inward- / outward-open forms of 
two SLC proteins, human ZnT8 (SLC30A8, a Zn transporter) and Escherichia coli D-galactonate:proton 
symporter (SLC17, a MFS superfamily transporter) for which experimental structures of both outward- 
and inward-open states are available, and the resulting models of alternative conformations were validated 
by comparison against  atomic coordinates determined by cryoEM or X-ray crystallography. These 
models were also validated against EC-based contact maps.  For two additional SLC proteins, Zea mays 
CMP-sialic acid transporter 1 (SLC35A1) and Saccharomyces cerevisiae GDP-mannose sugar transporter 
1 (SLC35D subfamily) the outward-open forms are available as experimental structures. As AF modeling 
was found to be biased towards these states, the alternative inward-open forms were modeled with an 
ESM-MODELLER process, and then validated by comparison against EC-based contact maps.  For 
SLC35F2, neither inward nor outward-open experimental structures are available.  The outward-open 
form was modeled using conventional AF2, and the inward-open conformational state was then modeled 
using the ESM-AF2 process. Both the inward- and outward-open structures were then validated against 
EC-based contact maps. Although bias was observed using the ESM-AF2 process for other SLC proteins 
for which one of two possible conformational state was available in the PDB, the ESM-MODELLER 
approach was successful in modeling both inward and outward-facing states of several additional pseudo-
symmetric integral membrane proteins, which were validated by comparisons against EC-based contact 
maps. 
 
METHODS 
Evolutionary covariance (EC) - based contact predictions. EC-based contact predictions were performed 
using evolutionary covariance analysis with NeBcon (Neural-network and Bayes-classifier based contact 
prediction)  https://seq2fun.dcmb.med.umich.edu//NeBcon/,  a hierarchical algorithm for sequence-based 
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protein contact map prediction49, with a probability threshold of 0.7.   A second server, EVcouplings 
server34 https://evcouplings.org/ was also used to confirm these contact predictions.  
  
Contact maps for experimental and predicted structures were obtained from CMview50, an interactive 
contact map visualization and analysis tool. Contact maps were generated for interresidue C�  distances  
of < 10.0 Å. The contact lists generated from protein structure models were then imported into excel 
spreadsheets for overlay and comparison with the EC-based predicted contacts. 
 
AlphaFold2, ESMfold, and MODELLER modeling.   AlphaFold21 modeling was performed using  
Colabfold v1.5.5 server51 with AlphaFold2.ipynb scripts. The standard AF2 modeling in this study used 
no templates, default multiple sequence alignments (MSAs), recycle of 12, and with random dropouts, 
though other protocols were also assessed.  The Amber-relaxed top-ranked model was taken as the final 
predicted structure.  Evolutionary Scale Modeling (ESMfold)2 models were generated using the 
ESMFold_advanced.ipynb colab script. Models were generated with random masking of input sequences 
(defined by masking_rate of 0.15), stochastic_mode="LM" that uses no dropout, and recycle of 12. The 
model with the maximum pTM score was selected as the final model.  A locally installed version of 
MODELLER 10.448,52 was used for conventional template-based modeling. 20 models were predicted for 
each run and the model with the best DOPE (Discrete Optimized Protein Energy score) was selected as 
the representative structure. 
 
AlphaFold-alt.  Enhanced sampling using shallow MSAs with AlphaFold-alt (AF-alt) was carried out as 
described by Meiler and co-workers6, using scripts kindly provided by Dr. Davide Sala and executed on a 
local cluster of  4 A100 Nvidia HGX GPU processors. In each AF-alt run, 480 models were made using 
randomly-generated shallow MSAs of 16-32 sequences.  30 models were generated for each MSA depth 
of 16 to 32 sequences. Each run was < 3 hrs.  No structural templates were used. For each model, 
disordered N- and C-terminal regions were removed and the average pLDDT score (<pLDDT>) was then 
computed for all of the remaining residues. 
 
AF_Sample and AF_Sample2.  Massive sampling was carried out using AF_Sample and AF_Sample2 of 
Wallner and co-workers12,18,19, executed on a local cluster of  4 A100 Nvidia HGX GPU processors, using 
protocol details described elsewhere21. AFSample inferences used various AF-Multimer model weights 
(v2.1.2, v2.2.0, and v2.3.2). In all cases modeling was performed with no templates.  When using AF-
Multimer v2.1.2, modeling was performed using 21 max_recycles, with v2.2.0 with the default of 3 
max_recycles, and with v2.3.2 using 9 max_recycles. AF_Sample2 inferences used the same variation in 
AF-Multimer model weights as the AF_Sample runs. In all cases inference was run with no templates and 
3 max_recycles.  
 
