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Supplementary Material for
GOPhage: Protein function annotation for bacteriophages by integrating the genomic context

The architecture of the Trans model

To demonstrate the impact of contextual information on protein

function annotation, we developed a model named ‘Trans’. The

architecture of ‘Trans’ comprises three main steps. Initially, a

protein with m residues is fed into the ESM2 foundation model,

generating per-residue embeddings of dimensions m×de. Based

on the setting of the GOPhage, the m is 1024 and the de is 1280.

Subsequently, each amino acid in the protein sequence is treated

as a token, with the m per-residue embeddings serving as word

embeddings and inputted into the Transformer model. This

model captures relationships among the residues. The learned

features of each residue from the Transformer model are then

passed through a Fully Connected (FC) layer for classification.

The number of the parameter of GOPhage
models

We tabulated the parameter counts for two versions of the

GOPhage models in Table 2. As we trained distinct models

for the three ontologies, we calculated the parameters for

each separately. Due to variations in the number of GO

term labels and the length of input sentences across the

three ontologies, the parameter counts differ. Notably, the

number of parameters of GOPhageLARGE is 6.91, 7.06, and

6.85 times that of GOPhageBASE in the BP, CC, and MF

ontologies, respectively. In addition, based on the performance,

GOPhage+BASE and GOPhage+LARGE are recommended for

users. However, in scenarios where computational resources are

constrained, GOPhage+BASE is the preferable choice.

Overall protein-centric performance of GOPhage

The experiment compared GOPhage and GOPhage+ with

four other methods: DiamondScore [1], DeepGOCNN [1],

DeepGOPlus [1], and PFresGO [2]. The results based on

a protein-centric evaluation are presented in Table 3. Both

GOPhage and GOPhage+ achieved the best performance

compared to the other methods. Specifically, GOPhage+

exhibited remarkable improvements over the second-best

method, with increases of 8.32%, 4.82%, and 10.24% in

Table 1. The number of the proteins and the Go term labels in

training, validation, and test dataset.

Train Test Val Term

CC 3170 393 394 23

BP 4974 834 755 126

MF 30301 4012 3835 165

Table 2. The number of the parameter for two versions of the

GOPhage model.

BP CC MF

GOPhageBASE 1,448,831 1,399,288 1,467,590

GOPhageLARGE 10,005,631 9,873,688 10,055,590

AUPR, and 2.31%, 1.28%, and 13.09% in Fmax for BP,

CC, and MF, respectively. Comparing the two versions of

GOPhage, the performance of GOPhageLARGE surpassed

that of GOPhageBASE, highlighting the advantages of

deeper foundation models. In particular, GOPhageLARGE

demonstrated improvements of 3.65%, 0.47%, and 6.28%

in Fmax for BP, CC, and MF, respectively. Furthermore,

integrating a similarity-based method further enhanced the

performance. GOPhage+BASE improved AUPR by 4.63%, 1.16%,

and 4.68% for BP, CC, and MF, respectively. Similarly,

GOPhage+LARGE showed improvements of 2.21%, 1.04%,

and 0.79% in AUPR for BP, CC, and MF, respectively.

Overall, these findings demonstrate that GOPhage and

GOPhage+ outperformed the other methods by integrating

deeper foundation models and similarity-based approaches.

Define the criteria for selecting the GO terms
for holin proteins

We retrieved well-studied virus holin proteins with an

annotation score greater than 2 from the UniProtKB database,

resulting in a total of 1321 proteins. In the Cellular Component

(CC) ontology, 98.33% of these proteins are associated with

the terms GO:0016020 (membrane) and GO:0020002 (host

membrane). In the Molecular Function (MF) ontology, 98.03%

of the proteins possess the term GO:0140911 (pore-forming

activity). In the Biological Process (BP) ontology, 98.33% of

the proteins exhibit GO:0031640 (killing of cells of another

organism), 69.27% show GO:0019076 (viral release from host

cell), and 68.36% have GO:0044659 (viral release from host

cell by cytolysis). We identify the holin proteins if the gene

ontology annotation includes GO:0016020, GO:0140911, and

one of the three BP GO terms. Applying these criteria, our

method GOPhage+ can identify 688 proteins as potential holin

proteins.

