Science Advances

Supplementary Materials for

Control of striatal circuit development by the chromatin regulator Zswim6

Kyuhyun Choi et al.

Corresponding author: Marc V. Fuccillo, fuccillo@pennmedicine.upenn.edu; Kyuhyun Choi, kyuhyun@hallym.ac.kr

Sci. Adv. **11**, eadq6663 (2025) DOI: 10.1126/sciadv.adq6663

This PDF file includes:

Figs. S1 to S6 Tables S1 and S2

Figure S1: Nuclear localization and chromatin regulation by ZSWIM6. Related to Figure 1.

(A) Representative images of DIV12 neurons transduced with AAV-Ef1α-Flag-Zswim6 (red) and immunostained for MAP2 (green) to label cell morphology and H2AZ to label nuclei (blue). Cultures were treated with the indicated reagents for 2 hours. Scale bar, 10 µm. (B) Summary data of mean Flag-ZSWIM6 fluorescence intensity (nucleus/cytoplasm ratio) in cells treated with the indicated reagents. (n= 3 cultures for each experimental condition, Untreated n= 27 cells, TTX n=29 cells, PTX n=27 cells, One-way ANOVA, F(2, 80) = 8.230, ***p=0.0006, Tukey's post hoc, Untreated-TTX p=0.0762; Untreated-PTX ***p=0.0003). (C) Quantification of the fraction of Flag-ZSWIM6 intensity localized to the nucleus in cells treated with the indicated reagents (n= 3 cultures for each experimental condition, Untreated n= 27 cells, TTX n=29 cells, PTX n=27 cells, One-way ANOVA, F(2,80) = 8.306, ***p=0.0002, Tukey's post hoc, Untreated-TTX p=0.1887; ****Untreated-PTX p=0.0001). (D) Representative maximum projections of confocal stacks demonstrating the relationship between Flag-ZSWIM6, cell-filling GFP, and the nuclear marker propidium iodide in striatum, following co-injection of AAV-hSyn-GFP and AAV-Eflα-Flag-Zswim6. Orthogonal views confirm nuclear localization of ZSWIM6 in the axial plane (scale bar, 10 µm). (E) Bioinformatics-based search of a well-conserved predicted nuclear localization sequence (NLS) across multiple species. (F) Overlap of peaks between Dlx-WT/cKO biological replicates demonstrating that the vast majority of peaks are shared between replicates. (G) significantly enriched gene ontology (GO) categories within the 583 TSS regions with \geq 1.5-fold increase in reads per million in Dlx-cKO vs Dlx-WT striatum.

Figure S2: snRNA-seq sample and Seurat cluster information. Related to Figure 2.

(A) Number of nuclei (pre-filtered to remove doublets) in each of the 8 animals included in the snRNA-seq experiment.
(B) Number of unique molecular identifiers (UMIs) per nucleus in each experimental sample (violin plots indicate median, 25th and 75th quartiles). (C) Number of identified features (genes) per nucleus in each experimental sample
(D) Seurat-generated "Feature plots", displaying expression levels of selected cell markers (purple) on the UMAP plot displayed in Fig. 2. (E) Two clusters corresponding to unidentified cell types show in UMAP space. (F) Percentage of Dlx-WT/cKO nuclei in each Seurat cluster. Dashed line indicates 50%. Violin plots indicate median, 25th and 75th quartiles.

Figure S3: Neuronal morphology and inhibitory synaptic transmission onto SPNs were not significantly altered by *Zswim6* knockout. Related to Figure 3.

