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Benchmarking MOBER’s performance relative to other popular batch effect correction
methods

We compared MOBER against four widely used batch correction methods: ComBat (21, 22),
Harmony (34), Batch Mean Centering(35) and the Regress _Out algorithm as implemented in
scanpy (36). ComBat leverages a parametric and non-parametric empirical Bayes approach for
correcting the batch effect. Harmony corrects for batch effects by computing a low dimensional
embedding and altering the embedding of each cell with respect to batches. The Batch Mean
Centering (BMC) method adjusts data by subtracting the batch-specific mean from each gene
expression value, aiming to standardize batch effects across the dataset without the need for
external variables. The Regress Out algorithm uses simple linear regression (denoted in the
plots below as SLR) to regress out unwanted sources of variation.

To ensure detailed and unbiased comparison, we evaluated these methods by assessing the
proximity of samples from the same indication but different batches following batch correction.
In this respect, for each sample we calculated the Euclidean distance within 70-dimensional
PCA space to the first nearest neighbor from the same indication but different batch, as well as
the average distance to the 25 nearest neighbors from the same indication, but different batch.
Smaller distances between samples from the same indication but different batches indicate
better alignment.

Fig. Sla-d show the alignment of pre-clinical and clinical tumor transcriptomes using different
methods. None of these methods was able to effectively align CCLE and PTX to the TCGA
data. Fig Sle-f indicate that, after batch correction, the smallest average distance between
samples from the same indication, but different batches is observed with MOBER.

Next, we simulated batch effects in RNA-seq data and created five different datasets (denoted
as Dataset] — Dataset5) with varying levels of confounding factors. To create each of these
datasets we started from the TCGA dataset and randomly partitioned it into four non-
overlapping partitions (denoted as batchO — batch3). Prior to this, we excluded TCGA primary
sites with fewer than 100 samples to ensure statistical robustness. In the TCGA partitions we
introduced gene expression variabilities as follows:

e Technical variability per sample - introduced to simulate individual sample handling
differences, equipment variations, or other laboratory-specific factors that could
influence the measurements independently of biological conditions. This was done by
sampling noise from a normal distribution as follows:

sample noise level = random.normal(0, random.uniform(0.0, 0.4))

¢ Random noise on a gene level - small noise was added to expression levels of genes to
reflect the stochastic nature of RNA transcription and sequencing, enhancing the
complexity of the dataset. This noise was sampled from a uniform distribution as
follows:

noise on gene level = random.uniform(-0.25, 0.25)

e Differential gene expression — we introduced modifications of gene expression levels
on both batch level and indication level to simulate the inherent variability between
different biological entities (e.g. difference in TME-related genes between cell lines,
patient-derived xenografts and human tissues). The modification factor per gene was
applied by sampling from a random distribution as follows:

modification factor per gene = random.uniform(0.25, 4)



We note that in certain studies we might not want to remove batch effects resulting from gene
perturbations. However, here we introduce such modifications to simulate the systematic
differences between pre-clinical models and clinical tumors, aiming to remove them.

The above variabilities were applied on the TCGA samples to create each of the five datasets
as follows:

e Datasetl: In the three out of the four TCGA partitions we introduced small technical
variability per sample, small random noise on a gene level, and modified the expression
of 1000 randomly selected genes by a random factor, as stated above.

e Dataset2: Similar to Datasetl, but we additionally introduced gene expression
modifications for 1000 randomly selected genes per indication. Modifying genes per
indication was done to simulate differences in the TME between different tumor
indications.

e Dataset3: Same as Datasetl, but instead of 1000 genes we introduced expression
modifications to 5000 genes in each of the batches to simulate stronger confounding
batch effects.

e Dataset4: Similar to Dataset2, we introduced gene expression modifications to 3000
randomly selected genes per batch and 3000 randomly selected genes per indication.
The sampled genes per batch and per indication can overlap.

e DatasetS: Similar to Dataset2 and Dataset4, we introduced gene expression
modifications to 5000 randomly selected genes per batch and 5000 randomly selected
genes per indication. The sampled genes per batch and per indication can overlap.

