SUPPLEMENTAL TABLES AND FIGURES

Structure of dimerized assimilatory NADPH-dependent sulfite reductase reveals the minimal interface for diflavin reductase binding

Behrouz Ghazi Esfahani¹, Nidhi Walia^{1,2}, Kasahun Neselu³, Yashika Garg¹, Mahira Aragon³, Isabel Askenasy^{1,4}, Hui Alex Wei^{3,5}, Joshua H. Mendez³, and M. Elizabeth Stroupe¹

¹Department of Biological Science and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32303, USA

²Current Location: Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA

³New York Structural Biology Center, New York, NY, 10027, USA

⁴Current Location: Department of Biochemistry, University of Cambridge, CB2 1QW, UK

⁵Current Location: Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, 225 Warren St. Room E440U, Newark, NJ, 07103

Corresponding Author: M. Elizabeth Stroupe

Address: Florida State University 91 Chieftain Way Tallahassee, FL 32306

Phone: 850-645-1751

e-mail: mestroupe@bio.fsu.edu

Variable	SiRFP-43/SiRHP	SiRFP-60∆/SiRHP	SiRFP-60X/SiRHP
Expression	co-lysis	co-lysis	reconstitution
SiRFP variant (including the amino acids expressed) and the mass from which the name is derived	N-terminal octamerization and Fld- domain truncated, monomeric 43 kDa FNR domain (amino acids 237-599)	60 kDa monomer with linker truncation (∆AAPSQS) (amino acids 53- 599 minus 212-217)	60 kDa crosslinked monomer with four engineered variants: C162T, C552S, E121C, and N556C (amino acids 53- 599)
Theoretical mass of the complex (kDa)	107	123	124
Ability to complement SiRFP- deficient <i>Escherichia</i> <i>coli</i> without exogenous S ²⁻	-	-	-

Table S1. Expression system, nomenclature, mass, and activity for each heterodimer.

Sample assembly	SiRFP- 43/SiRHP	SiRFP- 60∆/SiRHP	SiRFP- 60X/SiRHP
SiRFP-43/SiRHP	Titan Krios	Titan Krios	Titan Krios
Voltage (KV)	300	300	300
Camera	K3	K3	Apollo
Magnification	105 K	105 K	59 K
Total dose (e/Ų)	60	60	60
Pixel size (Å)	0.844	0.844	0.765
Number of movies	14,628	25,488	9,963
Number of particles	1,500,000	550,000	179,000
Resolution (Å)	3.47*	3.49	2.78
Data collection location	NYSBC	NYSBC	FSU BSIR

Table S2. Data collection parameters and final reconstruction information.*Nominal resolution

Parameter	Value	
Mean B-factor (Ų)	57.2	
Мар СС	0.86	
RMSD [bonds] (Å)	0.003	
RMSD [angles] (Å)	0.632	
All-atom clash-score	7.3	
Ramachandran plot		
Favored (%)	96.4	
Allowed (%)	3.50	
Outliers (%)	0.09	
Rotamer outliers (%)	0.98	
C-β deviations (%)	0.00	
PDB ID	9C91	
EMDB ID	EMD-45359	

Table S3. Model refinement and validation statistics.

Fig S2. Raw data for each SiR dimer **a** Exemplar micrograph and selected 2D class averages from SiRFP-43/SiRHP dataset. **b** Exemplar micrograph and selected 2D class averages from SiRFP-60 Δ /SiRHP dataset. **c** Exemplar micrograph and selected 2D class averages from SiRFP-60 Δ /SiRHP dataset.

Fig S3. Orientation analysis of the SiRFP-43/SiRHP dimer **a** 2D superclass averages from the SiRFP-43/SiRHP dataset used to reduce the particles in each cluster to block preferred orientation effect. **b** Non-uniform refinement and orientation diagnostics results for all particles with good 2D class averages features (~1,500,000 particles). **c** Non-uniform refinement and orientation diagnostics results for reduced number of particles based on 2D rebalance super classification 350,000 particles). **d** Non-uniform refinement and orientation diagnostics results for reduced number of particles based on 2D rebalance super classification 105,000 particles).

b Orientation diagnostics results, highest resolution map and the refinement's GSFSC curve for SiRFP-60X/SiRHP particles.

Fig S5. SiRFP-60X/SiRHP high resolution map (2.78 Å) with placed coenzymes: **a** FAD (contour level 0.5), **b** FMN (contour level 0.3), **c** Siroheme-Fe₄S₄ cluster bound to a distal phosphate with the bridging h-Cys483 (contour level 0.8).

