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Abstract

This document contains additional theoretical considerations, derivations, and figures to
supplement the manuscript “Tests for Segregation Distortion in Tetraploid F1 Populations”.

S1 Related work

In this section, we outline prior research on double reduction or preferential pairing in F1 popu-
lations. All of these approaches have limitations: (i) none account for both double reduction and
preferential pairing at a single biallelic locus simultaneously, (ii) none consider genotype uncertainty,
a common issue in polyploid genetics [Gerard et al., 2018, Gerard and Ferrão, 2019], and (iii) most
focus on estimating meiotic parameters, rather than testing for segregation distortion, which is our
objective.

Many previous approaches have estimated the double reduction rate using gamete frequencies,
although the ones mentioned in this paragraph do not consider partial preferential pairing. Fisher
and Mather [1943] provides a model for gamete inheritance in the presence of double reduction, but
not preferential pairing. This was later generalized to higher ploidies by Huang et al. [2019]. How-
ever, neither of these papers provide estimation and testing strategies related to these frequencies.
Tai [1982a] and Tai [1982b] estimate the double reduction rate using a complex series of crosses
between diploids and tetraploids, but they do not account for preferential pairing, and their scheme
was in the context of estimating the quantitative effects of genotypes on phenotypic traits. Haynes
and Douches [1993] estimates double reduction, but assumes that one can obtain the gamete geno-
types, and also does not account for preferential pairing. Bourke et al. [2015] looked for evidence
of double reduction by finding duplex offspring markers in nullplex by simplex crosses but did not
provide general methods for more general parental genotypes. Gerard [2022b] estimates double
reduction for autopolyploid populations in Hardy-Weinberg equilibrium, but not for F1 populations
[see also Gerard, 2022a].

Previous approaches to estimating preferential pairing are not designed for biallelic SNP data
or are otherwise limiting. Qu and Hancock [2001] and Bourke et al. [2017] developed methods to
estimate the degree of preferential pairing but require simplex by nullplex markers 0 cM apart that
are in repulsion linkage. Bourke et al. [2017] can estimate the degree of preferential pairing only when
the marker alleles are located on the homologues, but not the homoeologues. Cao et al. [2004] also
requires simplex by nullplex markers in repulsion linkage but allows for markers to be further than
0 cM apart. The method of Wu et al. [2001] is not designed for biallelic SNP data, assumes equal
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preferential pairing at both ends of the chromosome, and provides no software implementing the
methods. The model of Wu et al. [2001] further assumes that quadrivalent frequencies of less than
2/3 are the result of preferential pairing, an assumption violated in some organisms such as Solanum
tuberosum [Swaminathan and Howard, 1953] and Lotus corniculatus [Fjellstrom et al., 2001]. Olson
[1997] only models random chromosome segregation and disomic segregation, not accounting for
double reduction and partial preferential pairing. Sun [2020] provides a model and estimation
procedure for preferential pairing for any ploidy but does not account for double reduction. All of
these methods also assume that genotypes are known without error, an unrealistic assumption in
polyploids [Gerard et al., 2018, Gerard and Ferrão, 2019].

Polyploid phasing software often accounts for preferential pairing or double reduction, and so
the degree of preferential pairing or the double reduction rate are estimated as a by-product [Zheng
et al., 2016, Bourke et al., 2018, Mollinari et al., 2020, Zheng et al., 2021]. However, such methods
either do not allow for heterogeneous levels of preferential pairing [Zheng et al., 2016, Bourke et al.,
2018, Zheng et al., 2021], or do not accommodate double reduction [Bourke et al., 2018, Mollinari
et al., 2020], which we show in Section 4 can be confounded with the effects of preferential pairing.

One paper that does account for both double reduction and preferential pairing in tetraploids is
Stift et al. [2008]. This paper provides a general model for chromosome segregation in tetraploids
with arbitrary levels of double reduction and preferential pairing. However, the model of Stift
et al. [2008] assumes that all chromosomes are uniquely marked, and that gametes can be uniquely
genotyped. This is not typically the case for modern biallelic SNP markers. In Section S2, we use
the model of Stift et al. [2008] as a starting point to derive a model for gamete frequencies that are
agnostic to chromosomal assignment, and may thus be applied to biallelic SNP data.

S2 A model for gamete frequencies, accounting for double reduc-
tion and preferential pairing

Stift et al. [2008] proposed a model for segregation in tetraploids that accounts for both preferential
pairing and double reduction. This model assumes that all four chromosomes can be distinguished.
However, researchers typically only have biallelic dosage data (i.e. the number of copies of the
alternative allele for an individual at a locus) [Gerard et al., 2018, Gerard and Ferrão, 2019] where
each chromosome cannot be separately determined. Here, we will modify the model of Stift et al.
[2008] over chromosome assignment to derive a model for segregation at biallelic loci in tetraploids.

