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Appendix

Kinetic Equations of the Deterministic Model. In the model schematized in Fig. 6, the
temporal variation of the concentrations of mRNA (MP) and the various forms of clock
protein, cytosolic (P0, P1, P2) or nuclear (PN), is governed by the following system of kinetic
equations (1, 2):
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The results shown in Fig. 2A (see article) have been obtained by numerical integration of Eqs.
1 for the following parameter values:

KI = 2 nM, n = 4, vs = 0.5 nMh−1 , vm = 0.3 nMh −1,  Km = 0.2 nM, ks = 2.0 h−1 ,
v1 = 6.0 nMh−1,  K1 =1.5 nM , v2 = 3.0 nMh−1,  K2 = 2.0 nM, v3 = 6.0 nMh −1,  K3 = 1.5 nM,
v4 = 3.0 nMh−1, K4 = 2.0 nM , vd =1.5 nMh−1,  Kd =0.1 nM , k1 = 2.0 h−1,  k2 =1.0 h−1 .

Decomposition of the Deterministic Model into Elementary Reaction Steps. To perform
stochastic simulations of the circadian clock mechanism, the deterministic model schematized
in Fig. 6, governed by the five kinetic equations (Eqs. 1), is decomposed into a detailed
reaction system consisting of 30 elementary steps. These steps are listed in Table 1 with the
probability of their occurrence, denoted wi (i = 1,... 30). Each wi is the product of a rate
constant times the number(s) of molecules involved in the reaction step. Because each
enzymatic reaction is decomposed fully into elementary steps, enzyme-substrate complexes
are considered explicitly. The detailed reaction system thus contains 22 variables instead of 5
in the deterministic model. In Table 1, the central column shows the reaction steps involving
the indicated molecular species, with the rate constant indicated above the arrow. In the right
column, showing the probability of occurrence of the various reaction steps, italicized capitals
denote the numbers of molecules of the corresponding species involved in the particular
reaction step.

Steps 1-8 pertain to the formation and dissociation of the various complexes between the gene
promoter and nuclear protein PN. G denotes the unliganded promoter of the gene, and GPN,
GPN2, GPN3, and GPN4 denote the complexes formed by the gene promoter with 1, 2, 3, or 4
PN molecules. Step 9 relates to the active state of the promoter leading to expression of the
gene and synthesis of mRNA (MP). In the case considered we assume that only the complex



between the promoter and four molecules of PN is inactive. Steps 10-12 pertain to the
degradation of MP by enzyme Em through formation of the complex Cm. Step 13 relates to
synthesis of unphosphorylatyed clock protein (P0) at a rate proportional to the number of
mRNA molecules. Steps 14-16 refer to the phosphorylation of P0 into P1 by kinase E1 through
formation of complex C1. Steps 17-19 refer to the dephosphorylation of P1 into P0 by
phosphatase E2 through formation of complex C2. Steps 20-25 pertain to the corresponding
phosphorylation of P1 into P2 and dephosphorylation of P2 into P1. Steps 26-28 relate to the
degradation of the phosphorylated form P2 by enzyme Ed through formation of complex Cd.
Steps 29 and 30 refer to entry of P2 into and exit of PN from the nucleus, respectively.

Parameter Values for Stochastic Simulations. Stochastic simulations of the detailed
reaction system consisting of the 30 reaction steps listed in Table 1 have been carried out by
means of the algorithm proposed by Gillespie (3, 4), in which in a random, infinitesimal time
interval computed by the method, one of the i reactions occurs with a probability proportional
to wi (i = 1,... 30). Parameter values used for stochastic simulations are listed in Table 2.

Remarks. In the column listing the probability of occurrence of the various reaction steps in
Table 1, kinetic constants related to bimolecular reactions are scaled by Ω (3, 4).  When
varying Ω to modify the numbers of molecules involved in the circadian oscillatory
mechanism, we wish to keep the number of gene promoters (G) equal to unity without
altering the relative weights of the different probabilities wi so as to keep dynamic behavior
consistent with that predicted by the corresponding deterministic model governed by Eqs. 1.
The numbers of enzyme molecules and the kinetic constants related to the steps involving G
therefore are multiplied by Ω in Table 2 listing the parameter values.

The maximum value of ai (i = 1, ..4) considered in Figs. 2 and 3 ranges from 103 to 5 × 104

molecule-1 h-1 for Ω ranging from 10 to 500 (see Table 2). For a nuclear volume of 10-13 liters,
for which a concentration of 1nM corresponds to 60 molecules per nucleus, these values of ai
correspond to values of the bimolecular rate constant ranging from 1.5 × 1010 to 7.5 × 1011

M-1 s-1. Such values are larger than the diffusion limit of 108–109 M-1s-1 usually considered for
bimolecular rate constants. However, values of up to 1010 M-1 s-1  (5, 6) or even higher values
(7) characterize the binding of a repressor to the gene promoter because of a “facilitated
diffusion” process mediated by encounter of the protein with the DNA molecule followed
either by sliding (6-9) or direct intersegment transfer of the protein on DNA (6). The values of
bimolecular rate constants ai considered in a previous report (10) were bounded by the
“classical” diffusion limit; this may explain the lack of robustness reported by the authors,
because at lower values of ai the oscillations are more affected by molecular noise (see
article).

In steps 1-8 in Table 1, parameters aj and dj (j = 1,…, n; with n = 1, 2, 3, or 4) are chosen such
that the dissociation constant Ki = di/ai (with KI

n = K jj =1
n∏ , where KI denotes the inhibition

constant in the nondeveloped, deterministic model governed by Eqs. 1) decreases as the
number of molecules of PN bound to the promoter increases (see Table 2); these conditions
enhance the cooperativity of the repression process.
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