Ablation Study

This study investigates the impact of different protein

embeddings on performance. GOPhage employs the FC layer

to transform per-residue embeddings from a shape of L × d to

per-protein embeddings with a shape of 1× d. We compare the

mean and max pooling methods, presenting the results in Table

5 and Table 6. The findings reveal that max-pooling performs

the poorest across all three ontologies. When assessing the

output from a protein-centric perspective, the results obtained

using the FC layer are comparable or slightly lower (-0.06% to

-2.06%) than those from the mean pooling methods. However,

when examining the term-centric outcomes, the FC methods

demonstrate a substantial improvement of 4.26% to 10.30%

over mean pooling. Consequently, based on the comprehensive

analysis, we opt for the FC methods to generate the per-protein

embeddings.
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Table 3. The performance of all methods on the high annotation rate dataset based on the protein-centric evaluation.

BP CC MF

AUPR Fmax AUPR Fmax AUPR Fmax

DiamondScore 0.796 0.6802 0.7801 0.4194 0.7462 0.6602

DeepGOCNN 0.7281 0.6718 0.7938 0.7731 0.6215 0.5897

DeepGOPLUS 0.8264 0.7752 0.8539 0.8163 0.7770 0.7666

PFresGO 0.8387 0.8486 0.8866 0.8577 0.8054 0.7310

DeepGO-SE 0.8306 0.8195 0.9192 0.8748 0.8832 0.8413

GOPhageBASE 0.8688 0.806 0.9232 0.8638 0.8354 0.7897

GOPhageLARGE 0.8998 0.8425 0.9186 0.8685 0.8999 0.8525

GOPhage+BASE 0.9151 0.8614 0.9348 0.8704 0.8822 0.8397

GOPhage+LARGE 0.9219 0.8717 0.9290 0.8705 0.9078 0.8619

Table 4. The performance of all methods on leave-genus-out dataset based on the protein-centric evaluation.

BP CC MF

AUPR Fmax AUPR Fmax AUPR Fmax

DiamondScore 0.6910 0.4376 0.6276 0.3083 0.8428 0.7966

DeepGOCNN 0.6188 0.6201 0.7190 0.7470 0.7363 0.6818

DeepGOPLUS 0.7293 0.7022 0.7925 0.8034 0.8347 0.8221

PFresGO 0.8316 0.7749 0.8128 0.8207 0.8731 0.8592

DeepGO-SE 0.7642 0.7370 0.8679 0.8789 0.8916 0.8686

GOPhageBASE 0.7578 0.6872 0.8594 0.8594 0.8690 0.8150

GOPhageLARGE 0.8196 0.7452 0.8951 0.8952 0.9118 0.8645

GOPhage+BASE 0.8421 0.7665 0.8984 0.8902 0.9055 0.8786

GOPhage+LARGE 0.8661 0.8071 0.9148 0.9049 0.9162 0.8891

Table 5. Comparison of the embedding using mean pooling, max pooling, and FC layer based on the ESM2-12 foundation model. The

numbers in brackets represent the value of increase or decrease compared to the result of the mean pooling.

BP CC MF

Fmax Fmax Fmax

Mean 0.7632 0.7993 0.7028

Max 0.4045 0.7112 0.4630Term-centric

FC 0.8060(+4.26%) 0.8638(+6.45%) 0.7897(+8.69%)

Mean 0.7720 0.8314 0.7201

Max 0.6493 0.7459 0.5564Protein-centric

FC 0.7814(+0.94%) 0.8108(-2.06%) 0.75050 (+1.51%)

Test the effect of up-propagation

Taking into account the hierarchical nature of GO terms, it

is logical to maintain the predicted probability of a given GO

term equal to or higher than that of all its child terms. To

assess the impact of up-propagation, we initially computed the

average error rate for each protein without up-propagation.

Specifically, we examined the predicted probabilities for each

protein and compared the probabilities of child GO terms with

their respective parent GO terms. An error was recorded when

the probability of a child term exceeded that of its parent

term. The error rate was then computed as the ratio of the

number of errors to the total number of comparisons made

within the GO terms hierarchy. The error rates are just 0.69%,

1.39%, and 0.43% for BP, CC, and MF. The low error rates

suggest that, despite not explicitly incorporating the topology

of GO terms into our model, the model is capable of implicitly

learning this hierarchical structure from the training dataset.

To further refine our predictions, we adjusted any instances

where the probability of a child term was greater than that

of its parent term by setting the child’s probability equal to

the parent’s probability. The results of this adjustment, both

protein-centric and term-centric, are also provided in Table 7.

Upon comparison, it is evident that the adjusted results are

comparable to the original results.