We begin by describing the model of Stift et al. [2008]. Let c1, c2, c3, and c4 denote the four
chromosomes of a tetraploid individual. The model of Stift et al. [2008] has three parameters.
Let τ be the proportion of quadrivalent pairing, let β be the probability of double reduction given
quadrivalent pairing, so α = τβ is the double reduction rate, and let (δ1, δ2, δ3) be the rates of
different bivalent pairings, where δ1 is the probability of c1 and c2 pairing together given bivalent
formation, δ2 is the probability of c1 and c3 pairing together given bivalent formation, and δ3 is
the probability of c1 and c4 pairing together given bivalent formation.. Note that δ1 + δ2 + δ3 = 1
and, for identifiability reasons, Stift et al. [2008] constrain δ1δ2δ3 = 0 (at least one pairing has zero
probability), but we don’t make this identifying assumption. Then the model of Stift et al. [2008]
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states the probability of each gamete to be
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
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−1/6
−1/6
−1/6
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
βτ + (1− τ)
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

δ1
δ2
δ3

 . (S1)

More concisely, equation (S1) may be written as

Pr(c1c1) = Pr(c2c2) = Pr(c3c3) = Pr(c4c4) =
1

4
βτ, (S2)

Pr(c1c2) = Pr(c3c4) =
1

6
τ(1− β) +

1

4
(1− τ)(δ2 + δ3), (S3)

Pr(c1c3) = Pr(c2c4) =
1

6
τ(1− β) +

1

4
(1− τ)(δ1 + δ3), (S4)

Pr(c1c4) = Pr(c2c3) =
1

6
τ(1− β) +

1

4
(1− τ)(δ1 + δ2). (S5)

We will now modify model (S2)–(S5) to biallelic dosage data. Let ℓ ∈ {0, 1, 2, 3, 4} be the dosage
of the parent at a locus, and let x ∈ {0, 1, 2} be the random variable of the number of alternative
alleles that the parent sends to an offspring. We assume that we do not know which chromosomes
contain the alternative and reference alleles. Then, for a parental dosage of ℓ = 0, none of the
chromosomes have the reference allele, and we have

Pr(x = 0|ℓ = 0) = Pr(c1c2) + Pr(c1c3) + Pr(c1c4) + Pr(c2c3) + Pr(c2c4)

+ Pr(c3c4) + Pr(c1c1) + Pr(c2c2) + Pr(c3c3) + Pr(c4c4)

= 1

(S6)

Pr(x = 1|ℓ = 0) = Pr(x = 2|ℓ = 0) = 0. (S7)

By symmetry, we have

Pr(x = 0|ℓ = 4) = Pr(x = 1|ℓ = 4) = 0 (S8)

Pr(x = 2|ℓ = 4) = 1. (S9)

For a parental dosage of ℓ = 1, for the moment allow c1 to carry the A allele, and c2, c3, and c4 to
carry the a allele. Then

Pr(x = 0|ℓ = 1) = Pr(c2c3) + Pr(c2c4) + Pr(c3c4) + Pr(c2c2) + Pr(c3c3) + Pr(c4c4) (S10)

=
1

2
τ(1− β) +

1

4
(1− τ)(δ1 + δ2 + δ1 + δ3 + δ2 + δ3) +

3

4
βτ (S11)

=
1

2
τ(1− β) +

1

2
(1− τ) +

3

4
βτ (S12)
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=
1

2
+

1

4
βτ. (S13)

Pr(x = 1|ℓ = 1) = Pr(c1c2) + Pr(c1c3) + Pr(c1c4) (S14)

=
1

2
τ(1− β) +

1

4
(1− τ)(δ2 + δ3 + δ1 + δ3 + δ1 + δ2) (S15)

=
1

2
τ(1− β) +

1

2
(1− τ) (S16)

=
1

2
− 1

2
βτ (S17)

Pr(x = 2|ℓ = 1) = Pr(c1c1) =
1

4
βτ. (S18)

This probability is independent of the labeling for which chromosome carries the A allele, and so is
the probability distribution of a gamete dosage given the parental dosage. By symmetry, we have

Pr(x = 0|ℓ = 3) =
1

4
βτ, (S19)

Pr(x = 1|ℓ = 3) =
1

2
− 1

2
βτ (S20)

Pr(x = 2|ℓ = 3) =
1

2
+

1

4
βτ. (S21)

For a parental dosage of ℓ = 2, for the moment allow c1 and c2 to carry the A allele, and c3 and c4
to carry the a allele. Then

Pr(x = 0|ℓ = 2) = Pr(c3c4) + Pr(c3c3) + Pr(c4c4) (S22)

=
1

6
τ(1− β) +

1

4
(1− τ)(δ2 + δ3) +

1

2
βτ (S23)

=
1

3
βτ +

1

6
τ +

1

4
(1− τ)(1− δ1). (S24)