Hydrogen atoms were added to files generated by AF_Sample, AF_Sample2, and AF_Alt using a custom 
script which employs the Amber force field, analogous to the method employed by the original AF2 
manuscript (Jumper et al, 2021). These scripts are provided at 
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https://github.rpi.edu/RPIBioinformatics/FilteringAF2_scripts. Each of these enhanced sampling methods 
can be quite aggressive in generating conformational diversity in addition to models that are not 
physically reasonable: e.g. incorrect amino acid chirality, non-native cis peptide bonds, and other 
biophysically incorrect features, particularly in the not-well-packed residue segments of the modeled 
proteins. The most egregious of these physically unreasonable models were identified and removed, as 
described elsewhere (Spaman et al, manuscript in preparation). The resulting relaxed models were used 
for further analysis. 
 
Statistical methods.   Backbone root-mean-squared deviation (RMSD) and global distance test (GDT) 
scores for structural comparisons were performed using the methods of Zemla implemented on their 
public server http://linum.proteinmodel.org/ 53.  
 
Data repository.  Key data generated in this study are available at 
https://github.rpi.edu/RPIBioinformatics/SLCModeling. 
 
 
RESULTS 
The challenge we address arises from the fact that conventional AF modeling will generally provide only 
one of the multiple conformations of SLC proteins when only one of these states was available as an 
experimental structure at the time of training6,7,9-12.  Even enhanced sampling methods successfully 
generate alternative conformational states for only for some multistate proteins6,8-12.  These observations 
motivate the need for robust methods for modeling alternative conformational states (outward-open vs 
inward-open) of SLC proteins, at the very least for use as reference states for assessing the evolving deep 
learning methods for generating alternative conformational states of proteins. 
 
ESM-AF2/MODELLER protocol. The ESM-AF2/ ESM-MODELLER process for modeling alternative 
conformational states of SLC transporters that have structural pseudo-symmetry is outlined in Figure 1.  
It is based conceptually on methods used for other pseudo-symmetric SLC proteins28,47, in which the 
pseudo-symmetric halves of the transporter are first identified as an N-terminal protein sequence (blue in 
Figure 1) and C-terminal protein sequence (purple in Figure 1), and the N-terminal protein sequence is 
then modeled using the C-terminal segment as a structural template, and the C-terminal protein sequence 
is modeled using the N-terminal segment as a structural model. However, application of this method using 
conventional modeling methods can be challenging if the sequence similarity in these two halves of the 
protein sequence is low, making it difficult to determine the correct alignment for template-based 
modeling. In the ESM-AF2/MODELLER process, the N-terminal (blue) and C-terminal (purple) 
segments of protein sequences are first swapped to create a virtual flipped sequence. The entire structure 
of this virtual sequence is then modeled using ESMfold, a large-language model based method that 
requires no templates and only a single protein sequence.  The resulting virtual protein structure is then 
used as a structural template to model the original protein sequence using template-based modeling with 
AF2 or MODELLER.  
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Fig. 1.  The ESM-AF2/MODELLER protocol for modeling alternative conformational states of pseudo-symmetric S
proteins. (A) cartoon representation of inward/outward-open conformers representing the pseudo-symmetry of the helices
with pseudo-symmetry halves indicated in blue and purple.   (B) Protocol to model inward/outward-open conformers for 
symmetric helical transmembrane proteins (C) Topology diagrams showing the conformational flip of a representative 10-
helical SLC protein (SLC35F2). The vertical dotted line represents the symmetry axis of the pseudo-symmetric halves of th
SLC protein.  Numbers represent the number of residues in the membrane-external loops. The top image represents the 
outward-open state, the middle image is the ESMfold virtual protein structure generated from a virtual flipped protein sequ
and the bottom image the inward-open state generated by comparative modeling using the virtual protein structure as a 
modeling template. 

