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Benchmarking MOBER’s performance relative to other popular batch effect correction 
methods 
 
We compared MOBER against four widely used batch correction methods: ComBat (21, 22), 
Harmony (34), Batch Mean Centering(35) and the Regress_Out algorithm as implemented in 
scanpy (36). ComBat leverages a parametric and non-parametric empirical Bayes approach for 
correcting the batch effect. Harmony corrects for batch effects by computing a low dimensional 
embedding and altering the embedding of each cell with respect to batches. The Batch Mean 
Centering (BMC) method adjusts data by subtracting the batch-specific mean from each gene 
expression value, aiming to standardize batch effects across the dataset without the need for 
external variables. The Regress_Out algorithm uses simple linear regression (denoted in the 
plots below as SLR) to regress out unwanted sources of variation.  
 
To ensure detailed and unbiased comparison, we evaluated these methods by assessing the 
proximity of samples from the same indication but different batches following batch correction. 
In this respect, for each sample we calculated the Euclidean distance within 70-dimensional 
PCA space to the first nearest neighbor from the same indication but different batch, as well as 
the average distance to the 25 nearest neighbors from the same indication, but different batch. 
Smaller distances between samples from the same indication but different batches indicate 
better alignment.  
 
Fig. S1a-d show the alignment of pre-clinical and clinical tumor transcriptomes using different 
methods. None of these methods was able to effectively align CCLE and PTX to the TCGA 
data. Fig S1e-f indicate that, after batch correction, the smallest average distance between 
samples from the same indication, but different batches is observed with MOBER.   
 
Next, we simulated batch effects in RNA-seq data and created five different datasets (denoted 
as Dataset1 – Dataset5) with varying levels of confounding factors. To create each of these 
datasets we started from the TCGA dataset and randomly partitioned it into four non-
overlapping partitions (denoted as batch0 – batch3). Prior to this, we excluded TCGA primary 
sites with fewer than 100 samples to ensure statistical robustness. In the TCGA partitions we 
introduced gene expression variabilities as follows: 

• Technical variability per sample - introduced to simulate individual sample handling 
differences, equipment variations, or other laboratory-specific factors that could 
influence the measurements independently of biological conditions. This was done by 
sampling noise from a normal distribution as follows: 

sample noise level = random.normal(0, random.uniform(0.0, 0.4)) 
• Random noise on a gene level - small noise was added to expression levels of genes to 

reflect the stochastic nature of RNA transcription and sequencing, enhancing the 
complexity of the dataset. This noise was sampled from a uniform distribution as 
follows: 

noise on gene level = random.uniform(-0.25, 0.25) 
• Differential gene expression – we introduced modifications of gene expression levels 

on both batch level and indication level to simulate the inherent variability between 
different biological entities (e.g. difference in TME-related genes between cell lines, 
patient-derived xenografts and human tissues). The modification factor per gene was 
applied by sampling from a random distribution as follows: 

modification factor per gene = random.uniform(0.25, 4) 
  



We note that in certain studies we might not want to remove batch effects resulting from gene 
perturbations. However, here we introduce such modifications to simulate the systematic 
differences between pre-clinical models and clinical tumors, aiming to remove them.  
 
The above variabilities were applied on the TCGA samples to create each of the five datasets 
as follows: 

• Dataset1: In the three out of the four TCGA partitions we introduced small technical 
variability per sample, small random noise on a gene level, and modified the expression 
of 1000 randomly selected genes by a random factor, as stated above. 

• Dataset2: Similar to Dataset1, but we additionally introduced gene expression 
modifications for 1000 randomly selected genes per indication. Modifying genes per 
indication was done to simulate differences in the TME between different tumor 
indications. 

• Dataset3: Same as Dataset1, but instead of 1000 genes we introduced expression 
modifications to 5000 genes in each of the batches to simulate stronger confounding 
batch effects. 

• Dataset4: Similar to Dataset2, we introduced gene expression modifications to 3000 
randomly selected genes per batch and 3000 randomly selected genes per indication. 
The sampled genes per batch and per indication can overlap. 

• Dataset5: Similar to Dataset2 and Dataset4, we introduced gene expression 
modifications to 5000 randomly selected genes per batch and 5000 randomly selected 
genes per indication. The sampled genes per batch and per indication can overlap.  
 

Fig. S2 - S6 show the alignment of the four different batches in each of the simulated datasets 
respectively, with each of the tested methods. To quantitatively measure the quality of the batch 
alignments in each of the five simulated datasets, we again computed the average Euclidean 
distance within 70-dimensional PCA space to the first nearest neighbor from the same 
indication but different batch for each sample, as well as the average distance to the 25 nearest 
neighbors from the same indication, but different batch. Fig. S7 demonstrates the superior 
performance of MOBER in comparison to the other tested methods in aligning the different 
batches from the 5 simulated datasets.   
 



 
Fig. S1 | Batch effect correction with ComBat, Harmony, BMC, and SLR in comparison to 
MOBER. Integration of transcriptional profiles from models and patient tumors using a) 
ComBat, b) Harmony, c) BMC, and d) SLR. The color corresponds to the sample origin. e) and 
f) Average Euclidean distance within 70-dimensional PCA space to the first nearest neighbor 
(e) or to the 25 nearest neighbors (f) from the same indication but different batch for each 
CCLE and PTX sample respectively. g) Average distance of CCLE samples to the 25 TCGA 
nearest neighbors from the same indication, stratified by tumor type. h) Average distance of 
PTX samples to the 25 TCGA nearest neighbors from the same indication, stratified by tumor 
type.  
 