By symmetry we have

Pr(x = 2|ℓ = 2) =
1

3
βτ +

1

6
τ +

1

4
(1− τ)(1− δ1). (S25)

Finally,

Pr(x = 1|ℓ = 2) = Pr(c1c3) + Pr(c1c4) + Pr(c2c3) + Pr(c2c4) (S26)

=
2

3
τ(1− β) +

1

4
(1− τ)(δ1 + δ3 + δ1 + δ2 + δ1 + δ2 + δ1 + δ3) (S27)

= −2

3
βτ +

2

3
τ +

1

2
(1− τ)(1 + δ1). (S28)

Notice that δ1 is the probability that the chromosomes that share the same alleles will pair (c1 with
c2 and c3 with c4). To make these probabilities independent of the labeling of the chromosomes, we
set γ to be the probability that the chromosomes that share the same alleles will pair, obtaining

Pr(x = 0|ℓ = 2) = Pr(x = 2|ℓ = 2) =
1

3
βτ +

1

6
τ +

1

4
(1− τ)(1− γ), and (S29)

4



Pr(x = 1|ℓ = 2) = −2

3
βτ +

2

3
τ +

1

2
(1− τ)(1 + γ), (S30)

where γ ∈ {δ1, δ2, δ3}. We summarize the probabilities of Pr(x|ℓ) in Table 1.
The model in 1 contains three parameters. However, we can reduce it down to two parameters.

Let η be the probability of quadrivalent formation given no double reduction. That is, using Bayes
rule,

η =
(1− β)τ

(1− β)τ + (1− τ)
. (S31)

Let ξ be a convex combination between γ and 1/3, weighted by η

ξ = η
1

3
+ (1− η)γ. (S32)

This ξ parameter measures the degree of preferential pairing, where deviations from 1/3 represent
deviations from autopolyploidy, while deviations from 1 or 0 represent deviations from allopoly-
ploidy. Finally, let α be the marginal probability of double reduction

α = βτ. (S33)

Then, using the parameters α and ξ, we may re-write the probability distributions in Table 1 as
Table 2 (Theorem S1).

Theorem S1. Let ξ and α be as defined in (S32) and (S33), respectively. Then the probability
distributions in Tables 1 and 2 are equivalent.

Proof. The correspondence between Pr(x|ℓ = 0), Pr(x|ℓ = 1), Pr(x|ℓ = 3), and Pr(x|ℓ = 4)
between the two tables is obvious. It suffices to show that

1

2
(1− α)(1 + ξ) = −2

3
βτ +

2

3
τ +

1

2
(1− τ)(1 + γ), (S34)

as the other equalities from Pr(x|ℓ = 2) would follow by the sum-to-one constraint. From the
left-hand side of (S34), we have

1

2
(1− α)(1 + ξ) =

1

2
(1− βτ)(1 + η

1

3
+ (1− η)γ) (S35)

=
1

2
(1− βτ)

(
1 +

1
3(1− β)τ

(1− β)τ + (1− τ)
+

(1− τ)γ

(1− β)τ + (1− τ)

)
(S36)

=
1

2
(1− βτ)

(
(1− β)τ + (1− τ) + 1

3(1− β)τ + (1− τ)γ

(1− β)τ + (1− τ)

)
(S37)

=
1

2
(1− βτ)

(
4
3(1− β)τ + (1− τ)(1 + γ)

(1− β)τ + (1− τ)

)
(S38)

=
1

2
(1− βτ)

(
4
3(1− β)τ + (1− τ)(1 + γ)

1− βτ

)
(S39)
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=
2

3
(1− β)τ +

1

2
(1− τ)(1 + γ) (S40)

= −2

3
βτ +

2

3
τ +

1

2
(1− τ)(1 + γ). (S41)

Though we have managed to reduce the number of parameters from three to two, the resulting
parameterization induces a dependence on the range of possible value of ξ given a value of α
(Theorem S2).

Theorem S2. Suppose that 0 ≤ β ≤ c. Then, for a given value of α, we have

1

3

α

1− α

1− c

c
≤ ξ ≤ 1− 2

3

α

1− α

1− c

c
. (S42)

Proof. We may rewrite ξ as

ξ =
1

3

τ − βτ

1− βτ
+

1− τ

1− βτ
γ (S43)

=
1

3

τ − α

1− α
+

1− τ

1− α
γ. (S44)

Since τ = α/β (and α ≤ β), we have, for a given value of α, that α/c ≤ τ ≤ 1.
To find the minimum value of ξ, we minimize (S44) over τ and γ. This minimum occurs at γ = 0

and τ = α/c, yielding the lower bound of (S42). To find the maximum value of ξ, we maximize
(S44) over τ and γ. This maximum occurs at γ = 1 and τ = α/c, yielding the upper bound of
(S42).