 
In this study, an ESMfold structure model generated from a virtual flipped sequence was used as a cust
template for template-based modeling using AF with low MSA (16 - 32), recycle of 12, and with drop
A shallow MSA is used so that the template information dominates the modeling process.  This 
“comparative modeling” step, using the ESMfold model as a template and determining the sequence 
alignment from structural alignment, was also performed using MODELLER48,52.  It could also be don
using SwissModel54 or other template-based modeling methods.  Finally, the original (e.g., outward-op
and final (e.g., inward-open) structures are validated by comparison against the EC-based contact map
that will generally include predicted contacts for both conformational states. 
 
Validating the ESM-AF2 modeling protocol.  As an initial test case of the ESM-AF2 method for 
modeling alternative conformational states of SLC proteins, we selected human ZnT8 (SLC30A8), a 2
320-residue homodimeric integral membrane protein Zn-transporter, a representative SLC protein for 
which structures have determined by cryoEM30 (PDB ids: 6xpd, 6xpde, and 6xpf, at resolutions of  3.9
4.1 Å, and 5.1 Å, respectively). ZnT8 (PDB id: 6xpf) has two subunits; in the absence of Zn, chain-A 
an inward-open conformation and chain-B in an outward-open conformation.  Conventional AF2-colab
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calculations using the standard protocol outline in the Methods section provided a structure with inwar
open conformation, in agreement with the cryoEM inward-open structure 6xpf-A (Cα RMSD 2.00 Å). 
(Figure 2A). We then used the ESM-AF2 modeling protocol outlined in Figure 1 to model the outwar
open conformational state, and compared the resulting model with the experimentally-determined 
outward-open cryoEM structure. The computed outward-open conformation of ZnT8 has excellent 
agreement with experimental outward-open structure 6xpf-B, with backbone C  RMSD of 1.09 Å 
(Figure 2B).  We also compared residue-residue contact maps for the experimental and ESM-AF2 
outward-open models with each other and with the EC-based contact map generated from multiple-
sequence alignments of ZnT8 homologs (Figure 2C,D). The computed inward-open structure, modele
with AF2, has a contact map that is nearly identical to that of the experimental inward-open structure 
(Figure 2C); the outward-open structure computed from the inward-open structure using the ESM-AF
protocol is also essentially identical to the experimental outward-open structure (Figure 2D).  While 
many ECs are common to both the outward- and inward-open conformations, the ECs contain informa
about both states, and several are unique to each conformation; i.e. there are 6 unique ECs for outward
open and 6 unique ECs for inward-open states.  These several ECs unique to the outward/inward-open
conformations superimpose on top of the corresponding unique contacts in the outward and inward-op
computed models, respectively (circled in Figures 2C,D). Hence, the ESM-AF2 protocol successfully
modeled both the inward- and outward-open conformations of Znt8, as validated by comparison with 
experimental EC-derived contacts.   A second test case for the ESM-AF2 modeling protocol using an S
protein with both inward and outward-open experimental structures is presented for the E. coli D-
galactonate:proton symporter (DgoT) in Supplementary Figure S1. Again the ESM-AF2 protocol 
successfully modeled both the inward- and outward-open conformations of DgoT, which could be 
validated by comparison with experimental EC-derived contacts 
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based contact map of ZnT8 (points shown in black) with contacts in the experimental (grey points) and predicted (red points) 
inward-open models. (D) Comparison of the EC-based contact map of ZnT8 (points shown in black) with contacts in the 
experimental (grey points) and predicted (green points) outward-open models.  In panels C and D, major differences in the 
contact patterns of inward-open and outward-open states, supported by ECs unique to each state, are circled. 
 