 
 
Fig. S2 | Batch effect correction in simulated Dataset1. a) and b) Alignment of samples from 
the 4 simulated batches without any batch correction. The samples are colored by batch in (a) 
and by disease type in (b). Batch effect correction with c) ComBat, d) Harmony, e) BMC, f) 
SLR and g) MOBER. The samples are colored by batch. h) Batch effect correction with 
MOBER like in g), but with samples colored by disease type.  



 
Fig. S3 | Batch effect correction for simulated Dataset2. a) and b) Alignment of samples 
from the 4 simulated batches without any batch correction. The samples are colored by batch 
in (a) and by disease type in (b). Batch effect correction with c) ComBat, d) Harmony, e) BMC, 
f) SLR and g) MOBER. The samples are colored by batch. h) Batch effect correction with 
MOBER like in g), but with samples colored by disease type.  
  



 
Fig. S4 | Batch effect correction in simulated Dataset3. a) and b) Alignment of samples from 
the 4 simulated batches without any batch correction. The samples are colored by batch in (a) 
and by disease type in (b). Batch effect correction with c) ComBat, d) Harmony, e) BMC, f) 
SLR and g) MOBER. The samples are colored by batch. h) Batch effect correction with 
MOBER like in g), but with samples colored by disease type.  
  



 
Fig. S5 | Batch effect correction in simulated Dataset4. a) and b) Alignment of samples from 
the 4 simulated batches without any batch correction. The samples are colored by batch in (a) 
and by disease type in (b). Batch effect correction with c) ComBat, d) Harmony, e) BMC, f) 
SLR and g) MOBER. The samples are colored by batch. h) Batch effect correction with 
MOBER like in g), but with samples colored by disease type.  
  



 
Fig. S6 | Batch effect correction in simulated Dataset5. a) and b) Alignment of samples from 
the 4 simulated batches without any batch correction. The samples are colored by batch in (a) 
and by disease type in (b). Batch effect correction with c) ComBat, d) Harmony, e) BMC, f) 
SLR and g) MOBER. The samples are colored by batch. h) Batch effect correction with 
MOBER like in g), but with samples colored by disease type. This dataset exhibits very 
strongly pronounced batch effects, yet MOBER could still successfully align the batches and 
cluster the samples by disease type (h). 
 



 
 
Fig. S7 | Performance on the 5 simulated datasets by different methods. a) Average 
distance to the first nearest neighbor (a) or to the 25 nearest neighbors (b) from the same 
indication but different batch for each sample in the 5 simulated datasets. MOBER consistently 
outperforms the other methods.  
  



 
 
 

 
Fig. S8 | Global pan cancer alignment with MOBER, highlighting MET500 metastatic 
samples. MET500 tumors are shown in squares with color corresponding to the primary site. 
The samples with unknown primary origin are shown in black. All other tumors (CCLE, PTX, 
CMI and TCGA) are shown with circles and are colored based on their primary site annotation.  
  



 
 

 

 
Fig. S9 | Alignment of breast cancer subtypes. UMAP 2D projection of the MOBER-
alignment highlighting breast tumor samples: LumA (green), LumB (orange), Normal (purple), 
HER2 (blue) and Basal (red). All other non-breast tumor samples are in grey. 
  



 
 

 

 
Fig. S10 | Pathway enrichment analysis of the top 100 upregulated genes when transforming 
CCLEs to TCGA tumors for a) breast primary tumors; b) blood tumors. c) Genes that are most 
significantly upregulated in silico after the alignment of blood CCLEs to blood TCGA tumors 
(x-axis), along with top enriched biological pathways involving the 100 most upregulated genes 
(y-axis). 
 



 



Fig. S11 | Associating biomarkers of high/low metastatic potential in human cancer cell 
lines from MetMap and translating them to TCGA patients for different disease types. a) 
Difference in survival of TCGA cancer patients for which we predict high metastatic potential 
(top 25%, blue) vs low metastatic potential (bottom 25%, orange) with ML models trained on 
original cell line expression profiles (left-side plots) or ML models trained on MOBER-
transformed cell line expression profiles (right-side plots), segmented by disease type. P-values 
are derived from the log-rank test, shaded areas indicate 90% of confidence intervals. For all 
indications, the p-values of the respective log-rank tests are smaller when MOBER-
transformed cell line expression values are used, although statistically significant survival 
differences (p-value <0.05) are observed only for adrenal gland, brain, kidney, liver, pancreatic 
and soft tissue cancers. b) Spearman’s correlation between the predicted metastatic potential 
of TCGA tumors and their corresponding clinical stages when using ML models trained on 
original cell line expression profiles (blue) and ML models trained on MOBER-transformed 
cell line expression profiles (orange). Only indications with available disease stage annotation 
are shown. We note that the metastatic potential experiments by MetMap rely on limited 
number of cell lines, thereby making it challenging to extrapolate findings to diverse patient 
tumors. Yet, our results demonstrate the utility of using the MOBER-transformed gene 
expression profiles in cell line to patient translational studies. 
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