S3 Generalization of Fisher and Mather [1943]

Here, we show that our models for the gamete frequencies in Table 2 (and, thus, Table 1) are
generalizations of those in Table 9 from Fisher and Mather [1943]. The model from Fisher and
Mather [1943] incorporates double reduction, but not preferential pairing, and we show that setting
ξ = 1/3 results in the same gamete frequencies as those in Table 9 from Fisher and Mather [1943].
It is trivial to check the equivalence between Table 2 and Table 9 from Fisher and Mather [1943]
for the parental genotypes ℓ = 0, 1, 3, 4, so we just consider ℓ = 2. For our tetraploid model, we
have that ξ is the probability of pairing configuration A-A:a-a, and 1−ξ is the probability of pairing
configuration A-a:A-a. Labeling c1, c2, c3, c4 as the four chromosomes, and allowing c1 and c2 to
carry the A alleles, the possible pairings are c1-c2:c3-c4 = A-A;a-a, c1-c3:c2-c4 = A-a:A-a, and c1-
c4:c2-c3 = A-a:A-a. Thus, under polysomic inheritance, A-A:a-a occurs with probability ξ = 1/3.
We can plug this in to get the gamete frequencies under polysomic inheritance

Pr(x = 0|ℓ = 2, ξ = 1/3) =
1

2
α+

1

4
(1− 1

3
)(1− α) (S45)

=
1

6
+

1

3
α, (S46)

which one can check is the same as the value as Table 9 from Fisher and Mather [1943]. The other
values for ℓ = 2 follow from symmetry and the sum-to-one constraint.
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S4 Prior Sensitivity Analysis

In this section, we adjusted the default priors for the Bayes test in Section 2.3 to evaluate its
robustness to prior selection. Specifically, under the same simulation settings as Sections 3.1 and
3.2, we evaluated our methods using the following priors under the null,

τ ∼ Beta(1/2, 1/2) or τ ∼ Beta(2, 2), and (S47)

γ1, γ2 ∼ Beta(1/3, 2/3) or γ1, γ2 ∼ Beta(1, 2). (S48)

This resulted in four combinations of new prior distributions (two for τ and two for γ1 and γ2). The
Beta(1/3, 2/3) prior for the γ’s is more informative for allopolyploidy, while the Beta(1, 2) prior for
the γ’s is more informative for autopolyploidy. The Beta(1/2, 1/2) prior for τ places more weight
at either fully bivalent or fully quadrivalent formation, while the Beta(2, 2) prior for τ places more
weight on a mixed form of pairing (both bivalent and quadrivalent).

The results for the null simulations of Section 3.1 are presented in Figures S9–S12. We see
that the Bayes test is robust to moderate changes in prior selection in almost all scenarios. The
only scenario where we see a lot of impact is when α = 0, ξ1 = ξ2 = 1, and ℓ1 = ℓ2 = 2. This
is the scenario of “fixed heterozygosity” [Cornille et al., 2016] in true allopolyploids where the
genotype frequencies are q = (0, 0, 1, 0, 0). That is, all offspring have a genotype of 2. Here, the
best performing prior (in terms of having the largest Bayes factors) in this fixed heterozygosity case
is the one most keen toward allopolyploidy and pure bivalent pairing (γ1, γ2 ∼ Beta(1/3, 2/3) and
τ ∼ Beta(1/2, 1/2)). If fixed heterozygosity were a possibility, this would probably be known by
the researcher and they should use a prior that is highly informative for allopolyploidy.

The results for the alternative simulations of Section 3.2 are presented in Figure S18. We see
there that all priors performed about equally well, indicating that our methods are robust here to
prior selection.
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S5 Supplementary tables, figures, and procedures

SNP ℓ1 ℓ2 Bayes LRT polymapR Observed Expected

12 8929238 0 1 -35 3.9e-22 0.97 (105,113,11,11,0) (130,100,10,0,0)
11 32341161 2 4 -16 1.8e-15 0.81 (0,8,35,163,34) (0,0,38.8,162.3,38.8)
6 15037920 0 2 -16 6.2e-14 0.96 (36,153,44,7,0) (42.7,154.6,42.7,0,0)
6 14723914 4 2 -13 4.8e-12 0.84 (0,7,40,156,37) (0,0,42.1,155.8,42.1)
17 9734135 0 3 -6.5 2.1e-10 0.83 (23,102,108,6,1) (10,100,130,0,0)
1 1019768 1 0 11 0.97 0.0016 (132,100,8,0,0) (130,100,10,0,0)
22 23904806 0 1 11 0.88 0.002 (134,97,9,0,0) (130,100,10,0,0)
2 12659258 1 0 11 0.99 0.002 (131,101,8,0,0) (130,100,10,0,0)
2 12659201 1 0 11 0.98 0.002 (131,101,8,0,0) (130,100,10,0,0)
12 30140888 0 1 9.9 0.89 0.0031 (132,97,11,0,0) (130,100,10,0,0)