(A) Schematic of dual virus injection strategy to achieve sparse labeling of Cre-expressing SPNs (top). Representative image of an iSPN expressing mRuby following the injection strategy above (bottom). Scale bar, 30 µm. (B) Quantification of total dendritic length (left) and number of primary dendrites (right) in D1-WT/ cKO SPNs (n= 3/3 animals, D1-WT/cKO n= 24/19 cells. Dendritic length, p=0.2552; primary dendrite number, p=0.9315, t-test). (C) Quantification of total dendritic length (left) and number of primary dendrites (right) in A2A-WT/cKO SPNs (n= 3/3 animals, A2A-WT/cKO n= 17/22 cells. Dendritic length, p=0.7647; primary dendrite number, p=0.9781, t-test). (D) Quantification of dendrite spine density (left) and filopodia density in D1-WT and D1cKO neurons (n= 3/3 animals, D1-WT/cKO n= 18/20 cells. Spine density, p=0.3271; filopodia density, p=0.1988, t-test). (E) Quantification of dendrite spine density (left) and filopodia density in A2A-WT and A2A-cKO neurons (n= 3/3 animals, A2A-WT/cKO n= 22/16 cells. Spine density, p=0.4454; filopodia density, *p=0.0428, t-test). Scale bars in (D-E), 5 µm. (F) Representative mIPSC traces from both D1-WT/cKO (top) neurons. Scale bar, 1s, 50pA. Cumulative distribution function graph of mIPSC amplitudes (bottom-left) and comparison of average mIPSC amplitudes (bottom-right) between D1-WT/cKO neurons (n = 20/15 cells from 4/4 animals; p = 0.5948, ttest). (G) Similar to (F), but for A2A-WT/cKO (n= 20/24 cells from 4/5 animals, p=0.4620, t-test). (H) Cumulative distribution function graph of mIPSC inter-event interval (left) and comparison of events frequencies (right) between D1-WT and D1-cKO neurons (n=20/15 cells from 4/4 animals, p=0.6364, t-test). (I) Similar to (H), but for A2A-WT/cKO (n= 20/24 cells from 4/5 animals, p=0.7296, t-test). (J) Averaged and scaled superimposed traces of mIPSCs from D1-WT/cKO(top) neurons. Comparison of $\tau 1$ and $\tau 2$ decay constants obtained from fitting mIPSC traces to a double exponential function (bottom) (n= 19/15 cells from 4/4 animals, $\tau 1$ p=0.3151, $\tau 2$ p=0.2435 t-test). k) Similar to (J), but for A2A-WT/cKO (n= 20/24 cells from 4/5 animals, $\tau 1$ p=0.2669, $\tau 2$ p=0.1831, t-test). Data are presented as mean ± SEM. Each shaded dot represents data from an individual experiment, unless otherwise noted.

Figure S4: Examination of NMDAR function, *Zswim6* gene dosage effects and analysis of dysregulated genes downstream of *Zswim6* disruption. Related to Figure 4.

(A) Representative traces at +40 mV holding potential for NMDA currents are presented for D1-WT/cKO (bottom) neurons. (B) Bar graphs display the decay constants ($\tau 1$ and $\tau 2$) of NMDA components derived from both D1-WT/cKO animals. The fitting was performed using a double exponential function. (n=19/17 cells from 5/5 animals, $\tau 1$ p=0.8732; $\tau 2$ p=0.3026, t-test). Scale bar, 50 ms 100 pA. Solid line represents the raw trace, while the blue-dotted line represents the model inferred trace. C-D) Similar to (A), but for A2A-WT/cKO (n=20/23 cells from 5/5 animals, $\tau 1$ p=0.1994, $\tau 2$ p=0.9126, t-test). (E) Representative traces of evoked EPSCs from D1-WT/cHet neurons obtained with cells clamped at +40 mV and -80 mV in order to determine AMPA/NMDA ratio (top). Summary data of AMPA/NMDA ratio in D1-WT and D1-cHet neurons (bottom, n= 15/13 cells from 3/4 animals, **p=0.0050, t-test). (F) Representative traces of evoked EPSCs D1-WT/cHet neurons obtained during paired-pulse protocol (top). Summary data of paired pulse ratio in D1-WT and D1-cHet neurons (bottom, n = 17/20 cells from 3/4 animals, RM-2way ANOVA, ISI F(4,140)=11.65, ***p= 3.417×10^{-8} , Genotype F(1,35)=15.12, ***p= 4.309×10^{-4} , Interaction F(4,140)=5.822, **p=0.002). (G) Similar to (E), but for A2A-WT/cHet (n= 18/15 cells from 5/3 animals, **p=0.0082, t-test). (H) Similar to (F), but for A2A-WT/cHet (bottom, n= 19/15 cells from 5/3 animals, RM-2way ANOVA, ISI F(4, 128)=3.535, **p=0.0088, Genotype F(1,32) = 17.53, **p=0002, Interaction F(4,128) = 3.899, **p=0.005). (I) An illustration of the experimental strategy to evaluate early age knockout. AAV is injected into neonatal WT and Zswim6-cHet pups to selectively label knockdown cells, with subsequent synaptic measurements taken at P18-22. (J) Representative traces of evoked EPSCs from D1-WT/cHet neurons during early development. Recordings were obtained with cells voltage-clamped at +40 mV and -80 mV to determine the AMPA/NMDA ratio. (top). Summary data of AMPA/NMDA ratio in D1-WT/cHet neurons (bottom, n= 7/9 cells from 4/4 animals, p=0.9964, t-test). (K) Representative traces of evoked EPSCs D1-WT/cHet neurons obtained during paired-pulse protocol (top). Summary data of paired pulse ratio in D1-WT/cHet neurons (bottom, n= 17/20 cells from 3/4 animals, RM-2way ANOVA, ISI F(4,60)=7.753, ***p= 4.186×10⁻⁵, Genotype F(1,15)=0.2103, p= 0.6531, Interaction F(4,60)=3.615, **p=0.01,). (L) qPCR validation of AAV mediated shRNA efficiency (top, shRNA-A; bottom, shRNA-B). Each data point for shRNA-A and shRNA-B groups is displayed as a percentage of expression level of the corresponding gene in shRNA-Control transduced neurons from the same batch of cultures. (M) An illustration of the shRNA-B approach. shRNA AAV vectors (RORa, Celf2, Son) are injected into neonatal CD1 pups to selectively knock down gene expression, with subsequent synaptic measurements taken at P21-P23. (N-P) Representative traces (top) along with a comparison of the (N) AMPA/NMDA ratio (n = 20/18 cells from 4/4 animals, p=0.8819, t-test) or (M) PPR (n= 20/17 cells from 4/4 animals, RM-2way ANOVA, ISI F(4,140)=14.16, p< 9.97×10^{-10} , shRNA F(1,35)=1.955, p=0.1708, Interaction F(4,140) = 0.6908, p=0.5995) or (P) τ (n= 20/18 cells from 4/4 animals, p=0.8819, t-test) between mice injected with control shRNA and mice injected with shRNA-B. Data are presented as mean \pm SEM. Each shaded dot represents data from an individual experiment, unless otherwise noted. Significance from Šídák's post-hoc test for RM-2way ANOVA.