Fig. S2 - S6 show the alignment of the four different batches in each of the simulated datasets
respectively, with each of the tested methods. To quantitatively measure the quality of the batch
alignments in each of the five simulated datasets, we again computed the average Euclidean
distance within 70-dimensional PCA space to the first nearest neighbor from the same
indication but different batch for each sample, as well as the average distance to the 25 nearest
neighbors from the same indication, but different batch. Fig. S7 demonstrates the superior
performance of MOBER in comparison to the other tested methods in aligning the different
batches from the 5 simulated datasets.
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Fig. S1 | Batch effect correction with ComBat, Harmony, BMC, and SLR in comparison to
MOBER. Integration of transcriptional profiles from models and patient tumors using a)
ComBat, b) Harmony, ¢) BMC, and d) SLR. The color corresponds to the sample origin. e) and
f) Average Euclidean distance within 70-dimensional PCA space to the first nearest neighbor
(e) or to the 25 nearest neighbors (f) from the same indication but different batch for each
CCLE and PTX sample respectively. g) Average distance of CCLE samples to the 25 TCGA
nearest neighbors from the same indication, stratified by tumor type. h) Average distance of
PTX samples to the 25 TCGA nearest neighbors from the same indication, stratified by tumor

type.
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Fig. S2 | Batch effect correction in simulated Datasetl. a) and b) Alignment of samples from
the 4 simulated batches without any batch correction. The samples are colored by batch in (a)
and by disease type in (b). Batch effect correction with ¢) ComBat, d) Harmony, ¢) BMC, 1)
SLR and g) MOBER. The samples are colored by batch. h) Batch effect correction with
MOBER like in g), but with samples colored by disease type.
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Fig. S3 | Batch effect correction for simulated Dataset2. a) and b) Alignment of samples
from the 4 simulated batches without any batch correction. The samples are colored by batch
in (a) and by disease type in (b). Batch effect correction with ¢) ComBat, d) Harmony, €) BMC,
f) SLR and g) MOBER. The samples are colored by batch. h) Batch effect correction with
MOBER like in g), but with samples colored by disease type.
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Fig. S4 | Batch effect correction in simulated Dataset3. a) and b) Alignment of samples from
the 4 simulated batches without any batch correction. The samples are colored by batch in (a)
and by disease type in (b). Batch effect correction with ¢) ComBat, d) Harmony, ¢) BMC, 1)
SLR and g) MOBER. The samples are colored by batch. h) Batch effect correction with
MOBER like in g), but with samples colored by disease type.
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Fig. S5 | Batch effect correction in simulated Dataset4. a) and b) Alignment of samples from
the 4 simulated batches without any batch correction. The samples are colored by batch in (a)
and by disease type in (b). Batch effect correction with ¢) ComBat, d) Harmony, ¢) BMC, 1)
SLR and g) MOBER. The samples are colored by batch. h) Batch effect correction with
MOBER like in g), but with samples colored by disease type.
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Fig. S6 | Batch effect correction in simulated Dataset5. a) and b) Alignment of samples from
the 4 simulated batches without any batch correction. The samples are colored by batch in (a)
and by disease type in (b). Batch effect correction with ¢) ComBat, d) Harmony, ¢) BMC, 1)
SLR and g) MOBER. The samples are colored by batch. h) Batch effect correction with
MOBER like in g), but with samples colored by disease type. This dataset exhibits very
strongly pronounced batch effects, yet MOBER could still successfully align the batches and
cluster the samples by disease type (h).



Distance Distance
140 Method 160 Method
= Mober = Mober
Combat Combat
140
120 . Harmony == Harmony
BMC BMC
120
100 - SR = SLR

Raw Raw

-
® 9
8 8

Distance of 1st Nearest Neighbor
®
3
2
3

Distance of 25 Nearest Neighbors

>
3

~N
S

o

Datasetl Dataset2 Dataset3 Datasetd Dataset5 Datasetl Dataset2 Dataset3 Datasetd DatasetS

Fig. S7 | Performance on the 5 simulated datasets by different methods. a) Average
distance to the first nearest neighbor (a) or to the 25 nearest neighbors (b) from the same
indication but different batch for each sample in the 5 simulated datasets. MOBER consistently
outperforms the other methods.