Table S1: In the first five SNPs (plotted in Figure S20), the LRT indicates segregation distortion
while the polymapR test indicates no segregation distortion, while in the last five SNPs (plotted in
Figure S21) the LRT indicates no segregation distortion while the polymapR test indicates segrega-
tion distortion. Parent genotypes (ℓ1 and ℓ2) are listed, along with the log Bayes factors (“Bayes”),
the LRT p-values (“LRT”), the polyampR p-values (“polymapR”), the observed counts when tab-
ulating posterior mode genotypes (“Observed”), and the expected counts based on the maximum
likelihood estimates of α and the ξ’s (“Expected”).
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Figure S1: Quantile-quantile plots against the uniform distribution of the p-values of the likelihood
ratio test of Section 2.2, when using known genotypes, from the null simulations in Section 3.1.
Since the null is true, the points should lie either near or above the y = x line (black dashed
line). Points that are above the y = x line are conservative, points that are below the y = x line
are anti-conservative. Row-facets index parent genotypes (ℓ1, ℓ2), and column-facets index sample
size. Color indexes different values of the double reduction rate, α, and the preferential pairing
parameters of the two parents, ξ1 and ξ2. A preferential pairing value of “a” indicates the lower
bound in (S42), a value of “b” indicates 1/3, and a value of “c” indicates the upper bound in (S42).
Preferential pairing only affects offspring genotype frequencies when the parent genotype is 2, and
so an omission of ξ1 or ξ2 from the color legend indicates a scenario where the corresponding parent
genotype is not 2.
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Figure S2: Quantile-quantile plots against the uniform distribution of the p-values of the likelihood
ratio test of Section 2.2, using genotype likelihoods derived from read-counts simulated at a read-
depth of 10, from the null simulations in Section 3.1. Since the null is true, the points should lie
either near or above the y = x line (black dashed line). Points that are above the y = x line
are conservative, points that are below the y = x line are anti-conservative. Row-facets index
parent genotypes (ℓ1, ℓ2), and column-facets index sample size. Color indexes different values of the
double reduction rate, α, and the preferential pairing parameters of the two parents, ξ1 and ξ2. A
preferential pairing value of “a” indicates the lower bound in (S42), a value of “b” indicates 1/3,
and a value of “c” indicates the upper bound in (S42). Preferential pairing only affects offspring
genotype frequencies when the parent genotype is 2, and so an omission of ξ1 or ξ2 from the color
legend indicates a scenario where the corresponding parent genotype is not 2.
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Figure S3: Quantile-quantile plots against the uniform distribution of the p-values of the standard
chi-squared test for segregation distortion, when using known genotypes, from the null simulations
in Section 3.1. Since the null is true, the points should lie either near or above the y = x line
(black dashed line). Points that are above the y = x line are conservative, points that are below
the y = x line are anti-conservative. Row-facets index parent genotypes (ℓ1, ℓ2), and column-facets
index sample size. Color indexes different values of the double reduction rate, α, and the preferential
pairing parameters of the two parents, ξ1 and ξ2. A preferential pairing value of “a” indicates the
lower bound in (S42), a value of “b” indicates 1/3, and a value of “c” indicates the upper bound in
(S42). Preferential pairing only affects offspring genotype frequencies when the parent genotype is
2, and so an omission of ξ1 or ξ2 from the color legend indicates a scenario where the corresponding
parent genotype is not 2.
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Figure S4: Quantile-quantile plots against the uniform distribution of the p-values of the standard
chi-squared test for segregation distortion, using genotype likelihoods derived from read-counts
simulated at a read-depth of 10, and tabulating posterior mode genotypes, from the null simulations
in Section 3.1. Since the null is true, the points should lie either near or above the y = x line (black
dashed line). Points that are above the y = x line are conservative, points that are below the y = x
line are anti-conservative. Row-facets index parent genotypes (ℓ1, ℓ2), and column-facets index
sample size. Color indexes different values of the double reduction rate, α, and the preferential
pairing parameters of the two parents, ξ1 and ξ2. A preferential pairing value of “a” indicates the
lower bound in (S42), a value of “b” indicates 1/3, and a value of “c” indicates the upper bound in
(S42). Preferential pairing only affects offspring genotype frequencies when the parent genotype is
2, and so an omission of ξ1 or ξ2 from the color legend indicates a scenario where the corresponding
parent genotype is not 2.
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Figure S5: Quantile-quantile plots against the uniform distribution of the p-values of the polymapR
approach of Section 1.1 [Bourke et al., 2018], when using known genotypes, from the null simulations
in Section 3.1. Since the null is true, the points should lie either near or above the y = x line (black
dashed line). Points that are above the y = x line are conservative, points that are below the y = x
line are anti-conservative. Row-facets index parent genotypes (ℓ1, ℓ2), and column-facets index
sample size. Color indexes different values of the double reduction rate, α, and the preferential
pairing parameters of the two parents, ξ1 and ξ2. A preferential pairing value of “a” indicates the
lower bound in (S42), a value of “b” indicates 1/3, and a value of “c” indicates the upper bound in
(S42). Preferential pairing only affects offspring genotype frequencies when the parent genotype is
2, and so an omission of ξ1 or ξ2 from the color legend indicates a scenario where the corresponding
parent genotype is not 2.
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Figure S6: Quantile-quantile plots against the uniform distribution of the p-values of the polymapR
approach of Section 1.1 [Bourke et al., 2018], using genotype likelihoods derived from read-counts
simulated at a read-depth of 10, from the null simulations in Section 3.1. Since the null is true, the
points should lie either near or above the y = x line (black dashed line). Points that are above the
y = x line are conservative, points that are below the y = x line are anti-conservative. Row-facets
index parent genotypes (ℓ1, ℓ2), and column-facets index sample size. Color indexes different values
of the double reduction rate, α, and the preferential pairing parameters of the two parents, ξ1 and
ξ2. A preferential pairing value of “a” indicates the lower bound in (S42), a value of “b” indicates
1/3, and a value of “c” indicates the upper bound in (S42). Preferential pairing only affects offspring
genotype frequencies when the parent genotype is 2, and so an omission of ξ1 or ξ2 from the color
legend indicates a scenario where the corresponding parent genotype is not 2.