Figure S5: Additional analyses of passive membrane properties and spontaneous behavior in SPN-specific *Zswim6* cKOs. Related to Figure 5.

(A) Protocol for assessing intrinsic membrane properties and excitability in SPNs. (B) Summary data comparing rheobase between A2A-WT/cKO SPNs (n= 23/19 cells from 5/4 animals, p=0.7414, *t*-test). (C) Summary data comparing input resistance between A2A-WT/cKO SPNs (n= 23/19 cells from 5/4 animals, p=0.2210, *t*-test). (D) Summary data comparing action potential threshold between A2A-WT/cKO SPNs (n= 23/19 cells from 5/4 animals, p=0.2210, *t*-test). (D) Summary data comparing action potential threshold between A2A-WT/cKO SPNs (n= 23/19 cells from 5/4 animals, p=0.0632, *t*-test). (E) dV/dt firing curves from A2A-WT and A2A-cKO, showing when 2, 5, and 11(13) action potentials occurred. (F) Frequency of each behavioral cluster from D1-WT/cKO (top) and A2A-WT/cKO (bottom) (bootstrap BCa test). (H) Log-scaled comparison of transition matrix ratios between WT and cKO groups. The upper panel represents the data for D1-WT/cKO mice, while the lower panel represents the data for A2A-WT/cKO mice (See Table. S1 to see detailed statistics).

Figure S6: Sparse expression of Cre phenocopies the effects of dense Cre expression. Related to Figure 6.

(A) Cumulative frequency distribution of neuronal density expressing Cre-GFP between full titer (Dense, Figure 6) and 1/10 titer (Sparse, Figure S6) (left, mean \pm SEM represented as thick line \pm shaded area, n=9/14 from 3/3 animals, Repeated Two-way ANOVA, titer F(1,21)=79.71, ***p=1.3574×10⁻⁸, distance F(99,2079)=135.81, ***p<1*10⁻¹², Interaction F(99,2079)=73.14, ***p<1*10⁻¹²). Captured images obtained from each viral titer configuration (right). (B) AMPA/NMDA ratio (n= 10/11 cells from 3/3 animals, p=0.0126, *t*-test) or (C) PPR (n= 11/8 cells, RM-2way ANOVA, F (3.294, 55.99) = 4.844, **p<0.003, Cre F (1, 17) = 7.453, *p=0.014, Interaction F (4, 68) = 10.59, ***p=9.988×10⁻⁹) or (D) τ (n= 11/11 cells, ***p=0.0002, *t*-test) between mice injected with Δ Cre-GFP and mice injected with 1/10 Cre. Data are presented as mean \pm SEM. Each shaded dot represents data from an individual experiment, unless otherwise noted. Significance from Šídák's *post-hoc* test for RM-2way ANOVA.