Modeling alternative conformations of SLC proteins for which AF modeling is dominated by the 
experimental structure of only one state.  In the two cases above, we chose SLC proteins for which 
experimental structures of both outward- and inward-open conformations are available, and validated the 
ESM-AF2 modeling protocol against both the experimental atomic coordinates (using RMSD and GDT 
metrics) and against contact maps predicted from EC analysis which are based on experimental primary 
sequence data.  However, for most SLC proteins, experimental structures are only available for one (or 
none) of the two states.  We next modeled inward-open structures for two integral membrane proteins for 
which only the outward-open state is experimentally available.  The results are shown in Figure 3 for the 
322-residue Zea mays CMP-sialic acid transporter 1 [PDB id 6i1r-A55], a SLC35A subfamily member and 
in Figure 4 for the 337-residue Saccharomyces cerevisiae GDP-mannose sugar transporter 1 Vrg4 (PDB 
id 5oge56), an SLC35D subfamily member. For both proteins, only outward-open forms determined at 
3.22 Å and 2.80 Å resolution, respectively, are available as X-ray crystal structures. In both of these cases, 
the ESM-AF2 protocol did not provide models of the inward-open state that could be validated by the EC-
based contact map.  However, using the ESM-MODELLER protocol, in which the outward-open state is 
modeled with AF2, and the inward-facing state is modeled using a “flipped-sequence” as input to 
ESMfold, providing template that is then used with a conventional template-based modeling approach, 
both outward- and inward-open states were generated. In both cases, the EC-based contact maps could be 
largely explained by the combined contact maps of these outward- and inward-open conformations, 
although some sporadic predicted ECs at the edge of the cutoff value used for identifying ECs were also 
present.  These results validate the ESM-MODELLER process for cases where, due to the impact of 
memorization of conformational states available at the time of training on the AF inference, the ESM-AF2 
method fails. 
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Fig. 3.  ESM-MODELLER modeling of the inward-open conformation of the Zea mays CMP-sialic acid transporter 1
(A) The experimental outward-open structure (PDB id 6i1r-A). (B) The inward-open structure modeled using ESM-
MODELLER. In each of panels A and B the top images are ribbon representations of the protein structure with surface exp
cavities shown in either green (outward-open) or red (inward-open), and the bottom images are cylinder representations of
these structural states with helices numbered 1 - 10. The dashed horizontal lines in panels A and B denote the approximate
locations of the membrane boundaries. (C) The combined contact maps of the two resulting models are consistent with the
experimental EC-based contact map.  Green contacts are those present in the experimental outward-open model, and red 
contacts are those present in the predicted inward-open model.  EC-based contacts are shown as black dots.  The EC-based
contacts circled in green are unique to the outward-open conformation, and those circled in red are unique to the inward-op
conformation.   At the thresholds chosen for ECs several predicted contacts are not explained by the combination of two 
conformational states. In panels A and B (top), surface pockets are represented as space-filled voids using the server 
https://kvfinder-web.cnpem.br/.    
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Fig. 4.  ESM-MODELLER modeling of the inward-open conformation of the S. cerevisiae GDP-mannose sugar 
transporter 1, Vrg4.  (A) The experimental outward-open structure (PDB id 5oge). (B) The inward-open structure modele
using ESM-AF2. In each of panels A and B the top images are  ribbon representations of the protein structure with surface
exposed cavities shown in either green (outward-open) or red (inward-open),  and the bottom images are cylinder 
representations of these structural states with helices numbered 1 - 10. The dashed horizontal lines in panels A and B deno
approximate locations of the membrane boundaries. (C) The combined contact maps of the two resulting models are consis
with the EC-based contact map.  EC-based contacts are shown as black dots, inward-open contacts as red circles and outwa
open contacts as green circles. The EC-based contacts circled in green are unique to the outward-open conformation, and th
circled in red are unique to the inward-open conformation.   At the thresholds chosen for ECs several predicted contacts ar
explained by the combination of two conformational states. In panels A and B, surface pockets are represented as space-fil
voids using the server https://kvfinder-web.cnpem.br/.  
 

Modeling alternative conformations of SLC35F2 with ESM-AF2. Of particular interest are SLC prot
for which no experimental structures are available for either the inward- or outward-facing states. 
SLC35F2 has < 12% sequence identity with the SLC35 subfamily members of known structure; in 
particular there is no good experimental structure that can be used as a template for comparative mode
of its inward- or outward-open conformations.  Conventional AF2 modeling was carried out using the 
AF2-multimer colab server51 executed both with the standard protocol without structural templates 
described in the Methods section and also with various other protocols using templates of distant 
homologues and multiple seeds. Modeling was also attempted using AF357.  Only the outward-open 
conformational state of SLC35 was returned by all permutations of AF2 and AF3 that were explored. 
 
For SLC35F2 we further explored using shallow MSAs, dropouts, and the combination of dropouts wi
MSA masking to generate alternative conformational states. AF-alt was used to generate 480 models, 
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AF_Sample and AF_Sample2 were used to generate 3,000 models each. These enhanced sampling 
methods are very GPU intensive and require long run times.  For this particular protein, for which no 
experimental structures were available in the PDB at the time of AF2 training, all three of these metho
generated exclusively outward-open states (Supplementary Figure S2A-C). These results for SLC35
illustrate the common case where the currently available enhanced sampling methods fail to generate 
reliable models of multiple alternative conformational states. Interestingly, when AF-Sample was run o
virtual flipped sequence of SLC35F2, exclusively inward-open conformational states were generated. 
 