14



(0,1)
(0,2)

(1,1)
(1,2)

(2,2)

α
=

0,
 ξ

1
=

a,
 ξ

2
=

a

α
=

0,
 ξ

1
=

a,
 ξ

2
=

b

α
=

0,
 ξ

1
=

a,
 ξ

2
=

c

α
=

0,
 ξ

1
=

b,
 ξ

2
=

b

α
=

0,
 ξ

1
=

b,
 ξ

2
=

c

α
=

0,
 ξ

1
=

c,
 ξ

2
=

c

α
=

0,
 ξ

2
=

a

α
=

0,
 ξ

2
=

b

α
=

0,
 ξ

2
=

c

α
=

0
α

=
1

12
, ξ

1
=

a,
 ξ

2
=

a

α
=

1
12

, ξ
1

=
a,

 ξ
2

=
b

α
=

1
12

, ξ
1

=
a,

 ξ
2

=
c

α
=

1
12

, ξ
1

=
b,

 ξ
2

=
b

α
=

1
12

, ξ
1

=
b,

 ξ
2

=
c

α
=

1
12

, ξ
1

=
c,

 ξ
2

=
c

α
=

1
12

, ξ
2

=
a

α
=

1
12

, ξ
2

=
b

α
=

1
12

, ξ
2

=
c

α
=

1
12

α
=

1
6,

 ξ
1

=
b,

 ξ
2

=
b

α
=

1
6,

 ξ
2

=
b

α
=

1
6

−5

0

5

10

−5

0

5

10

−5

0

5

10

−5

0

5

10

−5

0

5

10

Condition

Lo
g 

B
ay

es
 F

ac
to

r

Sample Size

20

200

Figure S7: Box plots of the log Bayes factors from the Bayes tests of Section 2.3, when using known
genotypes, from the null simulations in Section 3.1. Since the null is true, the log Bayes factors
should be mostly above 0 (horizontal black dashed line). Row-facets index parent genotypes (ℓ1, ℓ2),
and color indexes sample size. The x-axis indexes different values of the double reduction rate, α,
and the preferential pairing parameters of the two parents, ξ1 and ξ2. A preferential pairing value
of “a” indicates the lower bound in (S42), a value of “b” indicates 1/3, and a value of “c” indicates
the upper bound in (S42). Preferential pairing only affects offspring genotype frequencies when the
parent genotype is 2, and so an omission of ξ1 or ξ2 from the x-axis labels indicates a scenario where
the corresponding parent genotype is not 2.
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Figure S8: Box plots of the log Bayes factors from the Bayes tests of Section 2.3, using genotype
likelihoods derived from read-counts simulated at a read-depth of 10, from the null simulations in
Section 3.1. Since the null is true, the log Bayes factors should be mostly above 0 (horizontal black
dashed line). Row-facets index parent genotypes (ℓ1, ℓ2), and color indexes sample size. The x-axis
indexes different values of the double reduction rate, α, and the preferential pairing parameters of
the two parents, ξ1 and ξ2. A preferential pairing value of “a” indicates the lower bound in (S42),
a value of “b” indicates 1/3, and a value of “c” indicates the upper bound in (S42). Preferential
pairing only affects offspring genotype frequencies when the parent genotype is 2, and so an omission
of ξ1 or ξ2 from the x-axis labels indicates a scenario where the corresponding parent genotype is
not 2.
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Figure S9: Box plots of the log Bayes factors under different priors (color) from the Bayes tests
of Section 2.3, when using known genotypes and n = 20, from the null simulations in Section 3.1.
In the color legend, the first pair of numbers are the shape parameters for the beta prior of τ , the
second pair of numbers are the shape parameters for the beta priors for γ1 and γ2. Since the null is
true, the log Bayes factors should be mostly above 0 (horizontal black dashed line). The log Bayes
factors are mostly robust to prior choice. Row-facets index parent genotypes (ℓ1, ℓ2). The x-axis
indexes different values of the double reduction rate, α, and the preferential pairing parameters of
the two parents, ξ1 and ξ2. A preferential pairing value of “a” indicates the lower bound in (S42),
a value of “b” indicates 1/3, and a value of “c” indicates the upper bound in (S42). Preferential
pairing only affects offspring genotype frequencies when the parent genotype is 2, and so an omission
of ξ1 or ξ2 from the x-axis labels indicates a scenario where the corresponding parent genotype is
not 2.
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Figure S10: Box plots of the log Bayes factors under different priors (color) from the Bayes tests
of Section 2.3, when using known genotypes and n = 200, from the null simulations in Section 3.1.
In the color legend, the first pair of numbers are the shape parameters for the beta prior of τ , the
second pair of numbers are the shape parameters for the beta priors for γ1 and γ2. Since the null is
true, the log Bayes factors should be mostly above 0 (horizontal black dashed line). The log Bayes
factors are mostly robust to prior choice. Row-facets index parent genotypes (ℓ1, ℓ2). The x-axis
indexes different values of the double reduction rate, α, and the preferential pairing parameters of
the two parents, ξ1 and ξ2. A preferential pairing value of “a” indicates the lower bound in (S42),