25

B METS500 tumors
other tumors

20

15

UMAP2

-5

-10 -5 0 5 10 15
UMAP1

Fig. S8 | Global pan cancer alignment with MOBER, highlighting METS500 metastatic
samples. MET500 tumors are shown in squares with color corresponding to the primary site.
The samples with unknown primary origin are shown in black. All other tumors (CCLE, PTX,
CMI and TCGA) are shown with circles and are colored based on their primary site annotation.



»
------ 15 § B LumA By o
S8 |™ LumB +J
. O 5| m Nomal
14 § 2| m Here 288
@ W Basal
15 13
0 ~ 12
i -
5 =
2 1
s
10
0
- 9 patient tumor
patient tumor Tl ) g
” b 1A A S © cancer cell line S O cancer cell line . v
'V mouse tumor xenograft ‘\.8\ 'V mouse tumor xenograft
-10 - ) s 1 1 9 _8 _7 -6 5 - 3 -

UMAP1
Fig. S9 | Alignment of breast cancer subtypes. UMAP 2D projection of the MOBER-
alignment highlighting breast tumor samples: LumA (green), LumB (orange), Normal (purple),
HER?2 (blue) and Basal (red). All other non-breast tumor samples are in grey.



a

extracellular structure organization <
extracellular matrix organization {
ossification
skeletal system morphogenesis +
bone development +
humoral immune response 1
connective tissue development
collagen fibril organization
collagen metabolic process 1
cartilage development 1
bone morphogenesis 1
extracellular matrix disassembly{ @
protein trimerization1 @

protein heterotrimerization ®

s

0.2 0.3

GeneRatio

0.1

regulation of acute inflammatory response
leukocyte migration

regulation of inflammatory response
granulocyte migration

granulocyte chemotaxis

leukocyte chemotaxis

myeloid leukocyte migration

neutrophil degranulation

neutrophil mediated immunity

neutrophil activation

acute inflammatory response

neutrophil activation involved in immune response
cell chemotaxis

humoral immune response

Fig. S10 | Pathway enrichment analysis of the top 100 upregulated genes when transforming
CCLEs to TCGA tumors for a) breast primary tumors; b) blood tumors. c) Genes that are most
significantly upregulated in silico after the alignment of blood CCLEs to blood TCGA tumors
(x-axis), along with top enriched biological pathways involving the 100 most upregulated genes

(y-axis).

p.adjust

Count

e 5
P
®
[ ES
[R5
[ E3

sS<0Q
3999
000

C1s
C5AR1

b

neutrophil activation involved in immune response |
neutrophil activation {
neutrophil mediated immunity 1
neutrophil degranulation {
humoral immune response 4
cell chemotaxis 1
of i Y resp 1
leukocyte migration 1
acute inflammatory response 1
myeloid leukocyte migration -
leukocyte chemotaxis 1
granulocyte chemotaxis 1 ®

granulocyte migration ®
of acute y

Count

® 100
@ s
@ 50
@

CD14
CsT3

BZ2ERT22033352ENEE9883
685-EE282-088983085 283
C2RHE9F SxXx08892
0283 500 R3°>

&

CTss
DNASE1LL3

FPR1
HBB

MVP

LILRB3
TYROBP

CD163
CDHS

KLF4
LILRAS

p.adjust

o L 2.50e-07

] 5.00e-07

7.50e-07

1.00e-06

L4 1.25e-06

0.125 0150 0.175 0.200
GeneRatio

-log10(p-value)
50

0
0
1

5 8



e |
® °

14
o

Survival Rate

o
e

o
~

Adrenal gland

Original cell line expr.

Bladder

MOBER-transf. cell line expr. Original cell line expr. MOBER-transf. cell line expr.

— top 25% 10 10 — top 25%
—— bottom 25% —— bottom 25%
08 08
g 2
S 06 206
goa Soa
0.2 1 02
p=0790 p=0000 | p=0.919
00 |
o 2 4 6 8 10 o 2 4 6 8 10 0o 2 4 6 8 10 0o 2 4 6 8 10
Duration (years) Duration (years) Duration (years) Duration (years)
Breast

Original cell line expr.

MOBER-transf. cell line expr.

Original cell line expr.

MOBER-transf. cell line expr.