Having established the reliability, consistency, and limitations of the ESM-AF2 protocol, AF2 was use
model the outward-open conformation of SLC35F2, and ESM-AF2 was used to model its inward-open
conformation (Figure 5). The contact maps of these two conformations were then compared with its E
based contact map.  The excellent agreement between the EC-based contact map and combined contac
maps of the computed outward- and inward-open structures validate the accuracy of the ESM-AF2 
protocol for modeling this conformational heterogeneity of SLC35F2. 
 

 
Fig. 5.  AF2 / ESM-AF2 modeling of the outward- and inward-open conformations of human SLC35F2. (A) The 
outward-open structure modeled with AF2. (B) The inward-open structure modeled using ESM-AF2. In each of panels A a
the top images are ribbon representations of the protein structure with surface exposed cavities shown in either green (outw
open) or red (inward-open),  and the bottom images are cylinder representations of these structural states with helices num
1 - 10. The dashed horizontal lines in panels A and B denote the approximate locations of the membrane boundaries. (C) 
Contact maps of the outward-open (green circles) and inward-open (red circles) structures superposed on the EC contact m
(black dots). (D) Expanded regions (labeled a through f) of panel C, focusing on key distinguishing contacts and ECs betw
helices H4 and H10 in the inward-open conformation (subpanel D.a) and between helices H5 and H9 in the outward-open 
conformation (subpanel D.d).  Also shown in panel D, subpanels a, b, c, e and f are other key contacts and ECs distinguish
the two states.  In panels A and B (top), surface pockets are represented as space-filled voids using the server https://kvfind
web.cnpem.br/.   

 
Modeling alternative conformational states of other SLC proteins.  We selected 4 additional SLC 
proteins for modeling with the ESM-AF2 or ESM-MODELLER protocol.   These results are summariz
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in Supplementary Table S1 and accompanying Supplementary Figures S3 – S6.  In all of these cases 
for which structures of one conformational state were available in the PDB at the time of AF2 training, 
bias toward this state was observed when using AF2 alone or even when using AF2 with a template for 
the alternative state generated with ESM using a flipped sequence; i.e. the ESM-AF2 protocols described 
here fail to identify the alternative conformational state when one conformational state was available in 
the PDB at the time of AF2 training.  However, the ESM-MODELLER protocol, which avoids the bias of 
conformational state modeling due to “memorization” often observed using AF2, provided models of both 
inward-facing and outward-facing states, with excellent agreement (< 1 - 2 Å rmsd) to experimental 
models where available, and in concordance with EC-predicted contact maps. 
 
 

DISCUSSION 
We have developed and tested hybrid AF2 / ESM-AF2 and AF2 / ESM-MODELLER protocols for 
modeling alternative conformations of pseudo-symmetric SLC transporters.  Generally, where 
conventional AF2 modeling (or even AF2 modeling with enhanced sampling) provides only one (either 
inward- or outward-open) conformational state; the alternative state can then be modeled by the ESM-
AF2 (or ESM-MODELLER) protocol.  The ESM-AF2 protocol is inspired by a more traditional approach 
using comparative modeling of the pseudo-symmetric halves of SLC transporters28,41-47. This traditional 
approach requires an accurate sequence alignment between the two symmetric halves of SLC protein.  
However, in some cases it is difficult to determine the correct sequence alignment needed for accurate 
comparative modeling.  In the ESM-AF2 (or ESM-MODELLER) approach, we use ESMfold to generate 
from a virtual flipped sequence a virtual protein structure, which is then used as a structure modeling 
template without the need for any sequence alignment between the two halves of the SLC protein.  This 
allowed us to reliably model alternative conformational states of several SLC transporters that were 
difficult to model using the traditional approach. The resulting multi-state models are validated by 
comparison with sequence-based evolutionary co-variance data (ECs) that encode information about 
contacts present in the various conformational states adopted by the protein. 
 