a value of “b” indicates 1/3, and a value of “c” indicates the upper bound in (S42). Preferential
pairing only affects offspring genotype frequencies when the parent genotype is 2, and so an omission
of ξ1 or ξ2 from the x-axis labels indicates a scenario where the corresponding parent genotype is
not 2.
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Figure S11: Box plots of the log Bayes factors under different priors (color) from the Bayes tests of
Section 2.3, using genotype likelihoods derived from read-counts simulated at a read-depth of 10 and
n = 20, from the null simulations in Section 3.1. In the color legend, the first pair of numbers are the
shape parameters for the beta prior of τ , the second pair of numbers are the shape parameters for
the beta priors for γ1 and γ2. Since the null is true, the log Bayes factors should be mostly above 0
(horizontal black dashed line). The log Bayes factors are mostly robust to prior choice. Row-facets
index parent genotypes (ℓ1, ℓ2). The x-axis indexes different values of the double reduction rate, α,
and the preferential pairing parameters of the two parents, ξ1 and ξ2. A preferential pairing value
of “a” indicates the lower bound in (S42), a value of “b” indicates 1/3, and a value of “c” indicates
the upper bound in (S42). Preferential pairing only affects offspring genotype frequencies when the
parent genotype is 2, and so an omission of ξ1 or ξ2 from the x-axis labels indicates a scenario where
the corresponding parent genotype is not 2.
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Figure S12: Box plots of the log Bayes factors under different priors (color) from the Bayes tests of
Section 2.3, using genotype likelihoods derived from read-counts simulated at a read-depth of 10 and
n = 200, from the null simulations in Section 3.1. In the color legend, the first pair of numbers are
the shape parameters for the beta prior of τ , the second pair of numbers are the shape parameters
for the beta priors for γ1 and γ2. Since the null is true, the log Bayes factors should be mostly above
0 (horizontal black dashed line). The log Bayes factors are mostly robust to prior choice. Row-facets
index parent genotypes (ℓ1, ℓ2). The x-axis indexes different values of the double reduction rate, α,
and the preferential pairing parameters of the two parents, ξ1 and ξ2. A preferential pairing value
of “a” indicates the lower bound in (S42), a value of “b” indicates 1/3, and a value of “c” indicates
the upper bound in (S42). Preferential pairing only affects offspring genotype frequencies when the
parent genotype is 2, and so an omission of ξ1 or ξ2 from the x-axis labels indicates a scenario where
the corresponding parent genotype is not 2.
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Figure S13: Box plots of estimates of the double reduction rate α̂ (y-axis) stratified by sample size
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are biased and have high variance, indicating that they are unreliable, even for large sample sizes.
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Figure S14: Power (y-axis) of different alternatives (facets) for different methods (color) at realistic
levels of stated Type I error control (x-axis). This is for the scenario at a read-depth of 10 and a
sample size of 20. Only the likelihood ratio test actually controls Type I error at the stated level,
and so this plot demonstrates the unavoidable loss in power caused by correctly controlling Type I
error.
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Figure S15: Power (y-axis) of different alternatives (facets) for different methods (color) at realistic
levels of stated Type I error control (x-axis). This is for the scenario at a read-depth of infinity
and a sample size of 20. Only the likelihood ratio test actually controls Type I error at the stated
level, and so this plot demonstrates the (typically) unavoidable loss in power caused by correctly
controlling Type I error.
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Figure S16: Power (y-axis) of different alternatives (facets) for different methods (color) at realistic
levels of stated Type I error control (x-axis). This is for the scenario at a read-depth of 10 and
a sample size of 200. Only the likelihood ratio test actually controls Type I error at the stated
level, and so this plot demonstrates the (typically) unavoidable loss in power caused by correctly
controlling Type I error.
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Figure S17: Power (y-axis) of different alternatives (facets) for different methods (color) at realistic