D1-Cre		Walk				Explore			Groom			
		Fw	Rt	Lf	Trans.	Invst.	Stand	Wall	Upper	Lower	Mix	Rest
Walk	Fw		0.057 128	0.001 48	0.011 039	0.232 821	0.119 51	0.285 367	2.54E- 05	0.318 013	0.499 396	9.57E- 05
	۲t	0.318 975		0.209 034	0.063 127	0.303 965	0.039 788	0.033 281	0.002 963	0.491 999	0.041 596	0.049 217
	Lf	0.058 32	0.261 537		0.156 029	0.064 926	0.007 945	0.045 609	0.001 888	0.381 495	0.078 161	0.036 995
	Trans.	0.032 15	0.000 403	0.009 098		0.012 335	0.006 05	0.470 485	0.050 485	0.027 851	0.174 118	0.052 394
Explore	Invst.	0.066 078	0.002 158	0.005 5	0.058 655		0.000 372	0.212 731	0.011 493	0.127 082	0.082 134	0.096 333
	Stand	0.049 945	0.001 277	0.000 167	0.326 951	0.133 963		4.98E- 06	1.24E- 05	0.047 325	1.33E- 05	0.102 919
	Wall	0.012 573	0.430 226	0.034 437	0.110 146	0.350 713	0.108 092		0.264 108	0.160 662	0.103 22	0.018 481
Groom	Upper	0.041 737	0.033 286	0.055 19	0.271 772	0.176 613	0.079 16	0.300 938		0.009 927	0.114 958	0.002 798
	Lower	0.435 25	0.011 74	0.012 707	0.115 437	0.170 719	0.361 425	NaN	0.049 142		0.379 415	0.191 982
	Mix	0.371 606	0.371 499	0.034 713	0.224 05	0.125 57	0.164 747	0.014 867	4.96E- 05	0.453 393		0.195 372
	Rest	0.258 29	0.001 489	0.000 162	0.368 937	0.004 887	0.054 676	0.304 564	0.117 88	0.171 784	0.238 115	

Table S1: Detailed statistics relating to Figure S5C. p-value summary of transition matrix from *D1-Cre* mice (bootstrap test). Colored boxes indicate p-value <0.05.

A2a-Cre		Walk				Explore			Groom			
		Fw	Rt	Lf	Trans.	Invst.	Stand	Wall	Upper	Lower	Mix	Rest
Walk	Fw		0.130 797	0.448 155	0.287 633	0.180 879	0.172 51	0.351 838	0.271 004	0.430 023	0.173 594	0.360 051
	Rt	0.252 331		0.116 477	0.337 334	0.045 058	0.262 632	0.155 44	0.016 488	0.030 636	0.360 577	0.488 299
	Lf	0.008 693	0.283 128		0.323 319	0.001 594	0.003 944	0.181 334	0.013 086	0.005 141	0.336 125	0.127 802
	Trans.	0.355 294	0.500 066	0.451 211		0.467 864	0.172 545	0.333 787	0.173 145	0.270 263	0.311 984	0.462 796
Explore	Invst.	0.132 157	0.167 804	0.482 885	0.022 74		0.243 102	0.004 388	0.015 342	2.32E- 08	0.166 934	0.214 081
	Stand	0.163 739	0.300 455	0.398 894	0.305 323	0.474 772		0.184 034	0.442 935	0.068 391	0.093 65	0.114 321
	Wall	0.415 894	0.448 91	0.374 82	0.108 023	0.174 096	0.014 179		0.070 704	0.456 067	0.434 431	0.030 341
Groom	Upper	0.030 477	0.420 167	0.471 61	0.465 026	0.057 781	0.420 57	0.191 815		0.158 943	0.436 015	0.225 883
	Lower	0.184 994	0.494 413	0.428 906	0.462 397	1.25E- 08	0.268 921	0.120 167	0.297 734		0.384 874	0.366 721
	Mix	0.296 651	0.009 681	0.046 175	0.110 031	0.469 892	0.329 013	0.094 009	0.175 669	0.116 118		0.115 318
	Rest	0.090 728	0.222 122	0.278 608	0.151 896	0.099 229	0.219 779	0.058 639	0.146 402	0.047 226	0.287 866	

Table S1 (continued): Detailed statistics relating to Figure S5C. p-value summary of transition matrix from *A2a-Cre* mice (bootstrap test). Colored boxes indicate p-value <0.05.

Primer name	Primer sequence
Actb_Forward	CGCAGCCACTGTCGAGTC
Actb_Reverse	GTCATCCATGGCGAACTGGT
Hprt_Forward	AGTCCCAGCGTCGTGATTAG
Hprt_Reverse	TGATGGCCTCCCATCTCCTT
Nlgn1_Forward	CCCCATGATTGGCCCTACAG
Nlgn1_Reverse	TGGTTGATTTGGGTCACCAG
Cntn5_Forward	CATTGCCTGGGAGCCAGTAT
Cntn5_Reverse	GCCTCCGAAGACGTAACCAT
Tenm2_Forward	AAACCGAGTCACAGACCTGG
Tenm2_Reverse	CAGGGTGAAGTTTGTCCCTTGT
Son_Forward	AAAAAGTCTGGAGGAGCTACCA
Son_Reverse	AGGAGGTTCTTCTTCCTCTTCA
Celf2_Forward	ATGTTTGAGCGCACTTCTGA
Celf2_Reverse	TCCGTTCATCTTGTTGGCTGT
Rora_Forward	CGAAGAAGACACACACATCTCA
Rora_Reverse	CAGGAGTAGGTGGCATTGCT

 Table S2: List of primer sequences used for qPCR.