The ESM-AF2 (or ESM-MODELLER) approach is simple to implement and runs fast using publicly-
available servers. However, despite the successful examples demonstrated in this study, these ESM-AF2 
(or ESM-MODELLER) protocols for modeling alternative conformational states of pseudo-symmetric 
SLC proteins have some limitations. In particular, where structures of only one of the alternative states 
was available in the PDB at the time of AF2 training, a significant bias towards this state was observed 
when AF2 was used either directly or as part of the ESM-AF2 modeling process. Another shortcoming is 
that they cannot be applied directly to homodimeric pseudo-symmetric SLC proteins, such as YiiP or 
EmrE24,58. Coordinates of SLC proteins with large loops and other structural decorations require manual 
editing to eliminate these loops / decorations prior to applying the protocol.  In addition, the validation of 
alternative state conformations by contact predictions relies on the quality of these contact predictions, 
and may not work well for SLC sequence families for which only shallow MSAs are available. 
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The ability of AF2 to model protein structures not included in its training has been demonstrated in 
various CASP blind assessments59,60.  Conventional AF2 was also reported to be successful in accurate 
modeling of protein structures determined by NMR methods which were not included in its training data, 
and for which no structures of homologous proteins were available at the time of training61.  However, for 
proteins adopting multiple conformational states, the training carried out with training data that includes 
only one state may bias the predictor and limit its ability to model the alternative state.  Recently Porter 
and co-workers have demonstrated that, at least for fold-flipping proteins which have significant structural 
differences between conformational states, AF2 modeling with enhanced sampling is often biased toward 
the conformational state reported in the PDB and potentially used in the AF2 training, and often is not 
able to predict conformational states not represented in the AF2 training data.  Combining >280,000 
models from several implementations of AF2 and AF3, a 35% success rate was achieved for fold 
switchers likely in AF’s training sets9.  Bryant and Noé also have explored this question by training a 
structure prediction network, Cfold, on a conformational split of the PDB that excludes alternative 
conformations for protein structure pairs solved in two conformational states.  While > 50% of 
experimentally-known nonredundant alternative protein conformations evaluated were predicted with 
high accuracy (TM-score > 0.8), for the remaining pairs Cfold failed to correctly model the alternative 
conformational state not included in the training data11.  These results indicate that while in some cases, 
the network has learned enough to model alternative conformational states not included in the training 
data62, in other cases success may in fact rely on some kind of memorization; i.e. both factors can be at 
play.  It has also been suggested that ESMfold may be less sensitive to this memorization bias10.  
Consistent with these observations, we also observed a bias toward previously reported conformational 
states when modeling with either AF2 or with the ESM-AF2 modeling protocol outlined here.  For these 
SLC proteins, this bias is overcome using the ESM-MODELLER protocol.   Though limited to the 
specific but important class of pseudo-symmetric SLC proteins, the ESM-MODELLER protocol can be 
used routinely for the many proteins in this class to generate models for both conformational states 
regardless of memorization bias related to the training data.  However, where no memorization bias is 
involved, the ESM-AF2 protocol is preferable as template-guided AF2 has more accurate properties than 
conventional template-based modeling method.  More significantly, the fact that multistate models of 
SCL35F2 consistent with EC-based contact maps could be generated using ESM-AF2 when no structural 
templates are available shows that it is possible to suppress this conformational bias, and suggests a 
general protocol using a retrained AF network in which all homologous structures which might bias the 
inference to specific conformational states are excluded from the training data. 
 
Although we have focused our analysis on the outward and inward conformational states of SLC 
transporters, intermediate “occluded” states have also been captured in X-ray crystal and cryoEM 
structures.  Although the ESM-AF2/MODELLER protocol could potentially also generate such occluded 
states, this was not observed in the cases studied here.   
 
Conclusions. In this work we describe, validate, and compare hybrid ESM-AF2 and ESM-MODELLER 
protocols for modeling alternative conformational states of pseudo-symmetric SLC proteins.  The 
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approach overcomes the shortcoming of conventional AF2 structure calculations which generally provide 
only one of the multiple conformational states observed experimentally.  The method is simple to use, 
rapid to run, and can be implemented using the public domain servers.  In this approach, the resulting 
multi-state models are validated by comparison with sequence-based EC data that encode information 
about contacts present in the various conformational states adopted by the protein. Overall, the current 
study validates the ESM-AF2/MODELLER protocol for modeling conformational heterogeneity of 
pseudo-symmetric SLC transporters, one of the most extensive class of transporters in the human 
proteome. 
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SUPPLEMENTARY INFORMATION 
 
Supplementary Table S1.  Examples of modeling of both outward-open and inward-open states of 
pseudo-symmetric integral membrane proteins.   
 