Fig S6. Path of SiRHP's previously undetermined N-terminal 80 amino acids. **a** The N-terminus of SiRHP (blue) breaks the pseudo 2-fold symmetry that relates S/NiRR 1 (domain 1, yellow + the N-terminus of the parachute domain, light green) and S/NiRR 2 (domain 2, dark green + the C-terminus of the parachute domain, light green. The S/NiRR 1 extension is orange. **b** Blue: amino acids 1-80. Green: S/NiRR 1 and 2. Yellow: helix preceding the siroheme mimic (h11). Cyan: siroheme mimic joining S/NiRRs 1 and 2. **b** is rotated 90° to the right and 90° into the place of the page relative to the view in **a**.

Fig S7. An extensive network of hydrophobic interactions, ionic bonds, and hydrogen bonds bridge from the SiRFP/SiRHP interface to the active site. Through space ionic or hydrogen bonds are represented by gray dashed lines. Through space hydrophobic interactionsare represented by black arrows.

UCSF Chimera¹) and **b** structure, amongst diflavinreductase (sky blue) dependent hemoprotein (like in *E. coli*, mauve) and ferredoxin (light pink) dependent (like in *Z. mays*, cornflower blue, *S. oleracea*, dark yellow, or *M. tuberculosis*, dark pink). ZmFd and SiRFP have been removed in the inset for clarity. N-terminus of ecSiRHP is dark blue, zmSIR is yellow, soSiRHP is light yellow, and mtSir is peach. **c** The N-terminus of SiRHP is not strongly conserved in comparison to the active site amino acids, as calculated in UCSF Chimera¹.

Fig. S9. The SiRFP-60 Fld domain is mobile. **a** Each position was determined by cryo-EM (this study, showing the most extreme positions from the SiRFP-60 Δ /SiRHP series of structures), X-ray crystallography², or SANS³. The position of the Fld domain is dependent on the SiRFP oxidation state or SiRHP binding. **b** When SiRFP-60 is crystallized, the Fld domain is not ordered although it is present⁴, leaving large solvent channels that can accommodate the positions of the Fld domain captured by SANS³, X-ray crystallography of SiRFP-60 Δ ², or cryo-EM of SiRFP-60 Δ /SiRHP. **c** Another SiRFP-60 crystal form⁴ has solvent channels that accommodate the Fld domain in some positions. **b** and **c** are oriented 90° to the left around a vertical axis from where they are positioned in **a** and colored the same. SiRHP is only present in the cryo-EM structure. **d** The Fld domain can adopt positions along an elliptical cone shape relative to the FNR domain, accommodate the different orientations of the Fld domain. The linker is not visible in this cryo-EM reconstruction. The most extreme closed or open positions of the Fld domain are shown. The closed position is similar to that seen in SiRFP-60X/SiRHP.

Fig S12. Biochemical analysis of each SiRFP/SiRHP variant shows that all are properly formed. **a** UV-Visible spectra showed that all variants are properly folded with cofactors bound. **b** Size exclusion chromatography profiles of all three variants with their characteristic elution profiles. **c** SDS-PAGE analysis of the variants, each of the protein preparation studied here, showed the expected molecular weights (kDa) for the subunits of the purified complexes.

Video S1. Swinging Fld domain shown in motion, obtained from SiRFP-60Δ/SiRHP dataset via CryoDRGN showing one of the latent spaces out of two.

REFERENCES

- 1 Pettersen, E. F. *et al.* UCSF Chimera A visualization system for exploratory research and analysis. *Journal of Computational Chemistry* **25**, 1605-1612 (2004). <u>https://doi.org/10.1002/jcc.20084</u>
- 2 Tavolieri, A. M. *et al.* NADPH-dependent sulfite reductase flavoprotein adopts an extended conformation unique to this diflavin reductase. *J Struct Biol* (2019). https://doi.org/10.1016/j.jsb.2019.01.001
- 3 Murray, D. T., Weiss, K. L., Stanley, C. B., Nagy, G. & Stroupe, M. E. Small-angle neutron scattering solution structures of NADPH-dependent sulfite reductase. *J Struct Biol* **213**, 107724 (2021). <u>https://doi.org/10.1016/j.jsb.2021.107724</u>
- 4 Gruez, A. *et al.* Four crystal structures of the 60 kDa flavoprotein monomer of the sulfite reductase indicate a disordered flavodoxin-like module. *J Mol Biol* **299**, 199-212 (2000). https://doi.org/10.1006/jmbi.2000.3748 S0022-2836(00)93748-3 [pii]