10 — top25% 10
—— bottom 25%
08 0o
£ g ® o 08
E 06 ;g' g &4
H H g % 06
304 2 H e
05
02
p=0.822 0.4 — top25%
| 03] bottom 25%
° 4 6 10 0 2 4 6 10 o 2 4 6 8 10 9 2 4 6 8 1
Duration (years) Duration (years) Duration (years) Duration (years)
Cervix Colorectal
Original cell line expr. MOBER-transf. cell line expr. Original cell line expr. MOBER-transf. cell line expr.
10 — top25% 10 10  wop25% 10
09 —— bottom 25% 09 09 —— bottom 25% 09
08 08 08 08
g g F} g
207 207 507 o7
g 06 % 06 E o8 g 06
305 305 20 205
04 0.4 04 04
03 03 03 03
02 02
0 i 6 10 0 a6 10 o 2 a4 6 8 10 o 2 4 6 8 10
Duration (years) Duration (years) Duration (years) Duration (years)
Kidn: Liver
Original cell line expr. MOBER-transf. cell line expr. Original cell line expr. MOBER-transf. cell line expr.
10  top25% 10 10  top25% 10
—— bottom 25% 09 —— bottom 25%
08 08 08 08
2 2 K] 2
£ o6 &7 206 206
£ $o6 H H
204 305 o4 Gos
0.4 0
: 02
021 p_og18 03 p=0.124
02 00 00
o 2 4 6 8 10 o 2 4 6 8 10 0o 2 4 6 8 10 o 2 4 6 8 10
Duration (years) Duration (years) Duration (years) Duration (years)
Lung Pancreas
Original cell line expr. MOBER-transf. cell line expr. Original cell line expr. MOBER-transf. cell line expr.
10 — top25% 10 — top 25% 10
—— bottom 25% — bottom25% | 09
08
. 08 . 08
g I b3
206 § 206 2%
g % 2 2
H H
P04 3 2% \ 30
1 04
02 L
02 pmo013 03
00 : 02
0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 0 2 4 6
Duration (years) Duration (years) Duration (years) Duration (years)
Skin Tissue
Original cell line expr. MOBER-transf. cell line expr. Original cell line expr. MOBER-transf. cell line expr.
10 — op25% 10 10 — top 25% 1011 — top25%
09 —— bottom 25% 09 o bottom25% 09
08
08 08 . . 08
g g 07
Zo7 507 5., 06 g v
3 T 06 k3 z 0
506 3 H H
Sos Sos 304 @05
04 o4 04
03] p=0470 031 p=0.082 021 p=0s818 03
02 o 02
o 2 4 6 8 10 o 2 4 6 8 10 0 4 6 10
Duration (years) Duration (years) Duration (years)
ki g. 1.0 7
2L 05 I ML-models trained on original
Q
2 § I I “ cell line expr.
$= 004 DR |
g s 0 I I ML-models trained on MOBER-
g5 transformed cell line expr.
< £-0.5 A
ve
el
ggto
° T = o = —
g, g 2588 30 28 <
c B 3 0 c =2 o
T Ygs33 gL
O & 5 & L
- = o ¥ <
T @ > &
S o
5
<



Fig. S11 | Associating biomarkers of high/low metastatic potential in human cancer cell
lines from MetMap and translating them to TCGA patients for different disease types. a)
Difference in survival of TCGA cancer patients for which we predict high metastatic potential
(top 25%, blue) vs low metastatic potential (bottom 25%, orange) with ML models trained on
original cell line expression profiles (left-side plots) or ML models trained on MOBER-
transformed cell line expression profiles (right-side plots), segmented by disease type. P-values
are derived from the log-rank test, shaded areas indicate 90% of confidence intervals. For all
indications, the p-values of the respective log-rank tests are smaller when MOBER-
transformed cell line expression values are used, although statistically significant survival
differences (p-value <0.05) are observed only for adrenal gland, brain, kidney, liver, pancreatic
and soft tissue cancers. b) Spearman’s correlation between the predicted metastatic potential
of TCGA tumors and their corresponding clinical stages when using ML models trained on
original cell line expression profiles (blue) and ML models trained on MOBER-transformed
cell line expression profiles (orange). Only indications with available disease stage annotation
are shown. We note that the metastatic potential experiments by MetMap rely on limited
number of cell lines, thereby making it challenging to extrapolate findings to diverse patient
tumors. Yet, our results demonstrate the utility of using the MOBER-transformed gene
expression profiles in cell line to patient translational studies.
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