For each SLC protein, conventional AF2 modeling provided either an inward-open (I) or outward-open
(O) state for which the backbone root-mean-squared deviation to an available X-ray crystal or cryoEM
structure is listed.  The alternative outward-open or inward-open conformation was then generated wit
the ESM-AF2 or ESM-MODELLER protocol. For these models of alternative conformational states, 
backbone rmsd’s are reported where experimental structures are available.  Models for each protein 
available in the AlphaFold2 data base are indicated along with backbone rmsd’s to the most similar 
experimental structure.  n/a – not available. 
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Fig. S1.  Validation of ESM-AF2 protocol using an SLC protein with both outward- and inward
open experimental structures.  (A) Superposition of the inward-open conformational state of E. coli
galactonate:proton symporter (SLC17, DgoT) modeled using the ESM-AF2 protocol from a template 
generated by ESMfold using a virtual flipped-sequence (red) with the experimentally-determined inwa
open structure PDB id 6e9n (blue). (B) Contact maps for the inward-open conformational state of Dgo
predicted by ESM-AF2 (red circles), observed in the cryoEM experimental structure (blue circles ), an
predicted by EC analysis (black dots).  (C) Contact maps for the experimentally-determined outward-o
conformational state of DgoT (green circles ; PDB id 6e9o) and experimentally-determined inward-op
conformational state (blue circles; PDB id 6e9n) structures compared with contact predictions from EC
analysis (black dots).  In this example, only a few EC-based contacts between helices H4 and H11 and
helices H5 and H10 (circled in green) distinguish the inward-open from outward-open structures.   
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Fig. S2.  Conformational states of SLC35F2 were modeled using various enhanced or massive 
sampling protocols as implemented in (A) AlphaFold-alt (480 models), (B) AlphaFold-sample (3,000
models), and (C) AlphaFold-sample2 (3,000 models); the resulting models were compared with the 
outward-open and inward-open models from the standard AF2 (for outward-facing) and our ESM-AF2
protocol (for inward-facing). None of these three methods modeled the alternative “inward-open” 
conformational state.  (D) Massive sampling with AF-sample2 (3,000 models) using a “flipped” protei
sequence generated only inward-open conformations for SLC35F2 can provide an inward-facing struc
of SLC35F2.  In each panel, the inset shows an expanded region of the plot.  In all cases, no models w
observed outside of the boxed regions.  Only models with pLDDT > 70 are plotted. 
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Fig. S3. Thiamine transporter 1 (SLC19A2).  (A) The outward-open conformer generated using the 
ESM-MODELLER method. (B) AF2 models the inward-open state.  (C) The outward-open conformer
contact map (green, lower diagonal), and inward-open conformer contact map (red, upper diagonal), 

generated using Cα-Cα cutoff of 10  are superposed on the symmetric EC-predicted contact map 
(black). ECs unique to each state are indicated with green and red circles, respectively. 
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Fig. S4. Aromatic amino acid exporter YddG.  (A) AF2 models the outward-open state. (B) The 
inward-open conformer was generated using the ESM-MODELLER method. (C) The outward-open 
conformer contact map (green, lower diagonal), and inward-open conformer contact map (red, upper 

diagonal), generated using Cα-Cα cutoff of 10  are superposed on the symmetric EC-predicted conta
map (black). ECs unique to each state are indicated with green and red circles, respectively. 
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Fig. S5. Reduced folate transporter (SLC19A1).  (A) The outward-open conformer was generated u
the ESM-MODELLER method. (B) AF2 models the inward-open state. (C) The outward-open conform
contact map (green, lower diagonal), and inward-open conformer contact map (red, upper diagonal), 

generated using Cα-Cα cutoff of 10  are superposed on the symmetric EC-predicted contact map 
(black). ECs unique to each state are indicated with green and red circles, respectively. 
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Fig. S6. Chloroquine resistance transporter I.  (A) AF2 models the outward-open state.  (B) The 
inward-open conformer was generated using the ESM-MODELLER method. (C) The outward-open 
conformer contact map (green, lower diagonal), and inward-open conformer contact map (red, upper 

diagonal), generated using Cα-Cα cutoff of 10  are superposed on the symmetric EC-predicted conta
map (black). ECs unique to each state are indicated with green and red circles, respectively. 
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