levels of stated Type I error control (x-axis). This is for the scenario at a read-depth of infinity
and a sample size of 200. Only the likelihood ratio test actually controls Type I error at the stated
level, and so this plot demonstrates the (typically) unavoidable loss in power caused by correctly
controlling Type I error.
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Figure S18: Box plots of the log Bayes factors (y-axis) from the Bayesian method of Section 2.3
under different priors (color), at different sample sizes (n), different read-depths (rd), and different
alternative scenarios (facets). In the color legend, the first pair of numbers are the shape parameters
for the beta prior of τ , the second pair of numbers are the shape parameters for the beta priors for γ1
and γ2. Negative values indicate support for the alternative, and these simulations were run when
the alternative was true (Section 3.2), and so more negative values indicate superior performance.
Our Bayes test provides negative values for most scenarios.
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Figure S19: Pairs plot of the log Bayes factors from the Bayes test from Section 2.3, and the log
p-values from the LRT of Section 2.2 and the polymapR test of Section 1.1. The Bayes test and
LRT provide more concordant results.
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Figure S20: Genotype plots [Gerard et al., 2018] of five SNPs (titles) where the LRT indicates strong
segregation distortion, but polymapR indicates no segregation distortion. The p-values and infor-
mation on these SNPs are provided in Table S1. The x-axis contains the counts of the alternative
allele, and the y-axis contains the counts of the reference allele. The dashed lines radiating from
the origin are the expected counts under the fitted model of updog. The colors indicate posterior
mode genotype. The “+” and “×” symbols indicate the parents.
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Figure S21: Genotype plots [Gerard et al., 2018] of five SNPs (titles) where the LRT indicates no
segregation distortion, but polymapR indicates strong segregation distortion. The p-values and in-
formation on these SNPs are provided in Table S1. The x-axis contains the counts of the alternative
allele, and the y-axis contains the counts of the reference allele. The dashed lines radiating from
the origin are the expected counts under the fitted model of updog. The colors indicate posterior
mode genotype. The “+” and “×” symbols indicate the parents.
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Figure S22: Average (dots) and plus or minus two standard errors (error bars) for the mean double
reduction rate estimates for the first 10% of SNPs (“A”), middle 20% of SNPs (“B”), and last 10%
of SNPs (“C”) for the 12 linkage groups from the blueberry data (Facets) at SNPs where parent 1
was simplex and parent 2 was nullplex. The numbers above the “A” and “C” error bars are the
Tukey adjusted p-values [Tukey, 1949] comparing groups “A”-“B” and “B”-“C”, respectively.
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Figure S23: Average (dots) and plus or minus two standard errors (error bars) for the mean double
reduction rate estimates for the first 10% of SNPs (“A”), middle 20% of SNPs (“B”), and last 10%
of SNPs (“C”) for the 12 linkage groups from the blueberry data (Facets) at SNPs where parent 1
was nullplex and parent 2 was simplex. The numbers above the “A” and “C” error bars are the
Tukey adjusted p-values [Tukey, 1949] comparing groups “A”-“B” and “B”-“C”, respectively.

31



rd=10 rd=Inf

n=
20

n=
200

0.
00

0

0.
02

5

0.
05

0

0.
07

5

0.
10

0

0.
00

0

0.
02

5

0.
05

0

0.
07

5

0.
10

0

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

False Positive Rate

T
ru

e 
P

os
iti

ve
 R

at
e

Method

Bayes

Chisq

LRT

polymapR

Figure S24: ROC curve at realistic levels of Type I error rate. The Type I error rate (false positive
rate) on the x-axis is plotted against power (true positive rate) on the y-axis for various methods
(color) using all 9000 null simulation scenarios and 375 alternative scenarios, randomly sampled
from the 3000 alternative scenarios in Figure 2, per ROC curve. The alternative scenarios represent
4% of all cases, consistent with the blueberry data in Section 3.3. This is a general overview for
the simulation performance of the various methods. The likelihood ratio test is generally the best
performer, and the Bayes test is second best for large sample sizes.
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