Performance on experimentally annotated
proteins

To assess the performance of experimentally annotated

proteins, we initially obtained the UniProt-GOA database from

the following link: https://www.ebi.ac.uk/GOA/downloads.

This database contains information such as protein names,

taxon IDs, GO terms, and evidence codes. Within the subset

of Caudoviricetes (Taxon ID: 2731619), there were a total

of 1,522,526 proteins. To identify proteins with experimental

validation, we focused on evidence codes including ”EXP”,

”IDA”, ”IPI”, ”IMP”, ”IGI”, ”IEP”, ”TAS”, ”IC”, ”HTP”,

”HDA”, ”HMP”, ”HGI”, and ”HEP”. Among these, we

obtained 785 experimental annotations across 411 phage

proteins. To ensure the test proteins are excluded from the

training datasets of the existing tools, we examined the released

dates of DeepGO-SE, GPSfun, and NetGO3. Subsequently, we

filtered out proteins created before January 2022, retaining

a total of 30 proteins. Since there is only one protein of

CC ontology, our comparative analysis focused on the BP

and MF ontologies. We directly utilized the released models

available on GitHub for DeepGO-SE and PFresGO, employing

the specific web servers of NetGO3 and GPSFun for conducting

prediction tasks. The results of the protein-centric assessment

are elaborated in Table 8. Furthermore, we compared our
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Table 6. Comparison of the embedding using mean pooling, max pooling, and FC layer based on the ESM2-33 foundation model. The

numbers in brackets represent the value of increase or decrease compared to the result of mean pooling.

BP CC MF

Fmax Fmax Fmax

Mean 0.7801 0.8099 0.7495

Max 0.7156 0.7016 0.4866Term-centric

FC 0.8425(+6.24%) 0.8685(+5.86%) 0.8525(+10.3%)

Mean 0.8224 0.8405 0.7998

Max 0.7268 0.7900 0.5691Protein-centric

FC 0.8115(-1.09%) 0.8399(-0.06%) 0.7974(-0.24%)

BP CC MF
(a)

(b)

(c)

Fig. 1. The performance on different similarity datasets and different GO terms. (a) shows the AUPR of term-centric on six methods. (b) and (c)

demonstrates the effect of the contextual proteins on three different identity groups and different labels on the protein function annotation task.

model with other existing methods across all 411 phage proteins

mentioned by the reviewer without considering that some

of them are likely part of the training data of different

tools/webservers. The detailed results of the protein-centric

evaluation can be found in Table 9 of the supplementary

material. As some of the 411 phage proteins are encompassed

within the training datasets of existing methods, we observe
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Table 7. Comparison of the effect of up-propagation on three ontologies.

BP CC MF

AUPR Fmax AUPR Fmax AUPR Fmax

Term-centric
GOPhage+LARGE 0.8636 0.8341 0.8783 0.8493 0.8277 0.8095

Adjust 0.8612 0.8355 0.8778 0.8483 0.8351 0.8091

Protein-centric
GOPhage+LARGE 0.9219 0.8717 0.9290 0.8705 0.9078 0.8619

Adjust 0.9197 0.8716 0.9231 0.8722 0.9037 0.8610

Table 8. The performance on 30 experimentally annotated proteins based on the protein-centric evaluation.

BP MF

AUPR Fmax AUPR Fmax

PFresGO 0.0517 0.1658 0.2425 0.4125

DeepGO-SE 0.0811 0.1734 0.3610 0.5886

GPSFun 0.3383 0.5258 0.3983 0.5712

NetGO3 0.3276 0.5718 0.5869 0.6644

GOPhageLARGE+ 0.6151 0.6848 0.6238 0.6096

Table 9. The performance on 411 experimentally annotated proteins based on the protein-centric evaluation.

BP CC MF

AUPR Fmax AUPR Fmax AUPR Fmax

PFresGO 0.1575 0.2612 0.2437 0.3421 0.2099 0.3464

DeepGO-SE 0.2213 0.3068 0.3287 0.4325 0.5347 0.6008

GPSFun 0.3028 0.3811 0.3005 0.4850 0.6488 0.6988

NetGO3 0.4181 0.5422 0.4736 0.6262 0.7572 0.7576

GOPhageLARGE+ 0.8490 0.8179 0.8613 0.9172 0.7385 0.7927

a performance boost. In summary, GOPhage+ surpasses the

current state-of-the-art methods in terms of performance.
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